A Case Study Based Approach for Remote Fault Detection Using Multi-Level Machine Learning in A Smart Building
Abstract
:1. Introduction
2. Literature Review
2.1. Knowledge Based Methods
2.2. Data-Driven Based Methods
2.3. Problem Statement
2.4. Contribution
2.5. Overview of FCU and Associated Faults
3. Proposed Multi-Level Automatic Fault Detection
3.1. Data Collection Process
3.2. Feature Extraction
3.3. Multi-Level Clustering
3.4. Validation
3.5. Hypothesis Test: Two-Sample t-Test
4. Experimental Result Analysis
4.1. Case Study Description
4.2. Feature Correlation
4.3. Clustering Results
4.4. Hypothesis Test
5. Discussions and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alobaidi, M.H.; Chebana, F.; Meguid, M.A. Robust ensemble learning framework for day-ahead forecasting of household based energy consumption. Appl. Energy 2018, 212, 997–1012. [Google Scholar] [CrossRef] [Green Version]
- Kolokotsa, D. The role of smart grids in the building sector. Energy Build. 2016, 116, 703–708. [Google Scholar] [CrossRef] [Green Version]
- Buildings Energy Data Book. Available online: https://openei.org/doe-opendata/dataset/buildings-energy-data-book/resource/3edf59d2-32be-458b-bd4c-796b3e14bc65 (accessed on 11 June 2015).
- Clastres, C. Smart grids: Another step towards competition, energy security and climate change objectives. Energy Policy 2011, 39, 5399–5408. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Cecati, C.; Dillon, T.; Simoes, M.G. The new frontier of smart grids. IEEE Ind. Electron. Mag. 2011, 5, 49–63. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, T.; Zhang, X.; Zhang, C. Artificial intelligence based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future. Renew. Sustain. Energy Rev. 2019, 109, 85–101. [Google Scholar] [CrossRef]
- Roth, K.W.; Westphalen, D.; Feng, M.Y.; Llana, P.; Quartararo, L. Energy Impact of Commercial Building Controls and Performance Diagnostics: Market Characterization, Energy Impact of Building Faults and Energy Savings Potential; US Department of Energy: Washington, DC, USA, 2005.
- González-Briones, A.; De La Prieta, F.; Mohamad, M.S.; Omatu, S.; Corchado, J.M. Multi-agent systems applications in energy optimization problems: A state-of-the-art review. Energies 2018, 11, 1928. [Google Scholar] [CrossRef] [Green Version]
- Usoro, P.; Schick, I.; Negahdaripour, S. An innovation based methodology for HVAC system fault detection. J. Dyn. Syst. Meas. Control 1985, 107, 284–289. [Google Scholar] [CrossRef]
- Anderson, D.; Graves, L.; Reinert, W.; Kreider, J.; Dow, J.; Wubbena, H. A quasi-real-time expert system for commercial building HVAC diagnostics. ASHRAE Trans. Am. Soc. Heat. Refrig. Air-Cond. Eng. 1989, 95, 890609. [Google Scholar]
- Kim, W.; Katipamula, S. A review of fault detection and diagnostics methods for building systems. Sci. Technol. Built Environ. 2018, 24, 3–21. [Google Scholar] [CrossRef]
- Karami, M.; Wang, L. Fault detection and diagnosis for nonlinear systems: A new adaptive Gaussian mixture modeling approach. Energy Build. 2018, 166, 477–488. [Google Scholar] [CrossRef]
- Guo, Y.; Wall, J.; Li, J.; West, S. Real-time HVAC sensor monitoring and automatic fault detection system. In Sensors for Everyday Life; Springer: Berlin/Heidelberg, Germany, 2017; pp. 39–54. [Google Scholar]
- Ranade, A.; Provan, G.; Mady, A.E.D.; O’Sullivan, D. A computationally efficient method for fault diagnosis of fan coil unit terminals in building Heating Ventilation and Air Conditioning systems. J. Build. Eng. 2020, 27, 100955. [Google Scholar] [CrossRef]
