Smart Indoor Farms: Leveraging Technological Advancements to Power a Sustainable Agricultural Revolution
Abstract
:1. Introduction
- Optimize the use of necessary resources;
- Provide a standalone infrastructure;
- Provide a solution independent of external climatic conditions;
- Provide better guidance to the farmer or farm manager by sharing relevant information and prediction;
- Fine-tune the monitoring, control, and management process towards higher production.
2. Soilless Farming
3. Energy Harvesting
4. Technological Infrastructure: Smart Technologies
4.1. AgriSense Layer
4.2. Connectivity Layer
4.3. Intermediate Layer
4.4. Core Data Handling Layer
4.5. Farmer Experience Layer
4.6. Agri-Bussiness Layer
5. Control and Management Services
5.1. Artificial Lighting
5.2. Smart Nutrition Management
5.3. Artificial Climate Control
5.4. Crop Planning
5.5. Detection of Plant Diseases
6. Smart Indoor Farming: Key Challenges and Solutions
6.1. Communication, Networking and Architectural Issues
6.2. Standardization and Interoperability Issues
6.3. Privacy and Safety Issues
6.4. Green Energy Issues
6.5. Data Management and Data Mining Issues
6.6. Feasibility Challenges
7. Discussion and Future Research Scope
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture–Trends and Challenges. Annual Report, 296. 2017. Available online: http://www.fao.org/publications/fofa/en/ (accessed on 20 September 2020).
- Goldstein, H. The green promise of vertical farms [Blueprints for a Miracle]. IEEE Spectrum 2018, 55, 50–55. [Google Scholar] [CrossRef]
- Rose, D.; Chilvers, J. Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.; Abu-Mahfouz, A. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans. Ind. Inform. 2021, 17, 4322–4334. [Google Scholar] [CrossRef]
- Misra, N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.; Upadhyay, R.; Martynenko, A. IoT, big data and artificial intelligence in agriculture and food industry. IEEE Internet Things J. 2020, 1. [Google Scholar] [CrossRef]
- De Clercq, M.; Vats, A.; Biel, A. Agriculture 4.0: The future of farming technology. In Proceedings of the World Government Summit, Dubai, United Arab Emirates, 11–13 February 2018. [Google Scholar]
- Barbosa, G.; Gadelha, F.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.; Halden, R. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EI-Kazzaz, A. Soilless Agriculture a New and Advanced Method for Agriculture Development: An Introduction. Agric. Res. Technol. Open Access J. 2017, 3, 63–72. [Google Scholar] [CrossRef]
- Goodman, W.; Minner, J. Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City. Land Use Policy 2019, 83, 160–173. [Google Scholar] [CrossRef]
- Kalantari, F.; Mohd Tahir, O.; Mahmoudi Lahijani, A.; Kalantari, S. A Review of Vertical Farming Technology: A Guide for Implementation of Building Integrated Agriculture in Cities. Adv. Eng. Forum 2017, 24, 76–91. [Google Scholar] [CrossRef]
- Singh, P.K.; Jain, S.; Mathur, A.; Kumar, Y. An analysis on the potentials of Vertical Greenery System (VGS) in context to the application viewpoint. In Proceedings of the 4th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 21–23 September 2017; pp. 632–636. [Google Scholar]
- Taufani, B. Urban Farming Construction Model on the Vertical Building Envelope to Support the Green Buildings Development in Sleman, Indonesia. Procedia Eng. 2017, 171, 258–264. [Google Scholar]
- Mahesh, P.J.; Naheem, M.; Mubafar, R.; Shyba, S.; Beevi, S. New aspect for organic farming practices: Controlled crop nutrition and soilless agriculture. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 13–16 October 2016; pp. 819–824. [Google Scholar]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Front. Plant. Sci. 2019, 10, 923. [Google Scholar] [CrossRef]
- Nalwade, R.; Mote, T. Hydroponics farming. In Proceedings of the International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, 11–12 May 2017; pp. 645–650. [Google Scholar]
- Phutthisathian, A.; Pantasen, N.; Maneerat, N. Ontology-based nutrient solution control system for hydroponics. In Proceedings of the First International Conference on Instrumentation, Measurement, Computer, Communication and Control, Beijing, China, 21–23 October 2011; pp. 258–261. [Google Scholar]
- Nishimura, T.; Okuyama, Y.; Matsushita, A.; Ikeda, H.; Satoh, A. A compact hardware design of a sensor module for hydroponics. In Proceedings of the IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, Japan, 24–27 October 2017; pp. 1–4. [Google Scholar]
- Kaewwiset, T.; Yooyativong, T. Electrical conductivity and pH adjusting system for hydroponics by using linear regression. In Proceedings of the 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 27–30 June 2017; pp. 761–764. [Google Scholar]
- Eridani, D.; Wardhani, O.; Widianto, E.D. Designing and implementing the arduino-based nutrition feeding automation system of a prototype scaled nutrient film technique (NFT) hydroponics using total dissolved solids (TDS) sensor. In Proceedings of the 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 18–19 October 2017; pp. 170–175. [Google Scholar]
- Fuangthong, M.; Pramokchon, P. Automatic control of electrical conductivity and PH using fuzzy logic for hydroponics system. In Proceedings of the International Conference on Digital Arts, Media and Technology (ICDAMT), Phayao, Thailand, 25–28 February 2018; pp. 65–70. [Google Scholar]
- Junge, R.; König, B.; Villarroel, M.; Komives, T.; Jijakli, M. Strategic Points in Aquaponics. Water 2017, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, H. The Indoor Farm. IEEE Spectr. 2013, 50, 59–63. [Google Scholar] [CrossRef]
- Filep, R.; Diaconescu, Ş.; Costache, M.; Stavrescu-Bedivan, M.; Bădulescu, L.; Nicolae, C. Pilot Aquaponic Growing System of Carp (Cyprinus Carpio) and Basil (Ocimum Basilicum). Agric. Agric. Sci. Procedia 2016, 10, 255–260. [Google Scholar] [CrossRef]
- Villarroel, M.; Junge, R.; Komives, T.; König, B.; Plaza, I.; Bittsánszky, A.; Joly, A. Survey of Aquaponics in Europe. Water 2016, 8, 468. [Google Scholar] [CrossRef] [Green Version]
- Yavuzcan Yildiz, H.; Robaina, L.; Pirhonen, J.; Mente, E.; Domínguez, D.; Parisi, G. Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces—A Review. Water 2017, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Kyaw, T.; Ng, A. Smart Aquaponics System for Urban Farming. Energy Procedia 2017, 143, 342–347. [Google Scholar] [CrossRef]
- Mamatha, M.N.; Namratha, S.N. Design & implementation of indoor farming using automated aquaponics system. In Proceedings of the IEEE International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), Chennai, India, 2–4 August 2017; pp. 396–401. [Google Scholar]
- Lopes, F.; Silva, H.; Almeida, J.M.; Pinho, C.; Silva, E. Fish farming autonomous calibration system. In OCEANS 2017-Aberdeen; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Dos Santos, M. Smart cities and urban areas—Aquaponics as innovative urban agriculture. Urban. For. Urban. Green. 2016, 20, 402–406. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Tang, B.; Gu, M. Growth Responses and Root Characteristics of Lettuce Grown in Aeroponics, Hydroponics, and Substrate Culture. Horticulturae 2018, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Lakhiar, I.; Gao, J.; Syed, T.; Chandio, F.; Buttar, N. Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. J. Plant. Interact. 2018, 13, 338–352. [Google Scholar] [CrossRef]
