Measuring Kinetics in Flow Using Isoperibolic Flow Calorimetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calorimeter and Experimental Setup
2.2. Automation Strategy
2.3. Assessment of Kinetics in Flow
2.4. Oxidation of Sodium Thiosulfate
2.5. Experimental Procedure
3. Results and Discussion
3.1. Determination of the Reaction Enthalpy
3.2. Determination of Kinetic Parameters
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
concentration, mol L−1 | |
CSV | comma separated values |
starting concentration of A, mol L−1 | |
starting concentration of B, mol L−1 | |
diameter, m | |
energy, J | |
activation energy, J mol−1 | |
FTIR | Fourier–transform infrared spectroscopy |
HP | hydrogen peroxide |
HPLC | high-performance liquid chromatography |
reaction enthalpy, J mol−1 | |
frequency factor, m3 mol−1 s−1 | |
kinetic constant first-order, s−1 | |
kinetic constant second-order, m3 mol−1 s−1 | |
length, m | |
NaTS | sodium thiosulfate |
Nusselt number, - | |
PMMA | poly(methyl methacrylate) |
heat amount, J | |
heat flux, W | |
convective heat flux, W | |
heat flux to the environment, W | |
heat of reaction, W | |
reaction heat, W | |
transferred heat flux, W | |
SE | Seebeck element |
time, s | |
temperature, K | |
reactor temperature, K | |
volumetric flow rate, m3 s−1 | |
conversion based on heat flux, - |
References
- Winkler, S.; Lade, M.; Vogel, H. Isoperibole Kalorimetrie in Der Sicherheitstechnischen Praxis. Chemie Ing. Tech. 2006, 78, 1116–1120. [Google Scholar] [CrossRef]
- Steinbach, J. Chemische Sicherheitstechnik; VCH-Verlagsgesellschaft: Weinheim, Germany, 1995; ISBN 9783527287109. [Google Scholar]
- Antes, J.; Schifferdecker, D.; Löbbecke, S. Thermoelektrische Module Als Universelle Messsysteme Zum Abbilden Chemischer Und Physikalischer Vorgänge. Chemie Ing. Tech. 2005, 77, 994–996. [Google Scholar] [CrossRef]
- Moore, J.S.; Jensen, K.F. Batch Kinetics in Flow: Online IR Analysis and Continuous Control. Angew. Chemie Int. Ed. 2014, 53, 470–473. [Google Scholar] [CrossRef]
- Moore, J.S.; Smith, C.D.; Jensen, K.F. Kinetics Analysis and Automated Online Screening of Aminocarbonylation of Aryl Halides in Flow. React. Chem. Eng. 2016, 1, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Schwolow, S.; Braun, F.; Rädle, M.; Kockmann, N.; Röder, T. Fast nd Efficient Acquisition of Kinetic Data in Microreactors Using In-Line Raman Analysis. Org. Process Res. Dev. 2015, 19, 1286–1292. [Google Scholar] [CrossRef]
- Mozharov, S.; Nordon, A.; Littlejohn, D.; Wiles, C.; Watts, P.; Dallin, P.; Girkin, J.M. Improved Method for Kinetic Studies in Microreactors Using Flow Manipulation and Noninvasive Raman Spectrometry. J. Am. Chem. Soc. 2011, 133, 3601–3608. [Google Scholar] [CrossRef]
- Hone, C.A.; Holmes, N.; Akien, G.R.; Bourne, R.A.; Muller, F.L. Rapid Multistep Kinetic Model Generation from Transient Flow Data. React. Chem. Eng. 2017, 2, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Haas, C.P.; Biesenroth, S.; Buckenmaier, S.; Van De Goor, T.; Tallarek, U. Automated Generation of Photochemical Reaction Data by Transient Flow Experiments Coupled with Online HPLC Analysis. React. Chem. Eng. 2020, 5, 912–920. [Google Scholar] [CrossRef]
