Low-Temperature Methane Partial Oxidation over Pd Supported on CeO2: Effect of the Preparation Method and Precursors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Catalysts
2.2. Catalyst Characterization
2.3. Catalytic Tests
3. Results and Discussion
3.1. Characterization
3.2. Catalytic Tests
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lunsford, J.H. Catalytic conversion of methane to more useful chemicals and fuels: A challenge for the 21st century. Catal. Today 2000, 63, 165–174. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, T. Manufacture of hydrogen. Catal. Today 2005, 106, 293–296. [Google Scholar] [CrossRef]
- Navarro, R.M.; Peña, A.M.A.; Fierro, J.L.G. Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. Chem. Rev. 2007, 107, 3952–3991. [Google Scholar] [CrossRef] [PubMed]
- Sokolovskii, V.; Coville, N.; Parmaliana, A.; Eskendirov, I.; Makoa, M. Methane partial oxidation. Challenge and perspective. Catal. Today 1998, 42, 191–195. [Google Scholar] [CrossRef]
- Chen, L.; Qi, Z.; Zhang, S.; Su, J.; Somorjai, G.A. Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect. Catalysis 2020, 10, 858. [Google Scholar] [CrossRef]
- Ma, R.; Xu, B.; Zhang, X. Catalytic partial oxidation (CPOX) of natural gas and renewable hydrocarbons/oxygenated hydrocar-bons—A review. Catal. Today 2019, 338, 18–30. [Google Scholar] [CrossRef]
- Enger, C.B.; Lødeng, R.; Holmen, A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl. Catal. A Gen. 2008, 346, 1–27. [Google Scholar] [CrossRef]
- York, A.P.E.; Xiao, T.; Green, M.L.H. Brief Overview of the Partial Oxidation of Methane to Synthesis Gas. Top. Catal. 2003, 22, 345–358. [Google Scholar] [CrossRef]
- Freni, S.; Calogero, G.; Cavallaro, S. Hydrogen production from methane through catalytic partial oxidation reactions. J. Power Sources 2000, 87, 28–38. [Google Scholar] [CrossRef]
- Slagtern, A.; Swaan, H.M.; Olsbye, U.; Dahl, I.M.; Mirodatos, C. Catalytic partial oxidation of methane over Ni-, Co- and Fe-based catalysts. Catal. Today 1998, 46, 107–115. [Google Scholar] [CrossRef]
- Ashcroft, A.T.; Cheetham, A.K.; Foord, J.S.; Green, M.L.H.; Grey, C.P.; Murrell, A.J.; Vernon, P.D.F. Selective oxidation of methane to synthesis gas using transition metal catalysts. Nat. Cell Biol. 1990, 344, 319–321. [Google Scholar] [CrossRef]
- Hickman, D.A.; Schmidt, L.D. Production of Syngas by Direct Catalytic Oxidation of Methane. Science 1993, 259, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, S.; Shan, J.-J.; Nguyen, L.; Zhan, S.; Gu, X.; Tao, F. In Situ Surface Chemistries and Catalytic Performances of Ceria Doped with Palladium, Platinum, and Rhodium in Methane Partial Oxidation for the Production of Syngas. ACS Catal. 2013, 3, 2627–2639. [Google Scholar] [CrossRef]
- Moral, A.; Reyero, I.; Llorca, J.; Bimbela, F.; Gandía, L. Partial oxidation of methane to syngas using Co/Mg and Co/Mg-Al oxide supported catalysts. Catal. Today 2019, 333, 259–267. [Google Scholar] [CrossRef]
- Osman, A.I. Catalytic Hydrogen Production from Methane Partial Oxidation: Mechanism and Kinetic Study. Chem. Eng. Technol. 2020, 43, 641–648. [Google Scholar] [CrossRef]
- Toso, A.; Colussi, S.; Llorca, J.; Trovarelli, A. The dynamics of PdO-Pd phase transformation in the presence of water over Si-doped Pd/CeO2 methane oxidation catalysts. Appl. Catal. A Gen. 2019, 574, 79–86. [Google Scholar] [CrossRef]
- Soler, L.; Casanovas, A.; Escudero, C.; Perez-Dieste, V.; Aneggi, E.; Trovarelli, A.; Llorca, J. Ambient pressure photoemission spectroscopy reveals the mechanism of carbon soot oxidation in ceria-based catalysts. ChemCatChem 2016, 8, 2748–2751. [Google Scholar]
