Eco-Friendly Synthesis of Cerium Oxide Nanoparticles from Lycium cooperi
Abstract
1. Introduction
2. Experimental Details
2.1. Morphological Characteristic of L. cooperi Plant
2.2. Preparation of L. cooperi Extract
2.3. Phytochemical Characterization of L. cooperi Extract
- Alkaloids
- Flavonoids
- Saponins
- Tannins
- Terpenoids
- Cardiac glycosides
- Carbohydrates
2.4. Green Synthesis of CeO2-NPs
2.5. Characterization of CeO2-NPs
3. Results and Discussion
3.1. Phytochemical Analysis of L. cooperi Aqueous Extract
3.2. Physicochemical Analysis of CeO2-NPs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, Y.Q.; Wu, Y.Z.; Wu, Y.H.; Weng, Z.L.; Liu, S.J.; Liu, Z.G.; Han, B. Recent Advances of CeO2-Based Composite Materials for Photocatalytic Applications. ChemSusChem 2024, 17, e202301778. [Google Scholar] [CrossRef] [PubMed]
- Othman, A.; Gowda, A.; Andreescu, D.; Hassan, M.H.; Babu, S.V.; Seo, J.; Andreescu, S. Two decades of ceria nanoparticles research: Structure, properties and emerging applications. Mater. Horiz. 2024, 11, 3213–3266. [Google Scholar] [CrossRef]
- Bakr, A.M.; Darwish, A.; Azab, A.A.; El Awady, M.E.; Hamed, A.A.; Elzwawy, A. Structural, dielectric, and antimicrobial evaluation of PMMA/CeO2 for optoelectronic devices. Sci. Rep. 2024, 14, 2548. [Google Scholar] [CrossRef]
- Motazedian, M.; Hosseinabadi, N.; Khosravifard, A. The ceria–Germania solid oxide hydrogen storage hollow porous nanoparticles. Mater. Chem. Phys. 2023, 307, 128100. [Google Scholar] [CrossRef]
- Kalaycıoğlu, Z.; Özuğur Uysal, B.; Pekcan, O.; Erim, F.B. Efficient photocatalytic degradation of methylene blue dye from aqueous solution with cerium oxide nanoparticles and graphene oxide-doped polyacrylamide. ACS Omega 2023, 8, 13004–13015. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, S.; Singh, S.; Maiti, T.K.; Das, A.; Barui, A.; Chaudhari, L.R.; Meghnad, G.; Dutt, D. Cerium oxide nanoparticles disseminated chitosan gelatin scaffold for bone tissue engineering applications. Int. J. Biol. Macromol. 2023, 236, 123813. [Google Scholar] [CrossRef]
- Vijayan, A.; Ramadoss, S.; Sisubalan, N.; Gnanaraj, M.; Chandrasekaran, K.; Kokkarachedu, V. Cerium Oxide Nanoparticles for Biomedical Applications. In Nanoparticles in Modern Antimicrobial and Antiviral Applications; Springer International Publishing: Cham, Switzerland, 2024; pp. 175–200. [Google Scholar]
- Kim, Y.G.; Lee, Y.; Lee, N.; Soh, M.; Kim, D.; Hyeon, T. Ceria-based therapeutic antioxidants for biomedical applications. Adv. Mater. 2024, 36, 2210819. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, L.D.; Mandawade, A.S.; Ahemad, H.I.; Aher, Y.B.; Gite, A.B.; Nikam, L.K.; Shinde, S.D.; Jain, G.H.; Patil, G.E.; Shinde, M.S. Sol-gel and hydrothermal synthesis of CeO2 NPs: Their physiochemical properties and applications for gas sensor with photocatalytic activities. Inorg. Chem. Commun. 2024, 164, 112313. [Google Scholar] [CrossRef]
- Nyoka, M.; Choonara, Y.E.; Kumar, P.; Kondiah, P.P.; Pillay, V. Synthesis of cerium oxide nanoparticles using various methods: Implications for biomedical applications. Nanomaterials 2020, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Miu, B.A.; Dinischiotu, A. New green approaches in nanoparticles synthesis: An overview. Molecules 2022, 27, 6472. [Google Scholar] [CrossRef] [PubMed]