- Lakhiar, I.; Jianmin, G.; Syed, T.; Chandio, F.; Buttar, N.; Qureshi, W. Monitoring and Control Systems in Agriculture Using Intelligent Sensor Techniques: A Review of the Aeroponic System. J. Sens. 2018, 2018, 8672769. [Google Scholar] [CrossRef] [Green Version]
- Idris, I.; Sani, M.I. Monitoring and control of aeroponic growing system for potato production. In Proceedings of the IEEE Conference on Control, Systems & Industrial Informatics, Bandung, Indonesia, 23–26 September 2012; pp. 120–125. [Google Scholar]
- Sani, M.I.; Siregar, S.; Kumiawan, A.P.; Jauhari, R.; Mandalahi, C.N. Web-based monitoring and control system for aeroponics growing chamber. In Proceedings of the International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), Bandung, Indonesia, 13–15 September 2016; pp. 162–168. [Google Scholar]
- Panwar, N.; Kaushik, S.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Bardi, U.; El Asmar, T.; Lavacchi, A. Turning electricity into food: The role of renewable energy in the future of agriculture. J. Clean. Prod. 2013, 53, 224–231. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, H.; Zhang, Q.; Zhang, Z.; Shao, C.; Yang, D. A Solar Automatic Tracking System that Generates Power for Lighting Greenhouses. Energies 2015, 8, 7367–7380. [Google Scholar] [CrossRef] [Green Version]
- Skibko, Z.; Tymińska, M.; Romaniuk, W.; Borusiewicz, A. Impact of the Wind Turbine on the Parameters of the Electricity Supply to an Agricultural Farm. Sustainability 2021, 13, 7279. [Google Scholar] [CrossRef]
- Chel, A.; Kaushik, G. Renewable energy for sustainable agriculture. Agron. Sustain. Dev. 2011, 31, 91–118. [Google Scholar] [CrossRef]
- Martinho, V. Interrelationships between renewable energy and agricultural economics: An overview. Energy Strategy Rev. 2018, 22, 396–409. [Google Scholar] [CrossRef]
- Roman, K.; Barwicki, J.; Hryniewicz, M.; Szadkowska, D.; Szadkowski, J. Production of Electricity and Heat from Biomass Wastes Using a Converted Aircraft Turbine AI-20. Processes 2021, 9, 364. [Google Scholar] [CrossRef]
- Jawahar, C.; Michael, P. A review on turbines for micro hydro power plant. Renew. Sustain. Energy Rev. 2017, 72, 882–887. [Google Scholar] [CrossRef]
- Far, S.; Rezaei-Moghaddam, K. Impacts of the precision agricultural technologies in Iran: An analysis experts’ perception & their determinants. Inf. Process. Agric. 2018, 5, 173–184. [Google Scholar]
- Saiz-Rubio, V.; Rovira-Más, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef] [Green Version]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Elijah, O.; Rahman, T.; Orikumhi, I.; Leow, C.; Hindia, M. An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, D.; Wang, S.; Tian, L. A promising trend for field information collection: An air-ground multi-sensor monitoring system. Inf. Process. Agric. 2018, 5, 224–233. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Rani, S.; Ahmed, S.; Talwar, R.; Malhotra, J. Can Sensors Collect Big Data? An Energy-Efficient Big Data Gathering Algorithm for a WSN. IEEE Trans. Ind. Inform. 2017, 13, 1961–1968. [Google Scholar] [CrossRef]
- Fernández-Ahumada, L.; Ramírez-Faz, J.; Torres-Romero, M.; López-Luque, R. Proposal for the Design of Monitoring and Operating Irrigation Networks Based on IoT, Cloud Computing and Free Hardware Technologies. Sensors 2019, 19, 2318. [Google Scholar] [CrossRef] [Green Version]
- Bermeo-Almeida, O.; Cardenas-Rodriguez, M.; Samaniego-Cobo, T.; Ferruzola-Gómez, E.; Cabezas-Cabezas, R.; Bazán-Vera, W. Blockchain in agriculture: A systematic literature review. In Proceedings of the International Conference on Technologies and Innovation, Guayaquil, Ecuador, 6–9 November 2018; Springer: Cham, Switzerland, 2018; pp. 44–56. [Google Scholar]
- Kamilaris, A.; Fonts, A.; Prenafeta-Boldύ, F. The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci. Technol. 2019, 91, 640–652. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, Q.; Huang, D. A Review of Imaging Techniques for Plant Phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef] [PubMed]
- Hati, A.; Singh, R. Artificial Intelligence in Smart Farms: Plant Phenotyping for Species Recognition and Health Condition Identification Using Deep Learning. AI 2021, 2, 274–289. [Google Scholar] [CrossRef]
- Hati, A.J.; Singh, R.R. Towards Smart Agriculture: A Deep Learning based Phenotyping Scheme for Leaf Counting. In Proceedings of the International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 9–10 October 2020; pp. 510–514. [Google Scholar]
- Liakos, K.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akkaş, M.; Sokullu, R. An IoT-based greenhouse monitoring system with Micaz motes. Procedia Comput. Sci. 2017, 113, 603–608. [Google Scholar] [CrossRef]
- Li, X.; Liu, Q.; Yang, R.; Zhang, H.; Zhang, J.; Cai, E. The Design and Implementation of the Leaf Area Index Sensor. Sensors 2015, 15, 6250–6269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E. Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Mahbub, M. A smart farming concept based on smart embedded electronics, internet of things and wireless sensor network. Internet Things 2020, 9, 100161. [Google Scholar] [CrossRef]
- Farooq, M.; Riaz, S.; Abid, A.; Abid, K.; Naeem, M. A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. IEEE Access 2019, 7, 156237–156271. [Google Scholar] [CrossRef]
- Vitolo, C.; Elkhatib, Y.; Reusser, D.; Macleod, C.; Buytaert, W. Web technologies for environmental Big Data. Environ. Model. Softw. 2015, 63, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Buratti, C.; Conti, A.; Dardari, D.; Verdone, R. An Overview on Wireless Sensor Networks Technology and Evolution. Sensors 2009, 9, 6869–6896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triantafyllou, A.; Sarigiannidis, P.; Bibi, S. Precision Agriculture: A Remote Sensing Monitoring System Architecture. Information 2019, 10, 348. [Google Scholar] [CrossRef] [Green Version]
- Sethi, P.; Sarangi, S. Internet of Things: Architectures, Protocols, and Applications. J. Electr. Comput. Eng. 2017, 2017, 9324035. [Google Scholar] [CrossRef] [Green Version]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef]
- Tan, L. Cloud-based Decision Support and Automation for Precision Agriculture in Orchards. IFAC-PapersOnLine 2016, 49, 330–335. [Google Scholar] [CrossRef]
- O’Grady, M.; O’Hare, G. Modelling the smart farm. Inf. Process. Agric. 2017, 4, 179–187. [Google Scholar] [CrossRef]
- Karim, F.; Karim, F.; Karim, F. Monitoring system using web of things in precision agriculture. Procedia Comput. Sci. 2017, 110, 402–409. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, J.; Gu, R.; Chen, M.; Li, P. Manage system for internet of things of greenhouse based on GWT. Inf. Process. Agric. 2018, 5, 269–278. [Google Scholar] [CrossRef]
