Applying a Systems Perspective on the Notion of the Smart City
Abstract
:1. Introduction
2. The Boundary Conditions of Smartness in Smart Cities
3. Non-Smart Technologies Can Make Cities Smarter
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cornwall, A. Buzzwords and fuzzwords: Deconstructing development discourse. Dev. Pract. 2007, 17, 471–484. [Google Scholar] [CrossRef]
- Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J. Spec. Top. 2012, 214, 481–518. [Google Scholar] [CrossRef] [Green Version]
- World Cities Report 2016. Urbanization and Development: Emerging Futures; UN Habitat: New York, NY, USA, 2016; Available online: http://wcr.unhabitat.org/main-report/ (accessed on 19 May 2020).
- De Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable-smart-resilient-low carbon-eco-knowledge cities; Making sense of a multitude of concepts promoting sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Hollands, R.G. Critical interventions into the corporate smart city. Camb. J. Reg. Econ. Soc. 2015, 8, 61–77. [Google Scholar] [CrossRef]
- Robinson, J. Squaring the circle? Some thoughts on the idea of sustainable development. Ecol. Econ. 2004, 48, 369–384. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, D.; Wang, Q.; Su, B. How information and communication technology drives carbon emissions: A sector-level analysis for China. Energy Econ. 2019, 81, 380–392. [Google Scholar] [CrossRef]
- Colding, J.; Barthel, S.; Sörqvist, P. Wicked Problems of Smart Cities. Smart Cities 2019, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Hassler, U.; Kohler, N. Resilience in the built environment. Build. Res. Inf. 2014, 42, 119–129. [Google Scholar] [CrossRef]
- Redman, C.L.; Grove, J.M.; Kuby, L.H. Integrating Social Science into the Long-Term Ecological Research (LTER) Network: Social Dimensions of Ecological Change and Ecological Dimensions of Social Change. Ecosystems 2004, 7, 161–171. [Google Scholar] [CrossRef]
- Marcus, L.; Koch, D. Cities as implements or facilities—The need for a spatial morphology in smart city systems. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 204–226. [Google Scholar] [CrossRef]
- Andersson, L. Studie sv Elsparkcyklar ur ett Användarperspektiv; KTH Skolan för Arkitektur och Samhällsbyggnad: Stockholm, Sweden, 2019. [Google Scholar]
- Hollingsworth, J.; Copeland, B.; Johnson, J.X. Are e-scooters polluters? The environmental impacts of shared dockless electric scooters. Environ. Res. Lett. 2019, 14, 084031. [Google Scholar] [CrossRef]
- Kramers, A.; Wangel, J.; Johansson, S.; Höjer, M.; Finnveden, G.; Brandt, N. Towards a comprehensive system of methodological considerations for cities’ climate targets. Energy Policy 2013, 62, 1276–1287. [Google Scholar] [CrossRef] [Green Version]
- Kramers, A.; Höjer, M.; Lövehagen, N.; Wangel, J. Smart sustainable cities—Exploring ICT solutions for reduced energy use in cities. Environ. Model. Softw. 2014, 56, 52–62. [Google Scholar] [CrossRef]
- Moyer, J.D.; Hughes, B.B. ICTs: Do they contribute to increased carbon emissions? Technol. Forecast. Soc. Chang. 2012, 79, 919–931. [Google Scholar] [CrossRef]
- Hilty, L.M.; Aebischer, B.; Rizzoli, A.E. Modeling and evaluating the sustainability of smart solutions. Environ. Model. Softw. 2014, 56, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Galvin, R. The ICT/electronics question: Structural change and the rebound effect. Ecol. Econ. 2015, 120, 23–31. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K. Information and Communication Technology, electricity consumption and economic growth in OECD countries: A panel data analysis. Int. J. Electr. Power Energy Syst. 2016, 76, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Ranka, S. Handbook of Energy-Aware and Green Computing; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Herring, H.; Roy, R. Technological innovation, energy efficient design and the rebound effect. Technovation 2007, 27, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Haseeb, A.; Xia, E.; Saud, S.; Ahmad, A.; Khurshid, H. Does information and communication technologies improve environmental quality in the era of globalization? An empirical analysis. Environ. Sci. Pollut. Res. 2019, 26, 8594–8608. [Google Scholar] [CrossRef]
- Andrae, A.; Edler, T. On Global Electricity Usage of Communication Technology: Trends to 2030. Challenges 2015, 6, 117–157. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Meng, F.; Baloch, M.A. The effect of ICT, financial development, growth, and trade openness on CO2 emissions: An empirical analysis. Environ. Sci. Pollut. Res. 2018, 25, 30708–30719. [Google Scholar] [CrossRef] [PubMed]
- Alpman, M. Facebooks datahallar ökar elbehovet. Sven. Dagbl. 2014. Available online: https://www.svd.se/facebooks-datahallar-okar-elbehovet (accessed on 12 March 2020).
- Groop, T. Datajätte Blir Gävles Industriella Revansch. Sveriges Radio. Available online: https://sverigesradio.se/sida/artikel.aspx?programid=99&artikel=7225786 (accessed on 12 March 2019).