- Li, D.; Hu, G.; Spanos, C.J. A data-driven strategy for detection and diagnosis of building chiller faults using linear discriminant analysis. Energy Build. 2016, 128, 519–529. [Google Scholar] [CrossRef]
- Gao, J.; Bergés, M. A large-scale evaluation of automated metadata inference approaches on sensors from air handling units. Adv. Eng. Inform. 2018, 37, 14–30. [Google Scholar] [CrossRef]
- Lin, S.C.; Chen, C.J.; Lee, T.J. A Multi-Label Classification With Hybrid Label-Based Meta-Learning Method in Internet of Things. IEEE Access 2020, 8, 42261–42269. [Google Scholar] [CrossRef]
- Bode, G.; Thul, S.; Baranski, M.; Müller, D. Real-world application of machine-learning based fault detection trained with experimental data. Energy 2020, 198, 117323. [Google Scholar] [CrossRef]
- Rogers, A.; Guo, F.; Rasmussen, B. Uncertainty analysis and field implementation of a fault detection method for residential HVAC systems. Sci. Technol. Built Environ. 2020, 26, 320–333. [Google Scholar] [CrossRef]
- Xu, C.; Chen, H. A hybrid data mining approach for anomaly detection and evaluation in residential buildings energy data. Energy Build. 2020, 215, 109864. [Google Scholar] [CrossRef]
- Lee, K.P.; Wu, B.H.; Peng, S.L. Deep-learning based fault detection and diagnosis of air-handling units. Build. Environ. 2019, 157, 24–33. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Xiao, F. Pattern recognition based chillers fault detection method using support vector data description (SVDD). Appl. Energy 2013, 112, 1041–1048. [Google Scholar] [CrossRef]
- Beghi, A.; Brignoli, R.; Cecchinato, L.; Menegazzo, G.; Rampazzo, M.; Simmini, F. Data-driven fault detection and diagnosis for HVAC water chillers. Control Eng. Pract. 2016, 53, 79–91. [Google Scholar] [CrossRef]
- Magoulès, F.; Zhao, H.X.; Elizondo, D. Development of an RDP neural network for building energy consumption fault detection and diagnosis. Energy Build. 2013, 62, 133–138. [Google Scholar] [CrossRef]
- Shang, C.; You, F. A data-driven robust optimization approach to scenario based stochastic model predictive control. J. Process Control 2019, 75, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Sonta, A.J.; Simmons, P.E.; Jain, R.K. Understanding building occupant activities at scale: An integrated knowledge based and data-driven approach. Adv. Eng. Inform. 2018, 37, 1–13. [Google Scholar] [CrossRef]
- Dey, M.; Gupta, M.; Rana, S.P.; Turkey, M.; Dudley, S. A pid inspired feature extraction method for hvac terminal units. In Proceedings of the 2017 IEEE Conference on Technologies for Sustainability (SusTech), Phoenix, AZ, USA, 12–14 November 2017; pp. 1–5. [Google Scholar]
- Dey, M.; Rana, S.P.; Dudley, S. Smart building creation in large scale HVAC environments through automated fault detection and diagnosis. Future Gener. Comput. Syst. 2018, 108, 950–966. [Google Scholar] [CrossRef]
- Dey, M.; Gupta, M.; Turkey, M.; Dudley, S. Unsupervised learning techniques for HVAC terminal unit behaviour analysis. In Proceedings of the 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA, USA, 4–8 August 2017; pp. 1–7. [Google Scholar]
- Dey, M.; Rana, S.P.; Dudley, S. Semi-Supervised Learning Techniques for Automated Fault Detection and Diagnosis of HVAC Systems. In Proceedings of the 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), Volos, Greece, 5–7 November 2018; pp. 872–877. [Google Scholar]