- Bin Ismail, M.I.; Thamrin, N.M. IoT implementation for indoor vertical farming watering system. In Proceedings of the International Conference on Electrical, Electronics and System Engineering (ICEESE), Kanazawa, Japan, 9–10 November 2017; pp. 89–94. [Google Scholar]
- Capalbo, S.; Antle, J.; Seavert, C. Next generation data systems and knowledge products to support agricultural producers and science-based policy decision making. Agric. Syst. 2017, 155, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Lokers, R.; Knapen, R.; Janssen, S.; van Randen, Y.; Jansen, J. Analysis of Big Data technologies for use in agro-environmental science. Environ. Model. Softw. 2016, 84, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, D.; de Voil, P.; Rufino, M.; Odendo, M.; van Wijk, M. To mulch or to munch? Big modelling of big data. Agric. Syst. 2017, 153, 32–42. [Google Scholar] [CrossRef]
- Sabarina, K.; Priya, N. Lowering Data Dimensionality in Big Data for the Benefit of Precision Agriculture. Procedia Comput. Sci. 2015, 48, 548–554. [Google Scholar] [CrossRef] [Green Version]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Dimitriadis, S.; Goumopoulos, C. Applying machine learning to extract new knowledge in precision agriculture applications. In Proceedings of the Panhellenic Conference on Informatics, Samos, Greece, 28–30 August 2008; pp. 100–104. [Google Scholar]
- Veenadhari, S.; Misra, B.; Singh, C.D. Machine learning approach for forecasting crop yield based on climatic parameters. In Proceedings of the International Conference on Computer Communication and Informatics, Coimbatore, India, 3–5 January 2014; pp. 1–5. [Google Scholar]
- Cunha, R.L.; Silva, B.; Netto, M.A. A scalable machine learning system for pre-season agriculture yield forecast. In Proceedings of the IEEE 14th International Conference on e-Science (e-Science), Amsterdam, Netherlands, 29 October–1 November 2018; pp. 423–430. [Google Scholar]
- Shakoor, M.T.; Rahman, K.; Rayta, S.N.; Chakrabarty, A. Agricultural production output prediction using supervised machine learning techniques. In Proceedings of the 1st International Conference on Next Generation Computing Applications (NextComp), Mauritius, 19–21 July 2017; pp. 182–187. [Google Scholar]
- Rahman, M.M.; Haq, N.; Rahman, R.M. Machine learning facilitated rice prediction in Bangladesh. In Proceedings of the Annual Global Online Conference on Information and Computer Technology, Louisville, KY, USA, 3–5 December 2014; pp. 1–4. [Google Scholar]
- Kim, Y.; Yoo, S.; Gu, Y.; Lim, J.; Han, D.; Baik, S. Crop Pests Prediction Method Using Regression and Machine Learning Technology: Survey. IERI Procedia 2014, 6, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Merchant, M.; Paradkar, V.; Khanna, M.; Gokhale, S. Mango Leaf Deficiency Detection Using Digital Image Processing and Machine Learning. In Proceedings of the 3rd International Conference for Convergence in Technology (I2CT), Pune, India, 6–8 April 2018; pp. 1–3. [Google Scholar]
- Shah, A.; Gupta, P.; Ajgar, Y.M. Macro-Nutrient Deficiency Identification in Plants Using Image Processing and Machine Learning. In Proceedings of the 3rd International Conference for Convergence in Technology (I2CT), Pune, India, 6–8 April 2018; pp. 1–4. [Google Scholar]
- Yahata, S.; Onishi, T.; Yamaguchi, K.; Ozawa, S.; Kitazono, J.; Ohkawa, T.; Yoshida, T.; Murakami, N.; Tsuji, H. A hybrid machine learning approach to automatic plant phenotyping for smart agriculture. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1787–1793. [Google Scholar]
- Yalcin, H. Phenology recognition using deep learning: DeepPheno. In Proceedings of the 26th Signal Processing and Communications Applications Conference (SIU), Izmir, Turkey, 2–5 May 2018; pp. 1–4. [Google Scholar]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.; Sarkar, S. Machine Learning for High-Throughput Stress Phenotyping in Plants. Trends Plant. Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.A.; Mitra, K.C.; Islam, S.M. Soil classification using machine learning methods and crop suggestion based on soil series. In Proceedings of the 21st International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 21–23 December 2018; pp. 1–4. [Google Scholar]
- Jia, H.Y.; Chen, J.; Yu, H.L.; Liu, D.Y. Soil fertility grading with Bayesian Network transfer learning. In Proceedings of the International Conference on Machine Learning and Cybernetics, Qingdao, China, 11–14 July 2010; Volume 3, pp. 1159–1163. [Google Scholar]
- Prakash, S.; Sharma, A.; Sahu, S.S. Soil moisture prediction using machine learning. In Proceedings of the Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; pp. 1–6. [Google Scholar]
- Chokey, T.; Jain, S. Quality assessment of crops using machine learning techniques. In Proceedings of the Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 4–6 February 2019; pp. 259–263. [Google Scholar]
- Luciani, G.; Siboni, M.; Crescentini, M.; Romani, A.; Tartagni, M.; Berardinelli, A.; Ragni, L. When Machine Learning Boosts Sensing Performance: A Compact and Contactless Soil Moisture Sensor Example. In Proceedings of the International Conference on Sensor Networks and Signal Processing (SNSP), Xi’an, China, 28–31 October 2018; pp. 88–91. [Google Scholar]
- Zhang, W.; Hansen, M.F.; Volonakis, T.N.; Smith, M.; Smith, L.; Wilson, J.; Ralston, G.; Broadbent, L.; Wright, G. Broad-leaf weed detection in pasture. In Proceedings of the IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018; pp. 101–105. [Google Scholar]
- Burhan, M.; Rehman, R.; Khan, B.; Kim, B. IoT Elements, Layered Architectures and Security Issues: A Comprehensive Survey. Sensors 2018, 18, 2796. [Google Scholar] [CrossRef] [Green Version]
- Antle, J.; Jones, J.; Rosenzweig, C. Next generation agricultural system data, models and knowledge products: Introduction. Agric. Syst. 2017, 155, 186–190. [Google Scholar] [CrossRef]
- Webber, C.M.; Labaste, P. Building Competitiveness in Africa’s Agriculture: A Guide to Value Chain Concepts and Applications; World Bank Publications: Washington, DC, USA, 2009; pp. 1–55. [Google Scholar]
- Pham, X.; Stack, M. How data analytics is transforming agriculture. Bus. Horiz. 2018, 61, 125–133. [Google Scholar] [CrossRef]
- Pahuja, R.; Verma, H.; Uddin, M. A Wireless Sensor Network for Greenhouse Climate Control. IEEE Pervasive Comput. 2013, 12, 49–58. [Google Scholar] [CrossRef]
- Kozai, T. Why LED lighting for urban agriculture? In LED Lighting for Urban Agriculture; Springer: Singapore, 2016; pp. 3–18. [Google Scholar]
- Darko, E.; Heydarizadeh, P.; Schoefs, B.; Sabzalian, M. Photosynthesis under artificial light: The shift in primary and secondary metabolism. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130243. [Google Scholar] [CrossRef]
- Olle, M.; Viršile, A. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric. Food Sci. 2013, 22, 223–234. [Google Scholar] [CrossRef]
- Burés, S.; Urrestarazu, M.G.; Kotinranta, S. Artificial Lighting in Agriculture. Horticulture Library, 1–46. 2018. Available online: http://www.valoya.com/wp-content/uploads/2018/03/English-Version_Artificial-lighting-in-agriculture.pdf (accessed on 20 September 2020).
