Microwave-Assisted Synthesis of Tri-Substituted 1,3,5-Triazines from Metformin Using Benzotriazole Chemistry
Abstract
:1. Introduction
2. Results and Discussion
Computational Results
3. Conclusions
4. Experimental Section
5. Synthesis of Tri-Substituted 1,3,5-Triazines
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pierotti, M.A.; Berrino, F.; Gariboldi, M.; Melani, C.; Mogavero, A.; Negri, T.; Pasanisi, P. Targeting metabolism for cancer treatment and prevention: Metformin, an old drug with multi-faceted effects. Oncogene 2013, 32, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Libby, G. New Users of Metformin Are at Low Risk of Incident Cancer: A Cohort Study among people with type 2 diabetes. Diabetes Care 2009, 32, 1620–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, N.; Yang, X. Metformin as an anti-cancer agent: Actions and mechanisms targeting cancer stem cells. Acta Biochim. Biophys. Sin. 2018, 50, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pernicova, I.; Korbonits, M. Metformin—Mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 2014, 10, 143–156. [Google Scholar] [CrossRef]
- Del Barco, S.; Vazquez-Martin, A.; Cufi, S.; Oliveras-Ferraros, C.; Bosch-Barrera, J.; Joven, J.; Martin-Castillo, B. Metformin: Multi-faceted protection against cancer. Oncotarget 2011, 2, 896–917. [Google Scholar] [CrossRef] [Green Version]
- Serrar, H.; Marmouzi, I.; Benzekri, Z.; Boukhris, S.; Hassikou, A.; El Abbes Faouzi, M.; Souizi, A. Synthesis and Evaluation of Novel Pyrido [1,2-b][1,2,4]triazine-2,6-dione and Pyrido [1,2-b][1,2,4]triazepine-2,7-dione Derivatives as Antioxidant Agents. Lett. Org. Chem. 2017, 14, 267–277. [Google Scholar] [CrossRef]
- Ouakki, M.; Galai, M.; Aribou, Z.; Benzekri, Z.; El Assiri, E.H.; Dahmani, K.; Ech-chihbi, E.; Abousalem, A.S.; Boukhris, S.; Cherkaoui, M. Detailed experimental and computational explorations of pyran derivatives as corrosion inhibitors for mild steel in 1.0 M HCl: Electrochemical/surface studies, DFT modeling, and MC simulation. J. Mol. Struct. 2022, 1261, 132784. [Google Scholar] [CrossRef]
- Ouakki, M.; Galai, M.; Benzekri, Z.; Aribou, Z.; Ech-chihbi, E.; Guo, L.; Dahmani, K.; Nouneh, K.; Briche, S.; Boukhris, S.; et al. A detailed investigation on the corrosion inhibition effect of by newly synthesized pyran derivative on mild steel in 1.0 M HCl: Experimental, surface morphological (SEM-EDS, DRX& AFM) and computational analysis (DFT & MD simulation). J. Mol. Liq. 2021, 344, 117777. [Google Scholar]
- El Aadad, H.; Benzekri, Z.; Boukhris, S.; Chahine, A. Synthesis, characterization of polystyrene-phosphate films and their application as heterogeneous catalyst for Knoevenagel condensation in solvent-free conditions. J. Chem. Sci. 2020, 132, 87. [Google Scholar] [CrossRef]
- Benzekri, Z.; Sibous, S.; Serrar, H.; Boukhris, S.; Hassikou, A.; Ghailane, R.; Souizi, A. Efficient Synthesis of 1,4-Dihydropyrano [2,3-c]pyrazoles Using Snail Shell as a Biodegradable and Reusable Catalyst. Org. Prep. Proced. Int. 2019, 51, 566–575. [Google Scholar] [CrossRef]
- Sakhuja, R.; Panda, S.S.; Bajaj, K. Microwave-assisted synthesis of five-membered azaheterocyclic systems. Curr. Org. Chem. 2012, 16, 789–828. [Google Scholar]
- Koizumi, K.; Kuboyama, N.; Tomono, K.; Tanaka, A.; Ohki, A.; Kohno, H.; Wakabayashi, K.; Böger, P. Novel 1,3,5-triazine derivatives with herbicidal activity. Pestic. Sci. 1999, 55, 642–645. [Google Scholar] [CrossRef]