- Theodoridis, S.; Koutroumbas, K. Pattern Recognition; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- McLachlan, G.; Peel, D. Finite Mixture Models; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B Stat. Methodol. 2001, 63, 411–423. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 224–227. [Google Scholar] [CrossRef]
- González-Briones, A.; Prieto, J.; De La Prieta, F.; Herrera-Viedma, E.; Corchado, J.M. Energy optimization using a case based reasoning strategy. Sensors 2018, 18, 865. [Google Scholar] [CrossRef] [Green Version]
- Rana, S.P.; Dey, M.; Siarry, P. Boosting content based image retrieval performance through integration of parametric & nonparametric approaches. J. Vis. Commun. Image Represent. 2019, 58, 205–219. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Flannery, B.P.; Vetterling, W.T. Numerical Recipes in Fortran 77: Volume 1, Volume 1 of Fortran Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
Experimental Time Frame | Methods | Non-Faulty | Faulty |
---|---|---|---|
A whole day | k-means | 598 | 125 |
Linkage | 592 | 131 | |
Gaussian mixture | 596 | 127 | |
A whole week | k-means | 3185 | 430 |
Linkage | 3190 | 425 | |
Gaussian mixture | 3177 | 438 |
Experimental Time Frame | Methods | Gap | Silhouette | Davies–Bouldin |
---|---|---|---|---|
A whole day | k-means | 1.100 | 0.9649 | 0.2582 |
Linkage | 1.100 | 0.9421 | 0.1595 | |
Gaussian mixture | 1.090 | 0.9652 | 0.2517 | |
A whole week | k-means | 2.248 | 0.970 | 0.3279 |
Linkage | 2.369 | 0.9715 | 0.3138 | |
Gaussian mixture | 2.246 | 0.9715 | 0.3138 |
Experimental Time Frame | Methods | Total No. of FCU Data | Fault 1 | Fault 2 | Fault 3 |
---|---|---|---|---|---|
A whole day | k-means | 125 | 35 | 24 | 66 |
Linkage | 131 | 37 | 25 | 69 | |
Gaussian mixture | 127 | 38 | 27 | 62 | |
A whole week | k-means | 430 | 175 | 47 | 208 |
Linkage | 425 | 174 | 46 | 205 | |
Gaussian mixture | 438 | 177 | 51 | 207 |
Experimental Time Frame | Methods | Gap | Silhouette | Davies–Bouldin |
---|---|---|---|---|
A whole day | k-means | 1.310 | 0.9517 | 0.207 |
Linkage | 1.310 | 0.9527 | 0.1925 | |
Gaussian mixture | 1.300 | 0.9527 | 0.1925 | |
A whole week | k-means | 2.720 | 0.9877 | 0.2443 |
Linkage | 4.281 | 0.9930 | 0.2440 | |
Gaussian mixture | 4.157 | 0.9930 | 0.2440 |
Level 1 Clustering | Level 2 Clustering | |||
---|---|---|---|---|
Experimental Time Frame | p-Value for Faulty and Non-Faulty Population | p-Value for Fault 1 and Fault 2 Population | p-Value for Fault 1 and Fault 3 Population | p-Value for Fault 2 and Fault 3 Population |
A whole day test | 0.176 | 0.464 | 0.184 | 0.196 |
A whole week test | 0.239 | 0.242 | 0.508 | 0.349 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dey, M.; Rana, S.P.; Dudley, S. A Case Study Based Approach for Remote Fault Detection Using Multi-Level Machine Learning in A Smart Building. Smart Cities 2020, 3, 401-419. https://doi.org/10.3390/smartcities3020021
Dey M, Rana SP, Dudley S. A Case Study Based Approach for Remote Fault Detection Using Multi-Level Machine Learning in A Smart Building. Smart Cities. 2020; 3(2):401-419. https://doi.org/10.3390/smartcities3020021
Chicago/Turabian StyleDey, Maitreyee, Soumya Prakash Rana, and Sandra Dudley. 2020. "A Case Study Based Approach for Remote Fault Detection Using Multi-Level Machine Learning in A Smart Building" Smart Cities 3, no. 2: 401-419. https://doi.org/10.3390/smartcities3020021
APA StyleDey, M., Rana, S. P., & Dudley, S. (2020). A Case Study Based Approach for Remote Fault Detection Using Multi-Level Machine Learning in A Smart Building. Smart Cities, 3(2), 401-419. https://doi.org/10.3390/smartcities3020021