- Naznin, M.T.; Lefsrud, M.G. Impact of LED irradiance on plant photosynthesis and action spectrum of plantlet. In Optics and Photonics for Information Processing VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2014; Volume 9216, p. 921602. [Google Scholar]
- Harun, A.N.; Ahmad, R.; Mohamed, N. WSN application in LED plant factory using continuous lighting (CL) method. In Proceedings of the IEEE Conference on Open Systems (ICOS), Melaka, Malaysia, 24–26 August 2015; pp. 56–61. [Google Scholar]
- Liang, L.; Tian, H.; Ning, P. Artificial light LED planting system design. In Proceedings of the 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, China, 1–3 November 2017; pp. 88–90. [Google Scholar]
- Kárász, C.; Kopják, J. Comparative study about LED driving methods and feedback system for indoor plant cultivation. In Proceedings of the IEEE 17th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 17–19 November 2016; pp. 219–224. [Google Scholar]
- Sugano, M. Elemental technologies for realizing a fully-controlled artificial light-type plant factory. In Proceedings of the 12th International Conference & Expo on Emerging Technologies for a Smarter World (CEWIT), Melville, NY, USA, 19–20 October 2015; pp. 1–5. [Google Scholar]
- Tavares, P.L.; Guimarães, I.A.; Braga, H.A.; Bender, V.C.; Almeida, P.S. LED system with independent red and blue channels employing radiant flux estimation and indirect flux control for greenhouse hop cultivation. In Proceedings of the Brazilian Power Electronics Conference (COBEP), Juiz de Fora, Brazil, 19–22 November 2017; pp. 1–9. [Google Scholar]
- Almeida, C.C.; Almeida, P.S.; Monteiro, N.R.; Pinto, M.F.; Braga, H.A. LED-based electronic system to support plant physiology experiments. In Proceedings of the IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June 2014; pp. 531–536. [Google Scholar]
- Harun, A.N.; Ani, N.N.; Ahmad, R.; Azmi, N.S. Red and blue LED with pulse lighting control treatment for Brassica chinensis in Indoor farming. In Proceedings of the IEEE Conference on Open Systems (ICOS), Kuching, Malaysia, 2–4 December 2013; pp. 231–236. [Google Scholar]
- Wojciechowska, R.; Kołton, A.; Długosz-Grochowska, O.; Żupnik, M.; Grzesiak, W. The effect of LED lighting on photosynthetic parameters and weight of lamb’s lettuce (Valerianella locusta). Folia Hortic. 2013, 25, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Gruhn, P.; Goletti, F.; Yudelman, M. Plant Nutrients and Soil Fertility. In Integrated Nutrient Management, Soil Fertility, and Sustainable Agriculture: Current Issues and Future Challenges; The International Food Policy Research Institute: Washington, DC, USA, 2000; pp. 3–6. [Google Scholar]
- Kumar, R.A.; Aslam, M.M.; Raj, V.J.; Radhakrishnan, T.; Kumar, K.S.; Manojkumar, T.K. A statistical analysis of soil fertility of Thrissur district, Kerala. In Proceedings of the International Conference on Data Science and Engineering (ICDSE), Cochin, India, 23–25 August 2016; pp. 1–5. [Google Scholar]
- Cholissodin, I.; Dewi, C.; Surbakti, E.E. Integrated ANN and Bidirectional Improved PSO for optimization of fertilizer dose on Palawija plants. In Proceedings of the 2nd International Conference on Science in Information Technology (ICSITech), Balikpapan, Indonesia, 26–27 October 2016; pp. 193–197. [Google Scholar]
- Rware, H.; Kayuki, C.; Macharia, M.; Oduor, G. Fertilizer use optimization approach: An innovation to increase agricultural profitability for African farmers. Afr. J. Agric. Res. 2016, 11, 3587–3597. [Google Scholar]
- Morton, L.; McGuire, J.; Cast, A. A good farmer pays attention to the weather. Clim. Risk Manag. 2017, 15, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Khatri-Chhetri, A.; Aggarwal, P.; Joshi, P.; Vyas, S. Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agric. Syst. 2017, 151, 184–191. [Google Scholar] [CrossRef]
- Mwongera, C.; Shikuku, K.; Twyman, J.; Läderach, P.; Ampaire, E.; Van Asten, P.; Twomlow, S.; Winowiecki, L. Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies. Agric. Syst. 2017, 151, 192–203. [Google Scholar] [CrossRef]
- Popa, M.; Ciocarlie, H. Distributed Intelligent climate system for indoor locations. In Proceedings of the IEEE 9th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Smolenice, Slovakia, 27–29 January 2011; pp. 291–296. [Google Scholar]
- Ardabili, S.F.; Mahmoudi, A.; Gundoshmian, T.M. Modeling and simulation controlling system of HVAC using fuzzy and predictive (radial basis function, RBF) controllers. J. Build. Eng. 2016, 6, 301–308. [Google Scholar] [CrossRef]
- Afram, A.; Janabi-Sharifi, F.; Fung, A.; Raahemifar, K. Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy Build. 2017, 141, 96–113. [Google Scholar] [CrossRef]
- Wicaksono, D.; Perdana, D.; Mayasari, R. Design and analysis automatic temperature control in the broiler poultry farm based on wireless sensor network. In Proceedings of the 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 1–2 November 2017; pp. 450–455. [Google Scholar]
- Heidari, M.; Khodadadi, H. Climate control of an agricultural greenhouse by using fuzzy logic self-tuning PID approach. In Proceedings of the 23rd International Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 September 2017; pp. 1–6. [Google Scholar]
- Janprom, K.; Wangnippanto, S.; Permpoonsinsup, W. Embedded control system with PID controller for comfortable room. In Proceedings of the International Electrical Engineering Congress (iEECON), Pattaya, Thailand, 8–10 March 2017; pp. 1–4. [Google Scholar]
- Revathi, S.; Radhakrishnan, T.K.; Sivakumaran, N. Climate control in greenhouse using intelligent control algorithms. In Proceedings of the American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 887–892. [Google Scholar]
- Ahamed, M.; Guo, H.; Tanino, K. A quasi-steady state model for predicting the heating requirements of conventional greenhouses in cold regions. Inf. Process. Agric. 2018, 5, 33–46. [Google Scholar] [CrossRef]