- Carlsson, M. Microsofts serverhallar kan sluka mer el än hela Gävle—Forskaren kritisk: “Vi använder mycket data i onödan”. Gefle Dagbl. 2019. Available online: https://www.gd.se/logga-in/microsofts-serverhallar-kan-sluka-mer-el-an-hela-gavle-forskaren-kritisk-vi-anvander-mycket-data-i-onodan (accessed on 12 March 2020).
- Añón Higón, D.; Gholami, R.; Shirazi, F. ICT and environmental sustainability: A global perspective. Telemat. Inform. 2017, 34, 85–95. [Google Scholar] [CrossRef]
- Harbaugh, W.T.; Levinson, A.; Wilson, D.M. Reexamining the Empirical Evidence for an Environmental Kuznets Curve. Rev. Econ. Stat. 2002, 84, 541–551. [Google Scholar] [CrossRef]
- Perman, R.; Stern, D.I. Evidence from panel unit root and cointegration tests that the Environmental Kuznets Curve does not exist. Aust. J. Agric. Resour. Econ. 2003, 47, 325–347. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.I. The Rise and Fall of the Environmental Kuznets Curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Stern, P.C.; Dietz, T. The Value Basis of Environmental Concern. J. Soc. Issues 1994, 50, 65–84. [Google Scholar] [CrossRef]
- Stern, D.I. The environmental Kuznets curve after 25 years. J. Bioeconomics 2017, 19, 7–28. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S.; et al. Framing Sustainability in a Telecoupled World. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef]
- Xiong, H.; Millington, J.D.A.; Xu, W. Trade in the telecoupling framework: Evidence from the metals industry. Ecol. Soc. 2018, 23, 11. [Google Scholar] [CrossRef]
- Wagner, P. The Human Use of Earth; The Free Press: New York, NY, USA, 1964. [Google Scholar]
- Hillier, B. Space is the Machine; Space Syntax: London, UK, 2007. [Google Scholar]
- Strumsky, D.; Lobo, J.; Tainter, J.A. Complexity and the productivity of innovation. Syst. Res. Behav. Sci. 2010, 27, 496–509. [Google Scholar] [CrossRef]
- Colding, J.; Colding, M.; Barthel, S. The smart city model: A new panacea for urban sustainability or unmanageable complexity? Environ. Plan. B Urban Anal. City Sci. 2020, 47, 179–187. [Google Scholar] [CrossRef]
- Newman, P.W.G.; Kenworthy, J.R. Gasoline Consumption and Cities. J. Am. Plan. Assoc. 1989, 55, 24–37. [Google Scholar] [CrossRef]
- Güneralp, B.; Zhou, Y.; Ürge-Vorsatz, D.; Gupta, M.; Yu, S.; Patel, P.L.; Fragkias, M.; Li, X.; Seto, K.C. Global scenarios of urban density and its impacts on building energy use through 2050. Proc. Natl. Acad. Sci. USA 2017, 114, 8945–8950. [Google Scholar] [CrossRef] [Green Version]
- Säynäjoki, E.-S.; Heinonen, J.; Junnila, S. Role of Urban Planning in Encouraging More Sustainable Lifestyles. J. Urban Plan. Dev. 2015, 141, 04014011. [Google Scholar] [CrossRef]
- Vaughan, L.; Clark, D.L.C.; Sahbaz, O.; Haklay, M. (Muki) Space and exclusion: Does urban morphology play a part in social deprivation? Area 2005, 37, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Hillier, B. Can streets be made safe? URBAN Des. Int. 2004, 9, 31–45. [Google Scholar] [CrossRef]
- Croxford, B.; Penn, A.; Hillier, B. Spatial distribution of urban pollution: Civilizing urban traffic. Sci. Total Environ. 1996, 189, 3–9. [Google Scholar] [CrossRef]
- Colding, J. ‘Ecological land-use complementation’ for building resilience in urban ecosystems. Landsc. Urban Plan. 2007, 81, 46–55. [Google Scholar] [CrossRef]
- Stott, I.; Soga, M.; Inger, R.; Gaston, K.J. Land sparing is crucial for urban ecosystem services. Front. Ecol. Environ. 2015, 13, 387–393. [Google Scholar] [CrossRef]
- Tacoli, C. Rural-urban interactions: A guide to the literature. Environ. Urban. 1998, 10, 147–166. [Google Scholar] [CrossRef]
- Gren, Å.; Andersson, E. Being efficient and green by rethinking the urban-rural divide—Combining urban expansion and food production by integrating an ecosystem service perspective into urban planning. Sustain. Cities Soc. 2018, 40, 75–82. [Google Scholar] [CrossRef]
- Barthel, S.; Isendahl, C.; Vis, B.N.; Drescher, A.; Evans, D.L.; van Timmeren, A. Global urbanization and food production in direct competition for land: Leverage places to mitigate impacts on SDG2 and on the Earth System. Anthr. Rev. 2019, 6, 71–97. [Google Scholar] [CrossRef]
- Marcus, L.; Colding, J. Toward an integrated theory of spatial morphology and resilient urban systems. Ecol. Soc. 2014, 19, 55. [Google Scholar] [CrossRef] [Green Version]