- Aneggi, E.; Llorca, J.; Trovarelli, A.; Aouine, M.; Vernoux, P. In situ environmental HRTEM discloses low temperature carbon soot oxidation by ceria–zirconia at the nanoscale. Chem. Commun. 2019, 55, 3876–3878. [Google Scholar] [CrossRef]
- Aneggi, E.; Rico-Perez, V.; De Leitenburg, C.; Maschio, S.; Soler, L.; Llorca, J.; Trovarelli, A. Ceria-Zirconia Particles Wrapped in a 2D Carbon Envelope: Improved Low-Temperature Oxygen Transfer and Oxidation Activity. Angew. Chem. Int. Ed. 2015, 54, 14040–14043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colussi, S.; Gayen, A.; Camellone, M.F.; Boaro, M.; Llorca, J.; Fabris, S.; Trovarelli, A. Nanofaceted Pd-O Sites in Pd-Ce Surface Superstructures: Enhanced Activity in Catalytic Combustion of Methane. Angew. Chem. Int. Ed. 2009, 48, 8481–8484. [Google Scholar] [CrossRef] [PubMed]
- Danielis, M.; Colussi, S.; De Leitenburg, C.; Soler, L.; Llorca, J.; Trovarelli, A. Outstanding Methane Oxidation Performance of Palladium-Embedded Ceria Catalysts Prepared by a One-Step Dry Ball-Milling Method. Angew. Chem. 2018, 130, 10369–10373. [Google Scholar] [CrossRef]
- Danielis, M.; Colussi, S.; De Leitenburg, C.; Soler, L.; Llorca, J.; Trovarelli, A. The effect of milling parameters on the mechanochemical synthesis of Pd–CeO2 methane oxidation catalysts. Catal. Sci. Technol. 2019, 9, 4232–4238. [Google Scholar] [CrossRef]
- Adijanto, L.; Bennett, D.A.; Chen, C.; Yu, A.S. Exceptional thermal stability of Pd@CeO2 core–shell catalyst nanostructures grafted onto an oxide surface. Nano Lett. 2013, 13, 2252–2257. [Google Scholar] [CrossRef] [PubMed]
- Danielis, M.; Betancourt, L.E.; Orozco, I.; Divins, N.J.; Llorca, J.; Rodríguez, J.A.; Senanayake, S.D.; Colussi, S.; Trovarelli, A. Methane oxidation activity and nanoscale characterization of Pd/CeO2 catalysts prepared by dry milling Pd acetate and ceria. Appl. Catal. B Environ. 2021, 282, 119567. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Howe, J.; Meyer, I.H.M.; Overbury, S.H. Probing Defect Sites on CeO2Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption. Langmuir 2010, 26, 16595–16606. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.; Hass, K.; McBride, J. Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. Phys. Rev. B 1993, 48, 178. [Google Scholar] [CrossRef]
- Kosacki, I.; Suzuki, T.; Anderson, H.U.; Colomban, P. Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ion. 2002, 149, 99–105. [Google Scholar] [CrossRef]
- Waterland, M.R.; Stockwell, D.; Kelley, A.M. Symmetry breaking effects in NO3−: Raman spectra of nitrate salts and ab initio resonance Raman spectra of nitrate–water complexes. J. Chem. Phys. 2001, 114, 6249–6258. [Google Scholar] [CrossRef]
- Ma, J.; Lou, Y.; Cai, Y.; Zhao, Z.; Wang, L.; Zhan, W.; Guo, Y.; Guo, Y. The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO2. Catal. Sci. Technol. 2018, 8, 2567–2577. [Google Scholar] [CrossRef]
- Slavinskaya, E.M.; Stonkus, O.A.; Guliaev, R.V.; Lapin, I.N.; Svetlichnyi, V.A.; Boronin, A.I.; Kardash, T.Y. Metal–support interaction in Pd/CeO2 model catalysts for CO oxidation: From pulsed laser-ablated nanoparticles to highly active state of the catalyst. Catal. Sci. Technol. 2016, 6, 6650–6666. [Google Scholar] [CrossRef]
- Divins, N.J.; Angurell, I.; Escudero, C.; Pérez-Dieste, V.; Llorca, J. Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science 2014, 346, 620–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, X.; Soler, L.; Divins, N.J.; Vendrell, X.; Serrano, I.; Lucentini, I.; Prat, J.; Solano, E.; Tallarida, M.; Escudero, C.; et al. Ceria-Based Catalysts Studied by Near Ambient Pressure X-ray Photoelectron Spectroscopy: A Review. Catalysis 2020, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Senftle, T.P.; Van Duin, A.C.T.; Janik, M.J. Methane Activation at the Pd/CeO2 Interface. ACS Catal. 2016, 7, 327–332. [Google Scholar] [CrossRef]