- Su, Y.; Xu, L.; Li, D. Adaptive Fuzzy Control of a Class of MIMO Nonlinear System with Actuator Saturation for Greenhouse Climate Control Problem. IEEE Trans. Autom. Sci. Eng. 2016, 13, 772–788. [Google Scholar] [CrossRef]
- Su, Y.; Xu, L. A greenhouse climate model for control design. In Proceedings of the IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 10–13 June 2015; pp. 47–53. [Google Scholar]
- Taki, M.; Ajabshirchi, Y.; Ranjbar, S.; Rohani, A.; Matloobi, M. Modeling and experimental validation of heat transfer and energy consumption in an innovative greenhouse structure. Inf. Process. Agric. 2016, 3, 157–174. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Luan, X.; Liu, F.; Karimi, H.R. Kalman filtering on greenhouse climate control. In Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 779–784. [Google Scholar]
- Zou, Q.; Ji, J.; Zhang, S.; Shi, M.; Luo, Y. Model predictive control based on particle swarm optimization of greenhouse climate for saving energy consumption. In Proceedings of the World Automation Congress, Kobe, Japan, 19–23 September 2010; pp. 123–128. [Google Scholar]
- Hu, H.; Xu, L.; Zhu, B. A compatible control algorithm for greenhouse climate control based on MOCC strategy. In Proceedings of the 3rd International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010; Volume 4, pp. 63–67. [Google Scholar]
- Kisilewicz, T. Passive Control of Indoor Climate Conditions in Low Energy Buildings. Energy Procedia 2015, 78, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Y.; Meng, X.; Wang, M.; Long, E. Research on Indoor Thermal Environment Improvement of Lightweight Building Integrated with Phase Change Material under Different Climate Conditions. Procedia Eng. 2015, 121, 1628–1634. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Chuang, I.T. Living Green Shell: Urban micro-vertical farm. In Proceedings of the International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017; pp. 1087–1090. [Google Scholar]
- Liu, Y.; Hassan, K.A.; Karlsson, M.; Weister, O.; Gong, S. Active Plant Wall for Green Indoor Climate Based on Cloud and Internet of Things. IEEE Access 2018, 6, 33631–33644. [Google Scholar] [CrossRef]
- Hamdani, M.; Bekkouche, S.M.; Cherier, M.K.; Benouaz, T.; Belarbi, R. Study on effects of window with an external shutters for natural ventilation for buildings in hot climates. In Proceedings of the International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 14–17 November 2016; pp. 780–784. [Google Scholar]
- Saranya, S.; Amudha, T. Crop planning optimization research—A detailed investigation. In Proceedings of the IEEE International Conference on Advances in Computer Applications (ICACA), Coimbatore, India, 24–24 October 2016; pp. 202–208. [Google Scholar]
- Kumar, R.; Singh, M.P.; Kumar, P.; Singh, J.P. Crop Selection Method to maximize crop yield rate using machine learning technique. In Proceedings of the International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), Avadi, India, 6–8 May 2015; pp. 138–145. [Google Scholar]
- Mishra, S.; Mishra, D.; Santra, G. Applications of Machine Learning Techniques in Agricultural Crop Production: A Review Paper. Indian J. Sci. Technol. 2016, 9, 1–4. [Google Scholar] [CrossRef]
- Ghasemi, M.; Karamouz, M.; Shui, L. Farm-based cropping pattern optimization and conjunctive use planning using piece-wise genetic algorithm (PWGA): A case study. Modeling Earth Syst. Environ. 2016, 2, 25. [Google Scholar] [CrossRef]
- Bou-Fakhreddine, B.; Abou-Chakra, S.; Mougharbel, I.; Faye, A.; Pollet, Y. Optimal multi-crop planning implemented under deficit irrigation. In Proceedings of the 18th Mediterranean Electrotechnical Conference (MELECON), Lemesos, Cyprus, 18–20 April 2016; pp. 1–6. [Google Scholar]
- Dutta, S.; Sahoo, B.; Mishra, R.; Acharya, S. Fuzzy Stochastic Genetic Algorithm for Obtaining Optimum Crops Pattern and Water Balance in a Farm. Water Resour. Manag. 2016, 30, 4097–4123. [Google Scholar] [CrossRef]
- Pant, M.; Thangaraj, R.; Rani, D.; Abraham, A.; Srivastava, D.K. Estimation of optimal crop plan using nature inspired metaheuristics. World J. Model. Simul. 2010, 6, 97–109. [Google Scholar]
- Rani, Y.R.; Rao, P.T. Multi objective crop planning for optimal benefits. Int. J. Eng. Res. Appl. 2012, 2, 279–287. [Google Scholar]
- Osama, S.; Elkholy, M.; Kansoh, R. Optimization of the cropping pattern in Egypt. Alex. Eng. J. 2017, 56, 557–566. [Google Scholar] [CrossRef]
- Shreedhar, R.; Hiremath, C.G.; Shetty, G.G. Optimization of cropping pattern using linear programming model for Markandeya command area. Int. J. Sci. Eng. Res. 2015, 6, 1311–1326. [Google Scholar]
- Chowdhury, M.A.; Chkrabarty, D. Optimal crop yield under limited water availability-a linear programming approach. J. Basic Appl. Eng. Res. 2015, 2, 892–895. [Google Scholar]
- Chetty, S.; Adewumi, A. Comparison Study of Swarm Intelligence Techniques for the Annual Crop Planning Problem. IEEE Trans. Evol. Comput. 2014, 18, 258–268. [Google Scholar] [CrossRef]
- Schor, N.; Bechar, A.; Ignat, T.; Dombrovsky, A.; Elad, Y.; Berman, S. Robotic Disease Detection in Greenhouses: Combined Detection of Powdery Mildew and Tomato Spotted Wilt Virus. IEEE Robot. Autom. Lett. 2016, 1, 354–360. [Google Scholar] [CrossRef]
- Tanmayee, P. Rice crop monitoring system—A lot based machine vision approach. In Proceedings of the International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2), Chennai, India, 23–25 March 2017; pp. 26–29. [Google Scholar]
- Tetila, E.C.; Machado, B.B.; Belete, N.; Guimaraes, D.; Pistori, H. Identification of Soybean Foliar Diseases Using Unmanned Aerial Vehicle Images. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 2190–2194. [Google Scholar] [CrossRef]
- Alencastre-Miranda, M.; Davidson, J.; Johnson, R.; Waguespack, H.; Krebs, H. Robotics for Sugarcane Cultivation: Analysis of Billet Quality using Computer Vision. IEEE Robot. Autom. Lett. 2018, 3, 3828–3835. [Google Scholar] [CrossRef]
- Han, L.; Haleem, M.S.; Taylor, M. A novel computer vision-based approach to automatic detection and severity assessment of crop diseases. In Proceedings of the Science and Information Conference (SAI), London, UK, 28–30 July 2015; pp. 638–644. [Google Scholar]