- Waldron, C.; Pankajakshan, A.; Quaglio, M.; Cao, E.; Galvanin, F.; Gavriilidis, A. Model-Based Design of Transient Flow Experiments for the Identification of Kinetic Parameters. React. Chem. Eng. 2020, 5, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Fath, V.; Lau, P.; Greve, C.; Kockmann, N.; Röder, T. Efficient Kinetic Data Acquisition and Model Prediction: Continuous Flow Microreactors, Inline Fourier Transform Infrared Spectroscopy, and Self-Modeling Curve Resolution. Org. Process Res. Dev. 2020, 24, 1955–1968. [Google Scholar] [CrossRef]
- Ładosz, A.; Kuhnle, C.; Jensen, K.F. Characterization of Reaction Enthalpy and Kinetics in a Microscale Flow Platform. React. Chem. Eng. 2020, 5, 2115–2122. [Google Scholar] [CrossRef]
- Frede, T.A.; Maier, M.C.; Kockmann, N.; Gruber-Woelfler, H. Advances in Continuous Flow Calorimetry. Org. Process Res. Dev. 2022, 26, 267–277. [Google Scholar] [CrossRef]
- Antes, J.; Krause, H.; Löbbecke, S.; Schifferdecker, D. Method and Device for Measuring the Heat Developed by Chemical or Physical Reactions. Patent EP1533610A2, 26 August 2012. [Google Scholar]
- Antes, J.; Schifferdecker, D.; Krause, H.; Loebbecke, S. Ein Neues Mikro-Kalorimeter Zur Isothermen Bestimmung von Thermodynamischen Und Kinetischen Kenngrößen Stark Exothermer Reaktionen. Chem. Ing. Tech. 2004, 76, 1332–1333. [Google Scholar] [CrossRef]
- Antes, J.; Gegenheimer, M.; Krause, H.; Löbbecke, S.; Wirker, R.; Knorr, A. Ortsaufgelöste Reaktionskalorimetrie in Mikrostrukturierten Reaktoren. Chem. Ing. Tech. 2008, 80, 1270. [Google Scholar] [CrossRef]
- Reichmann, F.; Millhoff, S.; Jirmann, Y.; Kockmann, N. Reaction Calorimetry for Exothermic Reactions in Plate-Type Microreactors Using Seebeck Elements. Chem. Eng. Technol. 2017, 40, 2144–2154. [Google Scholar] [CrossRef] [Green Version]
- Reichmann, F.; Vennemann, K.; Frede, T.A.; Kockmann, N. Mixing Time Scale Determination in Microchannels Using Reaction Calorimetry. Chem. Ing. Tech. 2019, 91, 622–631. [Google Scholar] [CrossRef]
- Frede, T.A.; Burke, I.; Kockmann, N. Software-Guided Microfluidic Reaction Calorimeter Based on Thermoelectric Modules. Chemie Ing. Tech. 2021, 93, 802–808. [Google Scholar] [CrossRef]
- Maier, M.C.; Leitner, M.; Kappe, C.O.; Gruber-Woelfler, H. A Modular 3D Printed Isothermal Heat Flow Calorimeter for Reaction Calorimetry in Continuous Flow. React. Chem. Eng. 2020, 5, 1410–1420. [Google Scholar] [CrossRef]
- Mortzfeld, F.; Polenk, J.; Guelat, B.; Venturoni, F.; Schenkel, B.; Filipponi, P. Reaction Calorimetry in Continuous Flow Mode: A New Approach for the Thermal Characterization of High Energetic and Fast Reactions. Org. Process Res. Dev. 2020, 24, 2004–2016. [Google Scholar] [CrossRef]
- Moser, M.; Georg, A.G.; Steinemann, F.L.; Rütti, D.P.; Meier, D.M. Continuous Milli-scale Reaction Calorimeter for Direct Scale-up of Flow Chemistry. J. Flow Chem. 2021, 11, 691–699. [Google Scholar] [CrossRef]
- Schneider, M.A.; Stoessel, F. Determination of the Kinetic Parameters of Fast Exothermal Reactions Using a Novel Microreactor-Based Calorimeter. Chem. Eng. J. 2005, 115, 73–83. [Google Scholar] [CrossRef]
- Frede, T.A.; Dietz, M.; Kockmann, N. Software-Guided Microscale Flow Calorimeter for Efficient Acquisition of Thermokinetic Data. J. Flow Chem. 2021, 11, 321–332. [Google Scholar] [CrossRef]
- Antes, J.; Gegenheimer, M.; Löbbecke, S.; Krause, H. Reaction Calorimetry in Microreactors: Fast Reaction Screening and Process Design. In Proceedings of the 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Sand Diego, CA, USA, 12–16 October 2008; pp. 1260–1262. [Google Scholar]