- Murata, K.; Kosuge, D.; Ohyama, J.; Mahara, Y.; Yamamoto, Y.; Arai, S.; Satsuma, A. Exploiting Metal–Support Interactions to Tune the Redox Properties of Supported Pd Catalysts for Methane Combustion. ACS Catal. 2019, 10, 1381–1387. [Google Scholar] [CrossRef]
- Senftle, T.P.; van Duin, A.C.; Janik, M.J. Role of Site Stability in Methane Activation on PdxCe1–xOδ Surfaces. ACS Catalysis 2015, 5, 6187–6199. [Google Scholar] [CrossRef]
- Su, Y.-Q.; Filot, I.A.W.; Liu, J.-X.; Hensen, E.J.M. Stable Pd-Doped Ceria Structures for CH4 Activation and CO Oxidation. ACS Catal. 2018, 8, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.-Q.; Liu, J.-X.; Filot, I.A.W.; Zhang, L.; Hensen, E.J.M. Highly Active and Stable CH4 Oxidation by Substitution of Ce4+ by Two Pd2+ Ions in CeO2(111). ACS Catal. 2018, 8, 6552–6559. [Google Scholar] [CrossRef]
- Bunting, R.J.; Cheng, X.; Thompson, J.M.; Hu, P. Amorphous Surface PdOX and Its Activity toward Methane Combustion. ACS Catal. 2019, 9, 10317–10323. [Google Scholar] [CrossRef]
Pd Precursor | Hz | min | wt.% Pd | ||||||
---|---|---|---|---|---|---|---|---|---|
CeO2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
50 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | ||
BM | acetate | 15 | 10 | 1 | 34.9 | 47.0 | 54.8 | 92.9 | 49.2 |
30 | 10 | 1 | 35.5 | 55.9 | 53.4 | 88.3 | 52.0 | ||
50 | 5 | 1 | 42.5 | 70.2 | 71.1 | 95.8 | 66.4 | ||
50 | 10 | 1 | 38.9 | 64.1 | 63.5 | 89.9 | 57.8 | ||
50 | 10 | 1 a | 33.5 | 55.8 | 56.5 | 93.1 | 56.2 | ||
50 | 20 | 1 | 36.8 | 58.5 | 56.8 | 88.8 | 53.4 | ||
50 | 5 | 0.5 | 44.1 | 69.7 | 82.0 | 98.8 | 70.3 | ||
50 | 5 | 2 | 39.7 | 67.5 | 73.1 | 98.3 | 68.1 | ||
BM | nitrate | 15 | 10 | 1 | 35.2 | 54.9 | 47.9 | 84.8 | 48.2 |
30 | 10 | 1 | 31.5 | 51.0 | 61.7 | 96.1 | 54.6 | ||
50 | 5 | 1 | 30.7 | 47.0 | 58.3 | 92.9 | 49.2 | ||
50 | 10 | 1 | 30.5 | 53.2 | 67.1 | 99.8 | 60.0 | ||
50 | 10 | 1 a | 45.4 | 70.2 | 84.8 | 99.9 | 75.2 | ||
50 | 20 | 1 | 32.7 | 55.7 | 68.6 | 99.8 | 62.7 | ||
50 | 10 | 0.5 | 32.6 | 52.7 | 48.2 | 86.7 | 48.6 | ||
50 | 10 | 2 | 39.9 | 66.8 | 64.1 | 94.0 | 63.9 | ||
IWI | acetate | 0 | 0 | 0.5 | 32.8 | 50.7 | 42.4 | 82.6 | 43.8 |
0 | 0 | 1 | 35.9 | 59.2 | 51.6 | 89.0 | 54.8 | ||
0 | 0 | 2 | 37.0 | 62.3 | 57.2 | 91.8 | 58.0 | ||
50 | 5 b | 1 | 34.2 | 57.0 | 57.0 | 92.7 | 56.5 | ||
IWI | nitrate | 0 | 0 | 0.5 | 39.7 | 67.7 | 72.8 | 98.3 | 68.4 |
0 | 0 | 1 | 34.5 | 57.4 | 55.8 | 90.9 | 54.6 | ||
0 | 0 | 2 | 32.8 | 56.0 | 61.3 | 99.1 | 62.1 | ||
50 | 10 b | 1 | 34.8 | 59.2 | 61.9 | 95.1 | 59.5 | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazlikeshteli, S.; Vendrell, X.; Llorca, J. Low-Temperature Methane Partial Oxidation over Pd Supported on CeO2: Effect of the Preparation Method and Precursors. Reactions 2021, 2, 30-42. https://doi.org/10.3390/reactions2010004
Fazlikeshteli S, Vendrell X, Llorca J. Low-Temperature Methane Partial Oxidation over Pd Supported on CeO2: Effect of the Preparation Method and Precursors. Reactions. 2021; 2(1):30-42. https://doi.org/10.3390/reactions2010004
Chicago/Turabian StyleFazlikeshteli, Shiva, Xavier Vendrell, and Jordi Llorca. 2021. "Low-Temperature Methane Partial Oxidation over Pd Supported on CeO2: Effect of the Preparation Method and Precursors" Reactions 2, no. 1: 30-42. https://doi.org/10.3390/reactions2010004
APA StyleFazlikeshteli, S., Vendrell, X., & Llorca, J. (2021). Low-Temperature Methane Partial Oxidation over Pd Supported on CeO2: Effect of the Preparation Method and Precursors. Reactions, 2(1), 30-42. https://doi.org/10.3390/reactions2010004