- Baquero, D.; Molina, J.; Gil, R.; Bojacá, C.; Franco, H.; Gómez, F. An image retrieval system for tomato disease assessment. In Proceedings of the XIX Symposium on Image, Signal Processing and Artificial Vision, Armenia, Colombia, 17–19 September 2014; pp. 1–5. [Google Scholar]
- Molina, J.F.; Gil, R.; Bojacá, C.; Gómez, F.; Franco, H. Automatic detection of early blight infection on tomato crops using a color based classification strategy. In Proceedings of the 19th Symposium on Image, Signal Processing and Artificial Vision, Armenia, Colombia, 17–19 September 2014; pp. 1–5. [Google Scholar]
- Singh, V.; Misra, A. Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Process. Agric. 2017, 4, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Ghyar, B.S.; Birajdar, G.K. Computer vision based approach to detect rice leaf diseases using texture and color descriptors. In Proceedings of the International Conference on Inventive Computing and Informatics (ICICI), Coimbatore, India, 23–24 November 2017; pp. 1074–1078. [Google Scholar]
- Kiani, E.; Mamedov, T. Identification of plant disease infection using soft-computing: Application to modern botany. Procedia Comput. Sci. 2017, 120, 893–900. [Google Scholar] [CrossRef]
- Golhani, K.; Balasundram, S.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 2018, 5, 354–371. [Google Scholar] [CrossRef]
- Bhatt, P.; Sarangi, S.; Pappula, S. Comparison of CNN models for application in crop health assessment with participatory sensing. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 19–22 October 2017; pp. 1–7. [Google Scholar]
- Bhange, M.; Hingoliwala, H. Smart Farming: Pomegranate Disease Detection Using Image Processing. Procedia Comput. Sci. 2015, 58, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Ullagaddi, S.B.; Raju, S.V. Disease recognition in Mango crop using modified rotational kernel transform features. In Proceedings of the 4th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 6–7 January 2017; pp. 1–8. [Google Scholar]
- Prasad, S.; Peddoju, S.K.; Ghosh, D. Energy efficient mobile vision system for plant leaf disease identification. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Instambul, Turkey, 6–9 April 2014; pp. 3314–3319. [Google Scholar]
- Shivling, V.D.; Goap, A.; Ghanshyam, C.; Sharma, S.K.; Arora, D.; Kumar, S.; Kumar, R. A Real Time Computational and Statistical Model (with high availability) of early warning for Plant Protection and Pest control for Crops (exp. Kutki). In Proceedings of the IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS), Bhubaneswar, India, 2–3 November 2015; pp. 22–26. [Google Scholar]
- Janapati, R.; Balaswamy, C.; Soundararajan, K.; Venkanna, U. Indoor Localization of Cooperative WSN Using PSO Assisted AKF with Optimum References. Procedia Comput. Sci. 2016, 92, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Amadeo, M.; Campolo, C.; Quevedo, J.; Corujo, D.; Molinaro, A.; Iera, A.; Aguiar, R.; Vasilakos, A. Information-centric networking for the internet of things: Challenges and opportunities. IEEE Netw. 2016, 30, 92–100. [Google Scholar] [CrossRef]
- Wu, D.; Nie, X.; Asmare, E.; Arkhipov, D.; Qin, Z.; Li, R.; McCann, J.; Li, K. Towards Distributed SDN: Mobility Management and Flow Scheduling in Software Defined Urban IoT. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 1400–1418. [Google Scholar] [CrossRef] [Green Version]
- Shif, L.; Wang, F.; Lung, C.H. Improvement of security and scalability for IoT network using SD-VPN. In Proceedings of the NOMS 2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–5. [Google Scholar]
- Kruize, J.; Wolfert, J.; Scholten, H.; Verdouw, C.; Kassahun, A.; Beulens, A. A reference architecture for Farm Software Ecosystems. Comput. Electron. Agric. 2016, 125, 12–28. [Google Scholar] [CrossRef] [Green Version]
- Hosenkhan, M.R.; Pattanayak, B.K. Security issues in internet of things (IoT): A comprehensive review. N. Paradig. Decis. Sci. Manag. 2020, 359–369. [Google Scholar]
- Riahi, A.; Challal, Y.; Natalizio, E.; Chtourou, Z.; Bouabdallah, A. A systemic approach for IoT security. In Proceedings of the IEEE International Conference on Distributed Computing in Sensor Systems, Cambridge, MA, USA, 20–23 May 2013; pp. 351–355. [Google Scholar]
- Hassanien, R.; Li, M.; Dong Lin, W. Advanced applications of solar energy in agricultural greenhouses. Renew. Sustain. Energy Rev. 2016, 54, 989–1001. [Google Scholar] [CrossRef]
- Zhu, C.; Leung, V.; Shu, L.; Ngai, E. Green Internet of Things for Smart World. IEEE Access 2015, 3, 2151–2162. [Google Scholar] [CrossRef]
- Arshad, R.; Zahoor, S.; Shah, M.; Wahid, A.; Yu, H. Green IoT: An Investigation on Energy Saving Practices for 2020 and Beyond. IEEE Access 2017, 5, 15667–15681. [Google Scholar] [CrossRef]
- Liu, X.; Ansari, N. Toward Green IoT: Energy Solutions and Key Challenges. IEEE Commun. Mag. 2019, 57, 104–110. [Google Scholar] [CrossRef]
- Chen, F.; Deng, P.; Wan, J.; Zhang, D.; Vasilakos, A.; Rong, X. Data Mining for the Internet of Things: Literature Review and Challenges. Int. J. Distrib. Sens. Netw. 2015, 11, 431047. [Google Scholar] [CrossRef] [Green Version]
- Eaves, J.; Eaves, S. Comparing the Profitability of a Greenhouse to a Vertical Farm in Quebec. Can. J. Agric. Econ. Rev. Can. d’agroeconomie 2017, 66, 43–54. [Google Scholar] [CrossRef]
- Leatherbury, M.U. VEGILAB and aquaponics indoor growing system. In Proceedings of the IEEE Conference on Technologies for Sustainability (SusTech), Portland, OR, USA, 24–26 July 2014; pp. 135–139. [Google Scholar]
- Banerjee, C.; Adenaeuer, L. Up, Up and Away! The Economics of Vertical Farming. J. Agric. Stud. 2014, 2, 40. [Google Scholar] [CrossRef]
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-scale aquaponic food production: Integrated fish and plant farming. FAO Fish. Aquac. Tech. Pap. 2014, 589, 1. Available online: http://www.fao.org/publications (accessed on 23 September 2021).
