Extracting Communication, Ranging and Test Waveforms with Regularized Timing from the Chaotic Lorenz System
Abstract
:1. Introduction
1.1. Lorenz Waveforms for Time Series Prediction
1.2. Lorenz Waveforms for Communication Systems
1.3. Lorenz Waveforms for Ranging Sensors
1.4. Impact on Engineering Landscapes
2. Materials and Methods
2.1. The Chaotic Lorenz System: Sensitivity, Information Creation & Symbolic Dynamics
2.2. Extracting Approximate Basis Functions from Time-Series Simulations
2.3. Regularizing Timing for the Lorenz Waveforms
- (i)
- measure and store the number of samples & indices between two peaks
- (ii)
- extend each data segment to convenient a sample interval (i.e., 50 samples or 100 samples)
- (iii)
- pad new x(t) values and increment new indices
- (iv)
- define a regeneration sample rate & corresponding period
- (v)
- time stretch/compress segment proportionally by original number of samples
- (vi)
- repeat for each pair of peaks
Algorithm 1 Algorithm that regularizes timing between Poincarè returns |
for each k in peaks do |
▹ Regularize timing between two peaks |
for i=1:numSamples-length(iROrig) do |
▹ Pad x(t) to a convenient length i.e., 6023 samples would map to 6050 |
end for |
▹ Define regeneration sample rate & period |
▹ Regenerate x(t) with sample-proportionate time compression |
while do |
▹ Populate samples using regeneration period |
end while |
end for |
2.4. Extracting a Single Basis Function as an Information Primitive
2.5. Extracting Multiple Basis Functions to Form an Average Basis Function
- (i)
- set a global scanning index q to iterate template storage over the long waveform sample ,
- (ii)
- store the template segment of to form the instance of ,
- (iii)
- extract the symbolic content of the instance of .
- (i)
- set a scanning index k to iterate over the long waveform sample
- (ii)
- store the template segment of to form the instance of
- (iii)
- extract the symbolic content of the instance of
- (iv)
- perform a test of the Hamming distance criterion between the symbolic content of the instance of and the symbolic content of the instance of .
3. Results
Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kaddoum, G. Wireless chaos-based communication systems: A comprehensive survey. IEEE Access 2016, 4, 2621–2648. [Google Scholar] [CrossRef]
- Corron, N.J.; Blakely, J.N.; Stahl, M.T. A matched filter for chaos. Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 023123. [Google Scholar] [CrossRef]
- Ren, H.P.; Baptista, M.S.; Grebogi, C. Wireless communication with chaos. Phys. Rev. Lett. 2013, 110, 184101. [Google Scholar] [CrossRef]
- Beal, A.N.; Cohen, S.D.; Syed, T.M. Generating and detecting solvable chaos at radio frequencies with consideration to multi-user ranging. Sensors 2020, 20, 774. [Google Scholar] [CrossRef] [Green Version]
- Pappu, C.S.; Flores, B.C.; Debroux, P.S.; Boehm, J.E. An Electronic Implementation of Lorenz Chaotic Oscillator Synchronization for Bistatic Radar Applications. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2001–2013. [Google Scholar] [CrossRef]
- Wang, B.; Xu, H.; Yang, P.; Liu, L.; Li, J. Target detection and ranging through lossy media using chaotic radar. Entropy 2015, 17, 2082–2093. [Google Scholar] [CrossRef] [Green Version]
- Beal, A.; Blakely, J.; Corron, N.; Dean, R., Jr. High frequency oscillators for chaotic radar. In Proceedings of the Radar Sensor Technology XX, Baltimore, MD, USA, 17–21 April 2016; Volume 9829, pp. 142–152. [Google Scholar]
- Corron, N.J.; Stahl, M.T.; Chase Harrison, R.; Blakely, J.N. Acoustic detection and ranging using solvable chaos. Chaos Interdiscip. J. Nonlinear Sci. 2013, 23, 023119. [Google Scholar] [CrossRef]
- Syed, T.M.; Pappu, C.S.; Beal, A.N. Drastically reduced sensor hardware for solvable chaos-based sonar. Electron. Lett. 2022, 58, 810–812. [Google Scholar] [CrossRef]
- Pappu, C.S.; Beal, A.N.; Flores, B.C. Chaos Based Frequency Modulation for Joint Monostatic and Bistatic Radar-Communication Systems. Remote Sens. 2021, 13, 4113. [Google Scholar] [CrossRef]
- Pappu, C.S.; Carroll, T.L.; Flores, B.C. Simultaneous radar-communication systems using controlled chaos-based frequency modulated waveforms. IEEE Access 2020, 8, 48361–48375. [Google Scholar] [CrossRef]
- Carroll, T.L.; Pecora, L.M. Network structure effects in reservoir computers. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 083130. [Google Scholar] [CrossRef]
- Carroll, T.L. Optimizing memory in reservoir computers. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 023123. [Google Scholar] [CrossRef]
- Strogatz, S.H. Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Dudul, S.V. Prediction of a Lorenz chaotic attractor using two-layer perceptron neural network. Appl. Soft Comput. 2005, 5, 333–355. [Google Scholar] [CrossRef]
- Mukherjee, S.; Osuna, E.; Girosi, F. Nonlinear prediction of chaotic time series using support vector machines. In Proceedings of the Neural Networks for Signal Processing VII, 1997 IEEE Signal Processing Society Workshop, Amelia Island, FL, USA, 24–26 September 1997; pp. 511–520. [Google Scholar]