- Chen, X.; Zhan, P.; Liu, X.; Cheng, Z.; Meng, C.; Shao, S.; Pannecouque, C.; de Clercq, E.; Liu, X. Design, synthesis, anti-HIV evaluation and molecular modeling of piperidine-linked amino-triazine derivatives as potent non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. 2012, 20, 1464–3391. [Google Scholar] [CrossRef]
- Brzozowski, Z.; Sączewski, F.; Gdaniec, M. Synthesis, structural characterization and antitumor activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur. J. Med. Chem. 2000, 35, 1053–1064. [Google Scholar] [CrossRef]
- Dubey, V.; Pathak, M.; Bhat, H.R.; Singh, U.P. Design, facile synthesis, and antibacterial activity of hybrid 1,3,4-thiadiazole-1,3,5-triazine derivatives tethered via-S-bridge. Chem. Biol. Drug Des. 2012, 80, 598–604. [Google Scholar] [CrossRef]
- Simanek, E.E.; Abdou, H.; Lalwani, S.; Lim, J.; Mintzer, M.; Venditto, V.J.; Vittur, B. The 8 year thicket of triazine dendrimers: Strategies, targets and applications. Proc. Math. Phys. Eng. Sci. 2010, 466, 1445–1468. [Google Scholar] [CrossRef]
- Dao, P.; Garbay, C.; Chen, H. High yielding microwave-assisted synthesis of tri-substituted 1,3,5-triazines using Pd-catalyzed aryl and heteroarylamination. Tetrahedron 2012, 68, 3856–3860. [Google Scholar] [CrossRef]
- Chen, H.; Dao, P.; Laporte, A.; Garbay, C. High yielding microwave-assisted synthesis of 2-(arylmethyl)amino-4-arylamino-6-alkyl-1,3,5-triazines. Tetrahedron Lett. 2010, 51, 3174–3176. [Google Scholar] [CrossRef]
- Chen, C.; Dagnino, R.; McCarthy, J.R. A Convenient Synthetic Method for Trisubstituted s-Triazines. J. Org. Chem. 1995, 60, 8428–8430. [Google Scholar] [CrossRef]
- Tiwari, A.R.; Akash, T.; Bhanage, B.M. NIS-catalyzed oxidative cyclization of alcohols with amidines: A simple and efficient transition-metal free method for the synthesis of 1,3,5-triazines. Org. Biomol. Chem. 2015, 13, 10973–10976. [Google Scholar] [CrossRef]
- Zeng, M.; Wang, T.; Cui, D.-M.; Zhang, C. Ruthenium-catalyzed synthesis of tri-substituted 1,3,5-triazines from alcohols and biguanides. New J. Chem. 2016, 40, 8225–8228. [Google Scholar] [CrossRef]
- Zeng, M.; Xie, Z.P.; Cui, D.-M.; Zhang, C. Ruthenium-catalyzed synthesis of arylethyl 1,3,5-triazines from arylallyl alcohols and biguanides. Org. Biomol. Chem. 2018, 16, 6140–6145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ban, M.-T.; Zhu, K.; Zhang, L.-Y.; Luo, Z.-Y.; Guo, S.-N.; Cui, D.-M.; Zhang, Y. Copper-Catalyzed Synthesis of Substituted 2,4-Diamino-1,3,5-triazines from 1,1-Dibromoalkenes and Biguanides. Org. Lett. 2017, 19, 3947–3949. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, S.R.; Dange, R.; Bhanage, B.M. Graphene oxide as a carbo-catalyst for the synthesis of tri-substituted 1,3,5-triazines using biguanides and alcohols. Catal. Commun. 2020, 137, 105933. [Google Scholar] [CrossRef]
- Shastin, A.V.; Godovikova, T.I.; Korsunskii, B.L. Trisubstituted 1,3,5-triazines. 2. Synthesis of 1,3,5-triazines from 2,4,6-tris[di(tert-butoxycarbonyl)methylene]hexahydro-1,3,5-triazine. Chem. Heterocycl. Compd. 1998, 34, 1195–1197. [Google Scholar] [CrossRef]
- Zeng, M.; Wang, T.; Cui, D.-M.; Zhang, C. Ruthenium-catalyzed synthesis of 1,3,5-triazin-2(1H)-ones and dihydro [1,3,5]triazino [1,2-a]benzimidazoles from alcohols and guanides. New J. Chem. 2018, 42, 11905–11907. [Google Scholar] [CrossRef]