- Rubanga, D.; Hatanaka, K.; Shimada, S. Development of a Simplified Smart Agriculture System for Small-scale Greenhouse Farming. Sens. Mater. 2019, 31, 831. [Google Scholar] [CrossRef] [Green Version]
- Love, D.; Uhl, M.; Genello, L. Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquac. Eng. 2015, 68, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Hyunjin, C. A Study on the Change of Farm Using Artificial Intelligence Focused on Smart Farm in Korea. J. Phys. Conf. Ser. 2020, 1642, 012025. [Google Scholar] [CrossRef]
- Kreuger, M.; Meeuws, L.; Meeuws, G. Total Indoor Farming Concepts for Large-Scale Production. In Smart Plant Factory; Springer: Singapore, 2018; pp. 125–135. [Google Scholar]
- Zhao, G.; Quan, L.; Li, H.; Feng, H.; Li, S.; Zhang, S.; Liu, R. Real-time recognition system of soybean seed full-surface defects based on deep learning. Comput. Electron. Agric. 2021, 187, 106230. [Google Scholar] [CrossRef]
- Sibiya, M.; Sumbwanyambe, M. A Computational Procedure for the Recognition and Classification of Maize Leaf Diseases Out of Healthy Leaves Using Convolutional Neural Networks. AgriEngineering 2019, 1, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.; Rahman, T.; Khandakar, A.; Ayari, M.; Khan, A.; Khan, M.; Al-Emadi, N.; Reaz, M.; Islam, M.; Ali, S. Automatic and Reliable Leaf Disease Detection Using Deep Learning Techniques. AgriEngineering 2021, 3, 294–312. [Google Scholar] [CrossRef]
- Gao, Z.; Luo, Z.; Zhang, W.; Lv, Z.; Xu, Y. Deep Learning Application in Plant Stress Imaging: A Review. AgriEngineering 2020, 2, 430–446. [Google Scholar] [CrossRef]
- Palacios, D.; Arzamendia, M.; Gregor, D.; Cikel, K.; León, R.; Villagra, M. Definition and Application of a Computational Parameter for the Quantitative Production of Hydroponic Tomatoes Based on Artificial Neural Networks and Digital Image Processing. AgriEngineering 2021, 3, 1–18. [Google Scholar] [CrossRef]
- Sibiya, M.; Sumbwanyambe, M. An Algorithm for Severity Estimation of Plant Leaf Diseases by the Use of Colour Threshold Image Segmentation and Fuzzy Logic Inference: A Proposed Algorithm to Update a “Leaf Doctor” Application. AgriEngineering 2019, 1, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Barnetson, J.; Phinn, S.; Scarth, P. Estimating Plant Pasture Biomass and Quality from UAV Imaging across Queensland’s Rangelands. AgriEngineering 2020, 2, 523–543. [Google Scholar] [CrossRef]
- Deng, X.; Tong, Z.; Lan, Y.; Huang, Z. Detection and Location of Dead Trees with Pine Wilt Disease Based on Deep Learning and UAV Remote Sensing. AgriEngineering 2020, 2, 294–307. [Google Scholar] [CrossRef]
- Astaoui, G.; Dadaiss, J.; Sebari, I.; Benmansour, S.; Mohamed, E. Mapping Wheat Dry Matter and Nitrogen Content Dynamics and Estimation of Wheat Yield Using UAV Multispectral Imagery Machine Learning and a Variety-Based Approach: Case Study of Morocco. AgriEngineering 2021, 3, 29–49. [Google Scholar] [CrossRef]
- Sánchez-Sastre, L.; Alte da Veiga, N.; Ruiz-Potosme, N.; Carrión-Prieto, P.; Marcos-Robles, J.; Navas-Gracia, L.; Martín-Ramos, P. Assessment of RGB Vegetation Indices to Estimate Chlorophyll Content in Sugar Beet Leaves in the Final Cultivation Stage. AgriEngineering 2020, 2, 128–149. [Google Scholar] [CrossRef] [Green Version]
- Giménez-Gallego, J.; González-Teruel, J.; Soto-Valles, F.; Jiménez-Buendía, M.; Navarro-Hellín, H.; Torres-Sánchez, R. Intelligent thermal image-based sensor for affordable measurement of crop canopy temperature. Comput. Electron. Agric. 2021, 188, 106319. [Google Scholar] [CrossRef]
- Haboudane, D.; Tremblay, N.; Miller, J.; Vigneault, P. Remote Estimation of Crop Chlorophyll Content Using Spectral Indices Derived from Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 423–437. [Google Scholar] [CrossRef]
- Berni, J.; Zarco-Tejada, P.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote. Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Das, J.; Cross, G.; Qu, C.; Makineni, A.; Tokekar, P.; Mulgaonkar, Y.; Kumar, V. Devices, systems, and methods for automated monitoring enabling precision agriculture. In Proceedings of the IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 25–28 August 2015; pp. 462–469. [Google Scholar]
- Mosharafian, S.; Afzali, S.; Weaver, G.; van Iersel, M.; Velni, J.M. Optimal lighting control in greenhouse by incorporating sunlight prediction. Comput. Electron. Agric. 2021, 188, 106300. [Google Scholar] [CrossRef]
- Gutierrez, J.; Villa-Medina, J.; Nieto-Garibay, A.; Porta-Gandara, M. Automated Irrigation System Using a Wireless Sensor Network and GPRS Module. IEEE Trans. Instrum. Meas. 2014, 63, 166–176. [Google Scholar] [CrossRef]
- Perea, R.G.; Ballesteros, R.; Ortega, J.; Moreno, M. Water and energy demand forecasting in large-scale water distribution networks for irrigation using open data and machine learning algorithms. Comput. Electron. Agric. 2021, 188, 106327. [Google Scholar] [CrossRef]
- Haseeb, K.; Ud Din, I.; Almogren, A.; Islam, N. An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture. Sensors 2020, 20, 2081. [Google Scholar] [CrossRef]
- Khoa, T.; Man, M.; Nguyen, T.; Nguyen, V.; Nam, N. Smart Agriculture Using IoT Multi-Sensors: A Novel Watering Management System. J. Sens. Actuator Netw. 2019, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Tanaka, T.; Ali, M.; Saha, C.; Alam, M. Harvester Evaluation Using Real-Time Kinematic GNSS and Hiring Service Model. AgriEngineering 2021, 3, 363–382. [Google Scholar] [CrossRef]
- Gatsios, A.; Ntatsi, G.; Celi, L.; Said-Pullicino, D.; Tampakaki, A.; Giannakou, I.; Savvas, D. Nitrogen Nutrition Optimization in Organic Greenhouse Tomato Through the Use of Legume Plants as Green Manure or Intercrops. Agronomy 2019, 9, 766. [Google Scholar] [CrossRef] [Green Version]
- Veley, K.; Berry, J.; Fentress, S.; Schachtman, D.; Baxter, I.; Bart, R. High-throughput profiling and analysis of plant responses over time to abiotic stress. Plant. Direct 2017, 1, e00023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramin Shamshiri, R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z.M. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Bozchalui, M.; Canizares, C.; Bhattacharya, K. Optimal Energy Management of Greenhouses in Smart Grids. IEEE Trans. Smart Grid 2015, 6, 827–835. [Google Scholar] [CrossRef]
- Ouammi, A.; Achour, Y.; Zejli, D.; Dagdougui, H. Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid. IEEE Trans. Autom. Sci. Eng. 2020, 17, 117–128. [Google Scholar] [CrossRef]
- Li, C.; Niu, B. Design of smart agriculture based on big data and Internet of things. Int. J. Distrib. Sens. Netw. 2020, 16, 155014772091706. [Google Scholar] [CrossRef]
- Sarker, M.N.; Wu, M.; Chanthamith, B.; Yusufzada, S.; Li, D.; Zhang, J. Big data driven smart agriculture: Pathway for sustainable development. In Proceedings of the 2nd international conference on artificial intelligence and big data (ICAIBD), Chengdu, China, 25–28 May 2019; pp. 60–65. [Google Scholar]
- Ditta, A. How helpful is nanotechnology in agriculture? Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 033002. [Google Scholar] [CrossRef]