- Hillier, B.; Penn, A.; Hanson, J.; Grajewski, T.; Xu, J. Natural movement: Or, configuration and attraction in urban pedestrian movement. Environ. Plan. B Plan. Des. 1993, 20, 29–66. [Google Scholar] [CrossRef] [Green Version]
- Samuelsson, K.; Colding, J.; Barthel, S. Urban resilience at eye level: Spatial analysis of empirically defined experiential landscapes. Landsc. Urban Plan. 2019, 187, 70–80. [Google Scholar] [CrossRef]
- Samuelsson, K.; Giusti, M.; Peterson, G.D.; Legeby, A.; Brandt, S.A.; Barthel, S. Impact of environment on people’s everyday experiences in Stockholm. Landsc. Urban Plan. 2018, 171, 7–17. [Google Scholar] [CrossRef]
- Batty, M. The New Sicience of Cities; MIT Press: Cambridge, UK, 2013; ISBN 9780262019521. [Google Scholar]
- Marcus, L. Overcoming the Subject-Object Dichotomy in Urban Modeling: Axial Maps as Geometric Representations of Affordances in the Built Environment. Front. Psychol. 2018, 9, 449. [Google Scholar] [CrossRef] [Green Version]
- Legeby, A. Patterns of Co-Presence: Spatial Configuration and Social Segregation. Ph.D. Thesis, School of Architecture and the Built Environment, Royal Institute of Technology, Stockholm, Sweden, 2013. [Google Scholar]
- Scoppa, M.D.; Peponis, J. Distributed Attraction: The Effects of Street Network Connectivity upon the Distribution of Retail Frontage in the City of Buenos Aires. Environ. Plan. B Plan. Des. 2015, 42, 354–378. [Google Scholar] [CrossRef]
- Marcus, L.; Giusti, M.; Barthel, S. Cognitive affordances in sustainable urbanism: Contributions of space syntax and spatial cognition. J. Urban Des. 2016, 21, 439–452. [Google Scholar] [CrossRef]
- Colding, J.; Lundberg, J.; Folke, C. Incorporating Green-area User Groups in Urban Ecosystem Management. AMBIO A J. Hum. Environ. 2006, 35, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Colding, J.; Barthel, S. An urban ecology critique on the “Smart City” model. J. Clean. Prod. 2017, 164, 95–101. [Google Scholar] [CrossRef]
- Hartig, T.; Kahn, P.H. Living in cities, naturally. Science 2016, 352, 938–940. [Google Scholar] [CrossRef] [PubMed]
- Elmqvist, T.; Andersson, E.; Frantzeskaki, N.; McPhearson, T.; Olsson, P.; Gaffney, O.; Takeuchi, K.; Folke, C. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2019, 2, 267–273. [Google Scholar] [CrossRef]
- Bar-Cohen, Y. Biomimetics—Using nature to inspire human innovation. Bioinspir. Biomim. 2006, 1, 1–12. [Google Scholar] [CrossRef]
- Benyus, J.M. Biomimicry: Innovation Inspired by Nature. Am. Biol. Teach. 1998, 60, 392. [Google Scholar]
- O’Hogain, S.; McCarton, L. Nature-Based Solutions. In A Technology Portfolio of Nature Based Solutions; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–9. [Google Scholar]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.-H. A Theory on Urban Resilience to Floods—A Basis for Alternative Planning Practices. Ecol. Soc. 2012, 17, 48. [Google Scholar] [CrossRef]
- Barthel, S.; Parker, J.; Ernstson, H. Food and Green Space in Cities: A Resilience Lens on Gardens and Urban Environmental Movements. Urban Stud. 2015, 52, 1321–1338. [Google Scholar] [CrossRef] [Green Version]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; de Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colding, J.; Wallhagen, M.; Sörqvist, P.; Marcus, L.; Hillman, K.; Samuelsson, K.; Barthel, S. Applying a Systems Perspective on the Notion of the Smart City. Smart Cities 2020, 3, 420-429. https://doi.org/10.3390/smartcities3020022
Colding J, Wallhagen M, Sörqvist P, Marcus L, Hillman K, Samuelsson K, Barthel S. Applying a Systems Perspective on the Notion of the Smart City. Smart Cities. 2020; 3(2):420-429. https://doi.org/10.3390/smartcities3020022
Chicago/Turabian StyleColding, Johan, Marita Wallhagen, Patrik Sörqvist, Lars Marcus, Karl Hillman, Karl Samuelsson, and Stephan Barthel. 2020. "Applying a Systems Perspective on the Notion of the Smart City" Smart Cities 3, no. 2: 420-429. https://doi.org/10.3390/smartcities3020022
APA StyleColding, J., Wallhagen, M., Sörqvist, P., Marcus, L., Hillman, K., Samuelsson, K., & Barthel, S. (2020). Applying a Systems Perspective on the Notion of the Smart City. Smart Cities, 3(2), 420-429. https://doi.org/10.3390/smartcities3020022