Fischer–Tropsch Synthesis: Study of Different Carbon Materials as Cobalt Catalyst Support
Abstract
:Simple Summary
Abstract
1. Introduction
2. Experimental
2.1. Catalyst Preparation
2.2. Catalyst Characterization
2.3. Fischer–Tropsch Synthesis
3. Results and Discussion
3.1. Thermal Stability Analysis
3.2. Morphology of the Catalyst and the Support Materials
3.3. XRD Characterization
3.4. The Raman Spectroscopy of as Prepared Samples and Supports
3.5. Cobalt Content Analysis from ICP
3.6. Microstructure Characterization of the Materials and the Catalysts
3.7. H2-TPR Measurements
3.8. NH3-TPD Analysis of the As-prepared Catalysts and Supports
3.9. Fischer–Tropsch Synthesis Catalyst Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y.-W.; et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83. [Google Scholar] [CrossRef]
- Zhai, P.; Xu, C.; Gao, R.; Liu, X.; Li, M.; Li, W.; Fu, X.; Jia, C.; Xie, J.; Zhao, M.; et al. Highly Tunable Selectivity for Syngas-Derived Alkenes over Zinc and Sodium-Modulated Fe5C2 Catalyst. Angew. Chem. Int. Ed. 2016, 55, 9902–9907. [Google Scholar] [CrossRef] [PubMed]
- Kapteijn, F.; de Deugd, R.M.; Moulijn, J.A. Fischer–Tropsch synthesis using monolithic catalysts. Catal. Today 2005, 105, 350–356. [Google Scholar] [CrossRef]
- Saib, A.M.; Moodley, D.J.; Ciobîcă, I.M.; Hauman, M.M.; Sigwebela, B.H.; Weststrate, C.J.; Niemantsverdriet, J.W.; van de Loosdrecht, J. Fundamental understanding of deactivation and regeneration of cobalt Fischer–Tropsch synthesis catalysts. Catal. Today 2010, 154, 271–282. [Google Scholar] [CrossRef]
- Iglesia, E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl. Catal. A Gen. 1997, 161, 59–78. [Google Scholar] [CrossRef]
- Van de Loosdrecht, J.; Balzhinimaev, B.; Dalmon, J.A.; Niemantsverdriet, J.W.; Tsybulya, S.V.; Saib, A.M.; van Berge, P.J.; Visagie, J.L. Cobalt Fischer-Tropsch synthesis: Deactivation by oxidation? Catal. Today 2007, 123, 293–302. [Google Scholar] [CrossRef]
- Dry, M.E. The Fischer–Tropsch process: 1950–2000. Catal. Today 2002, 71, 227–241. [Google Scholar] [CrossRef]
- Das, T.K.; Jacobs, G.; Patterson, P.M.; Conner, W.A.; Li, J.; Davis, H.B. Fischer–Tropsch synthesis: Characterization and catalytic properties of rhenium promoted cobalt alumina catalysts. Fuel 2003, 82, 805–815. [Google Scholar] [CrossRef]
- Tavasoli, A.; Trépanier, M.; Dalai, A.K.; Abatzoglou, N. Effects of confinement in carbon nanotubes on the activity, selectivity, and lifetime of Fischer− Tropsch Co/carbon nanotube catalysts. J. Chem. Eng. Data 2010, 55, 2757–2763. [Google Scholar] [CrossRef]
- Ma, W.P.; Ding, Y.J.; Lin, L.W. Fischer–Tropsch Synthesis over Activated-Carbon-Supported Cobalt Catalysts: Effect of Co Loading and Promoters on Catalyst Performance. Ind. Eng. Chem. Res. 2004, 43, 2391–2398. [Google Scholar] [CrossRef]
- Cheng, Y.; Lin, J.; Xu, K.; Wang, X.; Yao, X.; Pei, Y.; Yah, S.; Qiao, M.; Zong, B. Fischer–Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts. ACS Catal. 2015, 6, 389–399. [Google Scholar] [CrossRef]