- Brunelli, D.; Tosato, P.; Rossi, M. Microbial fuel cell as a biosensor and a power source for flora health monitoring. In Proceedings of the IEEE Sensors, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Maja, J.; Polak, M.; Burce, M.; Barnes, E. CHAP: Cotton-Harvesting Autonomous Platform. AgriEngineering 2021, 3, 199–217. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Carapau, Â.; Rato, A. Near-Infrared Spectroscopy (NIRS) and Optical Sensors for Estimating Protein and Fiber in Dryland Mediterranean Pastures. AgriEngineering 2021, 3, 73–91. [Google Scholar] [CrossRef]
- Sánchez-Sastre, L.; Casterad, M.; Guillén, M.; Ruiz-Potosme, N.; Veiga, N.; Navas-Gracia, L.; Martín-Ramos, P. UAV Detection of Sinapis arvensis Infestation in Alfalfa Plots Using Simple Vegetation Indices from Conventional Digital Cameras. AgriEngineering 2020, 2, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Cantelli, L.; Bonaccorso, F.; Longo, D.; Melita, C.D.; Schillaci, G.; Muscato, G. A Small Versatile Electrical Robot for Autonomous Spraying in Agriculture. AgriEngineering 2019, 1, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Barnes, E.; Morgan, G.; Hake, K.; Devine, J.; Kurtz, R.; Ibendahl, G.; Sharda, A.; Rains, G.; Snider, J.; Maja, J.; et al. Opportunities for Robotic Systems and Automation in Cotton Production. AgriEngineering 2021, 3, 339–362. [Google Scholar] [CrossRef]
- Pelletier, M.; Wanjura, J.; Holt, G. Embedded Micro-Controller Software Design of a Cotton Harvester Yield Monitor Calibration System. AgriEngineering 2019, 1, 485–495. [Google Scholar] [CrossRef] [Green Version]
- Hardy, T.; Kooistra, L.; Domingues Franceschini, M.; Richter, S.; Vonk, E.; van den Eertwegh, G.; van Deijl, D. Sen2Grass: A Cloud-Based Solution to Generate Field-Specific Grassland Information Derived from Sentinel-2 Imagery. AgriEngineering 2021, 3, 118–137. [Google Scholar] [CrossRef]
- Tzounis, A.; Katsoulas, N.; Bartzanas, T.; Kittas, C. Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 2017, 164, 31–48. [Google Scholar] [CrossRef]
- Maraveas, C.; Tsavdaridis, K. Strengthening Techniques for Greenhouses. AgriEngineering 2020, 2, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Das, V.J.; Sharma, S.; Kaushik, A. Views of Irish Farmers on Smart Farming Technologies: An Observational Study. AgriEngineering 2019, 1, 164–187. [Google Scholar]
- Chuang, J.; Wang, J.; Liou, Y. Farmers’ Knowledge, Attitude, and Adoption of Smart Agriculture Technology in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 7236. [Google Scholar] [CrossRef] [PubMed]
- Artmann, M.; Specht, K.; Vávra, J.; Rommel, M. Introduction to the Special Issue “A Systemic Perspective on Urban Food Supply: Assessing Different Types of Urban Agriculture”. Sustainability 2021, 13, 3798. [Google Scholar] [CrossRef]
- Avgoustaki, D.; Xydis, G. Indoor Vertical Farming in the Urban Nexus Context: Business Growth and Resource Savings. Sustainability 2020, 12, 1965. [Google Scholar] [CrossRef] [Green Version]
Sl. No. | Type of Sensors | Details | Example Application | Remarks |
---|---|---|---|---|
1 | Location Sensor | Location sensors use the signal from the satellite to determine latitude, longitude and altitude information. | To determine the location of the farmland. | Used mainly in outdoor farming |
2 | Optical Sensor | The spectrum of reflected light from the soil is analyzed to determine the properties and content of soil. | To determine clay matter, organic matter present in the soil and soil moisture content. | Mostly used in outdoor farming using satellite and airplane platform. It can also be used from Unmanned Aerial Vehicle (UAV). In indoor farms these sensors can be incorporated in UAVs for soil analysis. |
3 | Electrochemical Sensors | Measures pH and soil nutrient levels by detecting particular ions present in the soil. | It is used to determine the fertilizer required and also to maintain soil pH and electrical conductivity. | Used both in outdoor and indoor farming. |
4 | Mechanical Sensor | Measures mechanical resistance of soil using load cells when anything penetrates it | Used in intervention analysis and in irrigation analysis. | Used both in outdoor and indoor farming. |
5 | Airflow Sensor | Measures Soil Air Permeability indicates the required pressure for conduction of a certain amount of air at a particular ground depth. | It is used to determine certain soil properties such as soil type, structure, compaction, signature, etc. | Used both in outdoor and indoor farming. |
6 | Acoustic Sensor | Measures the change in noise level while interacting with soil particles. | It is used to get an idea of soil texture. | Used both in outdoor and indoor farming. |
7 | Dielectric Soil Moisture Sensor | Measures dielectric constant of soil. | It is required for soil moisture level calculation. | Used both in outdoor and indoor farming. |
Sl No | Standards | Maximum Range (Approximately) | Frequency Band | Remarks |
---|---|---|---|---|
1 | LR-WPAN (IEEE 802.15.4) | 20 mt | 868/915 MHz, 2.4 Ghz | Medium energy consumption, medium expenses and high data speed |
2 | WiFi (IEEE 802.11 a/c/b/d/g/n) | 100 mt | 5 GHz to 60 GHz | Medium energy consumption, medium expenses and high data speed |
3 | LoRaWAN | 30 km | 868/900 MHz | Very low energy consumption, High expenses and Very Low data speed |
4 | Zigbee | 20 mt | 2.4 GHz | Low energy consumption, Low expenses and Very Low data speed |
5 | Bluetooth ((IEEE 802.15.1) | 10 mt | 24 GHz | Very low energy consumption, Low expenses and Low data speed |
6 | SigFox | 50 mt | 200 KHz | Low energy consumption, Low expenses and Very Low data speed |
4 | Mobile Communication (GSM, CDMA, LTE) | As per cellular area coverage | 865 MHz, 2.4 GHz | Medium energy consumption, medium expenses and high data speed |
Sl No | Articles | Farms | Dimension Used | Details |
---|---|---|---|---|
1 | [182] | Small scale aquaponic setups in Myanmar |
|
|
2 | [183] | Small scale Greenhouse farming in Japan |
|
|
3 | [184] | Small scale aquaponic system in Baltimore, USA |
|
|
4 | [185] | Sky Greens (Singapore) |
|
|
5 | [185] | Valcent Company (North America) |
|
|
6 | [185] | Mirai Company (Japan) |
|
|
7 | [186] | Smart Greenhouse in South Korea |
|
|
8 | [187] | Large scale indoor farming facility in Cincinnati USA |
|
|
Sl No | Topic | Area of Research |
---|---|---|
1 | Computer vision-based automation | |
2 | Resource management |
|
3 | Data and Information |
|
4 | Smart System, equipment and networking | |
5 | Case studies, analysis of smart farming |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hati, A.J.; Singh, R.R. Smart Indoor Farms: Leveraging Technological Advancements to Power a Sustainable Agricultural Revolution. AgriEngineering 2021, 3, 728-767. https://doi.org/10.3390/agriengineering3040047
Hati AJ, Singh RR. Smart Indoor Farms: Leveraging Technological Advancements to Power a Sustainable Agricultural Revolution. AgriEngineering. 2021; 3(4):728-767. https://doi.org/10.3390/agriengineering3040047
Chicago/Turabian StyleHati, Anirban Jyoti, and Rajiv Ranjan Singh. 2021. "Smart Indoor Farms: Leveraging Technological Advancements to Power a Sustainable Agricultural Revolution" AgriEngineering 3, no. 4: 728-767. https://doi.org/10.3390/agriengineering3040047
APA StyleHati, A. J., & Singh, R. R. (2021). Smart Indoor Farms: Leveraging Technological Advancements to Power a Sustainable Agricultural Revolution. AgriEngineering, 3(4), 728-767. https://doi.org/10.3390/agriengineering3040047