- Li, D.; Han, M.; Wang, J. Chaotic time series prediction based on a novel robust echo state network. IEEE Trans. Neural Networks Learn. Syst. 2012, 23, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Miranian, A.; Abdollahzade, M. Developing a local least-squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction. IEEE Trans. Neural Networks Learn. Syst. 2012, 24, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, D.J.; Bollt, E.; Griffith, A.; Barbosa, W.A. Next generation reservoir computing. Nat. Commun. 2021, 12, 5564. [Google Scholar] [CrossRef]
- Hayes, S.T. Chaos from linear systems: Implications for communicating with chaos, and the nature of determinism and randomness. J. Phys. Conf. Ser. 2005, 23, 215. [Google Scholar] [CrossRef]
- Bollt, E.M.; Santitissadeekorn, N. Applied and Computational Measurable Dynamics; SIAM: Philadelphia, PA, USA, 2013. [Google Scholar]
- Shimada, I.; Nagashima, T. A numerical approach to ergodic problem of dissipative dynamical systems. Prog. Theor. Phys. 1979, 61, 1605–1616. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Weaver, W. Recent contributions to the mathematical theory of communication. ETC Rev. Gen. Semant. 1953, 10, 261–281. [Google Scholar]
- Oppenheim, A.V.; Willsky, A.S.; Nawab, S.H.; Ding, J.J. Signals and Systems; Prentice Hall: Upper Saddle River, NJ, USA, 1997; Volume 2. [Google Scholar]
- Cuomo, K.M.; Oppenheim, A.V.; Strogatz, S.H. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 1993, 40, 626–633. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Ding, Q.; Du, B. A new improved scheme of chaotic masking secure communication based on Lorenz system. Int. J. Bifurc. Chaos 2012, 22, 1250125. [Google Scholar] [CrossRef]
- Pecora, L.M.; Carroll, T.L. Synchronization in chaotic systems. Phys. Rev. Lett. 1990, 64, 821. [Google Scholar] [CrossRef] [PubMed]
- Fenwick, A.; Williams, C.; Harman, S. Chaotic signals in radar and sonar. In 2006 International Waveform Diversity & Design Conference; IEEE: Manhattan, NY, USA, 2006; pp. 1–6. [Google Scholar]
- Ge, Y.; Zhang, W.; Gao, F.; Li, G.Y. Frequency synchronization for uplink massive MIMO with adaptive MUI suppression in angle domain. IEEE Trans. Signal Process. 2019, 67, 2143–2158. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Pang, M.; Xu, L.; Zhao, L.; Yao, Y.; Wang, W. Time Synchronization and Signal Detection in Non-Orthogonal Unicast and Broadcast Networks. In IEEE Transactions on Broadcasting; IEEE: Manhattan, NY, USA, 2023. [Google Scholar]
- DeCocco, B.; LaVenture, R.; Pappu, C.S.; Yi-Lin, F. Chaotic waveforms for medical imaging. Multiscale Imaging Spectrosc. 2023, 12363, 36–46. [Google Scholar]
- Fasel, T.R.; Todd, M.D.; Park, G. Piezoelectric active sensing using chaotic excitations and state space reconstruction. In Proceedings of the Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems IV, San Diego, CA, USA, 5 May 2005; Volume 5768, pp. 253–263. [Google Scholar]
- Tanis, S. Automotive radar and congested spectrum: Potential urban electronic battlefield. Microw. J. 2019, 62, 48. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019, 148, 283–294. [Google Scholar]
- Jordan, D.; Smith, P. Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers; OUP Oxford: Oxford, UK, 2007. [Google Scholar]
- Wiggins, S.; Wiggins, S.; Golubitsky, M. Introduction to Applied Nonlinear Dynamical Systems and Chaos; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2. [Google Scholar]
- Cvitanovic, P.; Artuso, R.; Mainieri, R.; Tanner, G.; Vattay, G.; Whelan, N.; Wirzba, A. Chaos: Classical and Quantum; Niels Bohr. Institute: Copenhagen, Denmark, 2005; Volume 69, p. 25. [Google Scholar]
- Barrio, R.; Shilnikov, A.; Shilnikov, L. Kneadings, Symbolic Dynamics and Painting Lorenz Chaos. Int. J. Bifurc. Chaos 2012, 22, 1230016. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Shaw, R. Strange Attractors, Chaotic Behavior, and Information Flow. Z. Naturforschung A 1981, 36, 80–112. [Google Scholar] [CrossRef]
- Corron, N.J.; Blakely, J.N. Chaos in optimal communication waveforms. Proc. R. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20150222. [Google Scholar] [CrossRef]
- Fang, H.P.; Hao, B.L. Symbolic dynamics of the Lorenz equations. Chaos Solitons Fractals 1996, 7, 217–246. [Google Scholar] [CrossRef] [Green Version]
- Viswanath, D. Symbolic dynamics and periodic orbits of the Lorenz attractor. Nonlinearity 2003, 16, 1035. [Google Scholar] [CrossRef] [Green Version]
- Shinbrot, T.; Grebogi, C.; Yorke, J.A.; Ott, E. Using small perturbations to control chaos. Nature 1993, 363, 411–417. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beal, A.N. Extracting Communication, Ranging and Test Waveforms with Regularized Timing from the Chaotic Lorenz System. Signals 2023, 4, 507-523. https://doi.org/10.3390/signals4030027
Beal AN. Extracting Communication, Ranging and Test Waveforms with Regularized Timing from the Chaotic Lorenz System. Signals. 2023; 4(3):507-523. https://doi.org/10.3390/signals4030027
Chicago/Turabian StyleBeal, Aubrey N. 2023. "Extracting Communication, Ranging and Test Waveforms with Regularized Timing from the Chaotic Lorenz System" Signals 4, no. 3: 507-523. https://doi.org/10.3390/signals4030027
APA StyleBeal, A. N. (2023). Extracting Communication, Ranging and Test Waveforms with Regularized Timing from the Chaotic Lorenz System. Signals, 4(3), 507-523. https://doi.org/10.3390/signals4030027