- Guo, X.N.; Jiao, Z.F.; Jin, G.Q.; Guo, X.-Y. Photocatalytic Fischer–Tropsch Synthesis on graphene-Supported Worm-Like Ruthenium Nanostructures. ACS Catal. 2015, 5, 3836–3840. [Google Scholar] [CrossRef]
- Bezemer, G.L.; Bitter, J.H.; Kuipers, H.P.C.E.; Oosterbeek, H.; Holewijn, J.E.; Xu, X.; Kapteijn, F.; van Dillen, A.J.; de Jong, K.P. Cobalt particle size effects in the Fischer− Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 2006, 128, 3956–3964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bán, M.; Bombicz, P.; Madarász, J. Thermal stability and structure of a new co-crystal of theophylline formed with phthalic acid. J. Therm. Anal. Calorim. 2009, 95, 895–901. [Google Scholar] [CrossRef]
- Trépanier, M.; Tavasoli, A.; Dalai, A.K.; Abatzoglou, N. Fischer–Tropsch synthesis over carbon nanotubes supported cobalt catalysts in a fixed bed reactor: Influence of acid treatment. Fuel Process. Technol. 2009, 90, 367–374. [Google Scholar] [CrossRef]
- Madarász, J.; Pokol, G. Comparative evolved gas analyses on thermal degradation of thiourea by coupled TG-FTIR and TG/DTA-MS instruments. J. Therm. Anal. Calorim. 2007, 88, 329–336. [Google Scholar] [CrossRef]
- Chernyak, S.A.; Selyaev, G.E.; Suslova, E.V.; Egorov, A.V.; Maslakov, K.I.; Kharlanov, A.N.; Savilov, S.V.; Lunin, V.V. Effect of cobalt weight content on the structure and catalytic properties of Co/CNT catalysts in the Fischer-Tropsch synthesis. Kinet. Catal. 2016, 57, 640–646. [Google Scholar] [CrossRef]
- Trépanier, M.; Tavasoli, A.; Dalai, A.K.; Abatzoglou, N. Co, Ru and K loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer–Tropsch synthesis. Appl. Catal. A Gen. 2009, 353, 193–202. [Google Scholar] [CrossRef]
- Bahaa, M.A.; Khalid, A.A. Green synthesis of 3D hierarchical nanostructured Co3O4/carbon catalysts for the application in sodium borohydride. J. Alloys Compd. 2019, 798, 820–831. [Google Scholar]
- Dehghan, R.; Hansen, T.W.; Wagner, J.B.; Holmen, A.; Rytter, E.; Borg, Ø.; Walmsley, J.C. In-Situ Reduction of Promoted Cobalt Oxide Supported on Alumina by Environmental Transmission Electron Microscopy. Catal. Lett. 2011, 141, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Dong, S.; Wang, E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2009, 4, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhu, Q.; Gao, Y.; Zhai, P.; Ma, D. Iron oxide nanoparticles supported on pyrolytic reduced graphene oxide as model catalysts for Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2013, 456, 233–239. [Google Scholar] [CrossRef]
- Karimi, S.; Tavasoli, A.; Mortazavi, Y.; Karimi, A. Enhancement of cobalt catalyst stability in Fischer–Tropsch synthesis using graphene nanosheets as catalyst support. Chem. Eng. Res. Des. 2015, 104, 713–722. [Google Scholar] [CrossRef]
- Zaman, M.; Khodadi, A.; Mortazavi, Y. Fischer–Tropsch synthesis over cobalt dispersed on carbon nanotubes-based supports and activated carbon. Fuel Process. Technol. 2009, 90, 1214–1219. [Google Scholar] [CrossRef]