- Zogg, A.; Stoessel, F.; Fischer, U.; Hungerbühler, K. Isothermal Reaction Calorimetry as a Tool for Kinetic Analysis. Thermochim. Acta 2004, 419, 1–17. [Google Scholar] [CrossRef]
- Kashid, M.N.; Renken, A.; Kiwi-Minsker, L. Microstructured Devices for Chemical Processing, 1st ed.; Wiley-VCH: Weinheim, Germany, 2015; ISBN 9783527332991. [Google Scholar]
- Kurin-Csörgei, K.; Orbán, M.; Rábai, G.; Epstein, I.R. Model for the Oscillatory Reaction between Hydrogen Peroxide and Thiosulfate Catalysed by Copper(II) Ions. J. Chem. Soc. Faraday Trans. 1996, 92, 2851–2855. [Google Scholar] [CrossRef]
- Voslař, M.; Matějka, P.; Schreiber, I. Oscillatory Reactions Involving Hydrogen Peroxide and Thiosulfate—Kinetics of the Oxidation of Tetrathionate by Hydrogen Peroxide. Inorg. Chem. 2006, 45, 2824–2834. [Google Scholar] [CrossRef]
- Varga, D.; Horváth, A.K. Kinetics and Mechanism of the Decomposition of Tetrathionate Ion in Alkaline Medium. Inorg. Chem. 2007, 46, 7654–7661. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, Q.; Xu, L.; Zhao, Y.; Epstein, I.R. Oxygen-Sulfur Species Distribution and Kinetic Analysis in the Hydrogen Peroxide-Thiosulfate System. Inorg. Chem. 2010, 49, 6026–6034. [Google Scholar] [CrossRef]
- Gelhausen, M.G.; Kurt, S.K.; Kockmann, N. Parametrische Empfindlichkeit Einer Stark Exothermen Reaktion Im Kapillarwendelreaktor. Chemie Ing. Tech. 2015, 87, 781–790. [Google Scholar] [CrossRef]
- Cohen, W.C.; Spencer, J.L. Determination of Chemical Kinetics by Calorimetry. Chem. Eng. Prog. 1962, 58, 40–41. [Google Scholar]
- Lo, S.N.; Cholette, A. Experimental Study on the Optimum Performance of an Adiabatic MT Reactor. Can. J. Chem. Eng. 1972, 50, 71–80. [Google Scholar] [CrossRef]
- Lin, K.F.; Wu, L.L. Performance of an Adiabatic Controlled Cycled Stirred Tank Reactor. Chem. Eng. Sci. 1981, 36, 435–444. [Google Scholar] [CrossRef]
- Grau, M.D.; Nougués, J.M.; Puigjaner, L. Batch and Semibatch Reactor Performance for an Exothermic Reaction. Chem. Eng. Process. 2000, 39, 141–148. [Google Scholar] [CrossRef]
- Dean, W.R. Fluid Motion in a Curved Channel. Proc. R. Soc. Lond. A 1928, 121, 402–420. [Google Scholar] [CrossRef] [Green Version]
- Binnewies, M.; Willner, H.; Jäckel, M.; Rayner-Canham, G.; Finze, M.; Schmidt, P. Allgemeine und Anorganische Chemie, 3rd ed.; Springer Spektrum: Berlin, Germany, 2016; Volume 58, ISBN 9783662450666. [Google Scholar]
- Khaydarov, V.; Borovinskaya, E.S.; Reschetilowski, W. Numerical and Experimental Investigations of a Micromixer with Chicane Mixing Geometry. Appl. Sci. 2018, 8, 2458. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frede, T.A.; Greive, M.; Kockmann, N. Measuring Kinetics in Flow Using Isoperibolic Flow Calorimetry. Reactions 2022, 3, 525-536. https://doi.org/10.3390/reactions3040035
Frede TA, Greive M, Kockmann N. Measuring Kinetics in Flow Using Isoperibolic Flow Calorimetry. Reactions. 2022; 3(4):525-536. https://doi.org/10.3390/reactions3040035
Chicago/Turabian StyleFrede, Timothy Aljoscha, Moritz Greive, and Norbert Kockmann. 2022. "Measuring Kinetics in Flow Using Isoperibolic Flow Calorimetry" Reactions 3, no. 4: 525-536. https://doi.org/10.3390/reactions3040035
APA StyleFrede, T. A., Greive, M., & Kockmann, N. (2022). Measuring Kinetics in Flow Using Isoperibolic Flow Calorimetry. Reactions, 3(4), 525-536. https://doi.org/10.3390/reactions3040035