- Nobahar, A.; Carlier, J.D.; Miguel, M.G.; Costa, M.C. A review of plant metabolites with metal interaction capacity: A green approach for industrial applications. BioMetals 2021, 34, 761–793. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.F.; Mofijur, M.; Rafa, N.; Chowdhury, A.T.; Chowdhury, S.; Nahrin, M.; Saiful Islam, A.B.M.; Ong, H.C. Green approaches in synthesizing nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits, and challenges. Environ. Res. 2022, 204, 111967. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Peng, Y.; Xu, L.J.; Li, L.; Wu, Q.L.; Xiao, P.G. Phytochemical and biological studies of Lycium medicinal plants. Chem. Biodivers. 2011, 8, 976–1010. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Heinrich, M.; Weckerle, C. The genus Lycium as food and medicine: A botanical, ethnobotanical and historical review. J. Ethnopharmacol. 2018, 212, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Aseyd Nezhad, S.; Es-haghi, A.; Tabrizi, M.H. Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities. Appl. Organomet. Chem. 2020, 34, e5314. [Google Scholar] [CrossRef]
- Altaf, M.; Manoharadas, S.; Zeyad, M.T. Green synthesis of cerium oxide nanoparticles using Acorus calamus extract and their antibiofilm activity against bacterial pathogens. Microsc. Res. Tech. 2021, 84, 1638–1648. [Google Scholar] [CrossRef] [PubMed]
- Muthuvel, A.; Jothibas, M.; Mohana, V.; Manoharan, C.J.I.C.C. Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg. Chem. Commun. 2020, 119, 108086. [Google Scholar] [CrossRef]
- Manimaran, R. Optimization of Azadirachta indica leaf extract mediated cerium oxide nanoparticles synthesis, characterization, and its applications. Ind. Crops Prod. 2023, 204, 117304. [Google Scholar] [CrossRef]
- Parvathy, S.; Manjula, G.; Balachandar, R.; Subbaiya, R. Green synthesis and characterization of cerium oxide nanoparticles from Artabotrys hexapetalus leaf extract and its antibacterial and anticancer properties. Mater. Lett. 2022, 314, 131811. [Google Scholar] [CrossRef]
- Ahmed, H.E.; Iqbal, Y.; Aziz, M.H.; Atif, M.; Batool, Z.; Hanif, A.; Yaqub, N.; Farooq, W.A.; Ahmad, S.; Fatehmulla, A.; et al. Green synthesis of CeO2 nanoparticles from the Abelmoschus esculentus extract: Evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities. Molecules 2021, 26, 4659. [Google Scholar] [CrossRef]
- Putri, G.E.; Rilda, Y.; Syukri, S.; Labanni, A.; Arief, S. Highly antimicrobial activity of cerium oxide nanoparticles synthesized using Moringa oleifera leaf extract by a rapid green precipitation method. J. Mater. Res. Technol. 2021, 15, 2355–2364. [Google Scholar] [CrossRef]
- Sabouri, Z.; Sabouri, M.; Amiri, M.S.; Khatami, M.; Darroudi, M. Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater. Technol. 2022, 37, 555–568. [Google Scholar] [CrossRef]
- Michael, H. Nee. Lycium cooperi, in Jepson Flora Project (eds.) Jepson eFlora. 2021. Available online: https://ucjeps.berkeley.edu/eflora/eflora_display.php?tid=32210 (accessed on 20 October 2023).