- Yao, W.; Duan, Z.-C.; Zhang, Y.; Sang, X.; Xia, X.-F.; Wang, D. Iridium supported on phosphorus-doped porous organic polymers: Active and recyclable catalyst for acceptorless dehydrogenation and borrowing hydrogen reaction. Adv. Synth. Catal. 2019, 361, 5695–5703. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Rachwal, S.; Rachwal, B. The chemistry of N-substituted benzotriazoles. Part 4. A novel and versatile method for the mono-N-alkylation of aromatic and heteroaromatic amines. J. Chem. Soc. Perkin Trans. 1 1987, 805–809. [Google Scholar] [CrossRef]
- Dennis Hall, C.; Panda, S.S.; Scriven, E.F.V.; Ramsden, C.A. Chapter One—The Benzotriazole Story. In Advances in Heterocyclic Chemistry; Academic Press: Cambridge, MA, USA, 2016; Volume 119, pp. 1–23. [Google Scholar]
- Katritzky, A.R.; Rachwal, S. Synthesis of Heterocycles Mediated by Benzotriazole. 1. Monocyclic Systems. Chem. Rev. 2010, 110, 1564–1610. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Rachwal, S. Synthesis of Heterocycles Mediated by Benzotriazole. 2. Bicyclic Systems. Chem. Rev. 2011, 111, 7063–7120. [Google Scholar] [CrossRef]
- Zorc, B.; Rajić Džolić, Z.; Butula, I. Benzotriazole as a Synthetic Auxiliary. Croat. Chem. Acta 2012, 85, 595–602. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Lan, X.; Yang, J.Z.; Denisko, O.V. Properties and Synthetic Utility of N-Substituted Benzotriazoles. Chem. Rev. 1998, 98, 409–548. [Google Scholar] [CrossRef]
- Panda, S.S.; Hall, C.D.; Scriven, E.; Katritzky, A.R. Aminoacyl Benzotriazolides: Versatile Reagents for the Preparation of Peptides and Their Mimetics and Conjugates. Aldrichimica Acta 2013, 46, 43–55. [Google Scholar]
- Gabano, E.; Ravera, M. Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This “Green” Method? Molecules 2022, 27, 4249. [Google Scholar] [CrossRef]
- Available online: https://optibrium.com/stardrop/ (accessed on 25 July 2022).
Entry | Reaction Temp. (°C) | Reaction Time (h) | Yield a (%) |
---|---|---|---|
1 | 20 (Room temp.) | 24 | 0 |
2 | 100 (Conv.) | 12 | 5 |
3 | 100 (Conv.) | 24 | 25 |
4 | 70 (MW) | 1 | 42 |
5 | 100 (MW) | 1 | 65 |
6 | 100 (MW) | 3 | 72 |
Compound | Log P | hERG pIC50 | BBB Category | HIA Category | MW | HBD | HBA | Rotatable Bonds |
---|---|---|---|---|---|---|---|---|
5a | 1.96 | 4.489 | – | + | 215 | 1 | 5 | 2 |
5b | 1.88 | 4.866 | – | + | 233 | 1 | 5 | 2 |
5c | 2.21 | 4.514 | – | + | 260 | 1 | 8 | 3 |
5d | 2.1 | 4.665 | – | + | 245 | 1 | 6 | 3 |
5e | 2.14 | 4.438 | – | + | 295 | 1 | 8 | 3 |
5f | 3.18 | 5.116 | – | + | 307 | 1 | 6 | 4 |
5g | 1.40 | 4.213 | – | + | 216 | 1 | 6 | 2 |
5h | 1.35 | 4.372 | – | + | 217 | 1 | 7 | 2 |
Metformin | -0.36 | 2.912 | – | + | 129 | 4 | 1 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panda, S.S.; Thomas, E.; Pham, A.M. Microwave-Assisted Synthesis of Tri-Substituted 1,3,5-Triazines from Metformin Using Benzotriazole Chemistry. Reactions 2022, 3, 516-524. https://doi.org/10.3390/reactions3040034
Panda SS, Thomas E, Pham AM. Microwave-Assisted Synthesis of Tri-Substituted 1,3,5-Triazines from Metformin Using Benzotriazole Chemistry. Reactions. 2022; 3(4):516-524. https://doi.org/10.3390/reactions3040034
Chicago/Turabian StylePanda, Siva S., Eyana Thomas, and Ashley M. Pham. 2022. "Microwave-Assisted Synthesis of Tri-Substituted 1,3,5-Triazines from Metformin Using Benzotriazole Chemistry" Reactions 3, no. 4: 516-524. https://doi.org/10.3390/reactions3040034
APA StylePanda, S. S., Thomas, E., & Pham, A. M. (2022). Microwave-Assisted Synthesis of Tri-Substituted 1,3,5-Triazines from Metformin Using Benzotriazole Chemistry. Reactions, 3(4), 516-524. https://doi.org/10.3390/reactions3040034