- Chu, W.; Xu, J.; Hong, J.; Lin, T.; Khodakov, A. Design of efficient Fischer Tropsch cobalt catalysts via plasma enhancement: Reducibility and performance (Review). Catal. Today 2015, 256, 41–48. [Google Scholar] [CrossRef]
- Pour, A.N.; Karimi, J.; Taghipoor, S.; Gholizadeh, M.; Hashemian, M. Fischer–Tropsch synthesis over CNT-supported cobalt catalyst: Effect of magnetic field. J. Iran. Chem. Soc. 2017, 14, 1477–1488. [Google Scholar] [CrossRef]
- Chen, W.; Fan, Z.; Pan, X.; Bao, X. Effect of confinement in carbon nanotubes on the activity of Fischer− Tropsch iron catalyst. J. Am. Chem. Soc. 2008, 130, 9414–9419. [Google Scholar] [CrossRef]
- Bessell, S. Support effects in cobalt-based Fischer-Tropsch catalysis. Appl. Catal. A Gen. 1993, 96, 253–268. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Ren, J.; Sun, Y. Chemical treatment of γ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer–Tropsch synthesis. Appl. Catal. A Gen. 2003, 243, 121–133. [Google Scholar] [CrossRef]
- Su, H.; Zeng, S.; Dong, H.; Du, Y.; Zhang, Y.; Hu, R. Pillared montmorillonite supported cobalt catalysts for the Fischer–Tropsch reaction. Appl. Clay Sci. 2009, 46, 325–329. [Google Scholar] [CrossRef]
- Wang, S.; Yin, Q.; Guo, J.; Ru, B.; Zhu, L. Improved Fischer–Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts. Fuel 2013, 108, 597–603. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Huang, J.; Wang, H.; Li, Z.; Wu, J. Effect of preparation methods on hierarchical zeolites for cobalt-based Fischer–Tropsch synthesis. RSC Adv. 2016, 6, 107498–107506. [Google Scholar] [CrossRef]
Notiation | Content (Co, wt.%) |
---|---|
Co/CNT | 9.8 |
Co/AC | 8.5 |
Co/GO | 1.7 |
Co/rGO | 3.7 |
Co/CNF | 9.9 |
Notation | Surface Area (m2/g) | Pore Volume (m3/g) | Pore Diameter (nm) |
---|---|---|---|
CNT | 140 | 0.370 | 10.6 |
AC | 1559 | 1.19 | 3.06 |
GO | 184 | 0.564 | 12.3 |
rGO | 487 | 0.564 | 4.63 |
CNF | 34.6 | 0.0866 | 10.0 |
Co/CNT | 141 | 0.272 | 7.72 |
Co/AC | 552 | 0.400 | 2.90 |
Co/GO | 176 | 0.530 | 12.1 |
Co/rGO | 224 | 0.278 | 4.97 |
Co/CNF | 34.7 | 0.119 | 13.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Li, S.; Di, Z.; Li, H.; Liu, Q.; Lü, B.; Wang, A.; Shi, B.; Khan, I. Fischer–Tropsch Synthesis: Study of Different Carbon Materials as Cobalt Catalyst Support. Reactions 2021, 2, 43-61. https://doi.org/10.3390/reactions2010005
Luo M, Li S, Di Z, Li H, Liu Q, Lü B, Wang A, Shi B, Khan I. Fischer–Tropsch Synthesis: Study of Different Carbon Materials as Cobalt Catalyst Support. Reactions. 2021; 2(1):43-61. https://doi.org/10.3390/reactions2010005
Chicago/Turabian StyleLuo, Mingsheng, Shuo Li, Zuoxing Di, He Li, Qinglong Liu, Baozhong Lü, Aimei Wang, Buchang Shi, and Iltaf Khan. 2021. "Fischer–Tropsch Synthesis: Study of Different Carbon Materials as Cobalt Catalyst Support" Reactions 2, no. 1: 43-61. https://doi.org/10.3390/reactions2010005
APA StyleLuo, M., Li, S., Di, Z., Li, H., Liu, Q., Lü, B., Wang, A., Shi, B., & Khan, I. (2021). Fischer–Tropsch Synthesis: Study of Different Carbon Materials as Cobalt Catalyst Support. Reactions, 2(1), 43-61. https://doi.org/10.3390/reactions2010005