- Marslin, G.; Siram, K.; Maqbool, Q.; Selvakesavan, R.K.; Kruszka, D.; Kachlicki, P.; Franklin, G. Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. Materials 2018, 11, 940. [Google Scholar] [CrossRef] [PubMed]
- Wongsa, P.; Phatikulrungsun, P.; Prathumthong, S. FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions. Sci. Rep. 2022, 12, 6631. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Zhang, L.X.; Xing, Y.; Zhang, P.; Chen, J.J.; Yin, J.; Bie, L.J. Morphology-controlled synthesis of CeO2 nanocrystals and their facet-dependent gas sensing properties. Sens. Actuators B Chem. 2021, 330, 129374. [Google Scholar] [CrossRef]
L. cooperi Plant | |
---|---|
Habit: | Glandular-puberulent; branches rigidly ascending to erect, shrub, leafy. |
Leaf: | Size: 1–3 cm, shape: oblanceolate to obovate. |
Flower: | Calyx size: 8–15 mm, calyx shape: narrowly bell-shaped, lobe number: 4–5 mm, lobe shape: tube, lobe size: 1.5–3 mm, corolla shape: narrowly funnel-shaped, corolla color: white, corolla size: 9–12 mm. |
Fruit: | Size: 5–9 mm, color: yellow to orange. |
Seed: | Several |
Distribution: | California, Arizona, and Utah. |
Metabolite | Test | Result |
---|---|---|
Alkaloids | Hager and tannic acid | (+) |
Flavonoids | Ammonia | (+) |
Saponins | Froth’s | (−) |
Tannins | FeCl3 | (−) |
Terpenoids | Terpenoid | (−) |
Cardiac glycosides | Keller–Kellani | (+) |
Carbohydrates | Benedict | (+) |
Plant Extract | Size of NPs | Band Gap | Synthesis Time and Temperature | Calcination Temperature and Time | Ref. |
---|---|---|---|---|---|
Origanum majorana L. | ~20 nm | - | 48 h at 100 °C | 450 °C for 4 h | [16] |
Acorus calamus | ~22 nm | - | 4 h at RT | 400 °C for 2 h | [17] |
Calotropis procera | ~21 nm | ~3.3 eV | 3 h at 85 °C | 400 °C for 2 h | [18] |
Azadirachta indica | ~28 nm | - | - | - | [19] |
Artabotrys hexapetalus | - | ~3.2 eV | 6 h at 80 °C | - | [20] |
Abelmoschus esculentus | ~36 nm | - | 6 h at 120 °C | 600 °C for 4 h | [21] |
Moringa oleifera | ~17 nm | ~2.6 eV | 2 h at 80 °C | 600 °C for 2 h | [22] |
Rheum turkestanicum | ~30 nm | ~3.3 eV | 24 h at 80 °C | 400–600 °C for 2 h | [23] |
Lycium cooperi | ~7 nm | ~3.3 eV | 1 h at 80 °C | 400 °C for 2 h | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Saenz, J.; Salomón-Carlos, J.; Beltrán-Partida, E.; Valdez-Salas, B. Eco-Friendly Synthesis of Cerium Oxide Nanoparticles from Lycium cooperi. Reactions 2025, 6, 14. https://doi.org/10.3390/reactions6010014
Castillo-Saenz J, Salomón-Carlos J, Beltrán-Partida E, Valdez-Salas B. Eco-Friendly Synthesis of Cerium Oxide Nanoparticles from Lycium cooperi. Reactions. 2025; 6(1):14. https://doi.org/10.3390/reactions6010014
Chicago/Turabian StyleCastillo-Saenz, Jhonathan, Jorge Salomón-Carlos, Ernesto Beltrán-Partida, and Benjamín Valdez-Salas. 2025. "Eco-Friendly Synthesis of Cerium Oxide Nanoparticles from Lycium cooperi" Reactions 6, no. 1: 14. https://doi.org/10.3390/reactions6010014
APA StyleCastillo-Saenz, J., Salomón-Carlos, J., Beltrán-Partida, E., & Valdez-Salas, B. (2025). Eco-Friendly Synthesis of Cerium Oxide Nanoparticles from Lycium cooperi. Reactions, 6(1), 14. https://doi.org/10.3390/reactions6010014