Development of the First Portuguese Radar Tracking Sensor for Space Debris
Abstract
:1. Introduction
2. Implemented System
2.1. Radar Site and Antenna
2.2. Transmitter
2.3. Receiver
2.4. Reference
2.5. Controller
2.6. Data Acquisition
3. System Expected Capabilities
3.1. Minimum Detectable Target Size
- is the average transmitted power (W)
- G is the antenna gain
- is the operating wavelength (m)
- is the target radar cross section (RCS) (m)
- n is the number of integrated pulses
- is the integration efficiency
- F accounts for all the propagation effects
- is the pulse width (s)
- is the pulse repetition frequency (Hz)
- R is the distance to the object (m)
- is the noise factor of the receiver
- k is the Boltzmann constant ()
- T is the receiver temperature (K)
- B is the bandwidth of the receiver (Hz)
- accounts for all system losses
- Maximum Unambiguous Range: 5000 km
- Maximum Unambiguous Velocity: 0.4 m/s
- SNR for a 1 m2 RCS at 103 km: 39.55 dB
- SNR for a 10 cm2 RCS at 103 km: 9.55 dB
3.2. Elevation for Initial and Final Target Acquisition
3.3. Number of Expected Observable Debris Objects
- Objects with an RCS below the minimum detectable threshold;
- Orbits with an elevation range below the minimum elevation required for detection and data acquisition;
- Orbital speeds exceeding the maximum antenna tracking speed;
3.4. Maximum Simultaneous Number of Trackable Targets
4. Waveform Design
4.1. Rectangular Pulse
4.2. Phase-Coded Pulse (Barker Code)
4.3. Linear Frequency-Modulated Pulse
4.4. Advanced Waveform Design
5. Conclusions and Future Work
- Calibration campaigns for the antenna motorized tracking system;
- Operational testing in real scenarios;
- Incorporation of the system into an operational SST network;
- Addition of a waveform generator with In-Phase and Quadrature Modulation;
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statista. Number of Satellites in Orbit by Major Country as of March 31, 2020. Available online: https://www.statista.com/statistics/264472/number-of-satellites-in-orbit-by-operating-country/#statisticContainer (accessed on 8 January 2021).
- United Nations Office for Outer Space Affairs. Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies. Available online: https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/introouterspacetreaty.html (accessed on 8 January 2021).
- Skolnik, M.L. Introduction to RADAR Systems; Tata McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Chen, W.K. The Electrical Engineering Handbook; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Galati, G. 100 Years of Radar; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Ingwersen, P.; Lemnios, W. Radars for Ballistic Missile Defense Research. Linc. Lab. J. 2000, 2, 22. [Google Scholar]
- Schrogl, K.U.; Hays, P.; Robinson, J.; Moura, D.; Gianopapa, C. Handbook of Space Security; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Thales Group. Stir—Tracking and Illumination Radar. Available online: https://www.thalesgroup.com/en/stir-tracking-and-illumination-radar (accessed on 17 September 2020).
- SKA. SQUARE KILOMETRE ARRAY. Available online: https://www.skatelescope.org/ (accessed on 18 September 2020).
- eoPortal. Space Fence for SSA (Space Situational Awareness) Services. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/s/space-fence (accessed on 17 September 2020).
- Stokely, C.L.; Foster, J.L.; Stansbery, E.G.; Benbrook, J.R.; Juarez, Q. Haystack and HAX Radar Measurements of the Orbital Debris Environment; NASA: Washington, DC, USA, 2006; p. 242.
- Murray, J.; Miller, R.; Matney, M.; Kennedy, T. Orbital Debris Radar Measurements from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR): 2014–2017. In Proceedings of the First International Orbital Debris Conference, Houston, TX, USA, 9–12 December 2019. [Google Scholar]
- Du, R. China’s approach to space sustainability: Legal and policy analysis. Space Policy 2017, 42, 8–16. [Google Scholar] [CrossRef]
- Prasad, M.Y.S. Technical and legal issues surrounding space debris—India’s position in the UN. Space Policy 2005, 21, 243–249. [Google Scholar] [CrossRef]
- Adimurthy, V.; Ganeshan, A. Space debris mitigation measures in India. Acta Astronaut. 2006, 58, 168–174. [Google Scholar] [CrossRef]
- Froehlich, A.; Alonso, D.; Soria, A.; Marchi, E.D. Space Supporting Latin America, Latin America’s Emerging Space Middle Power; Springer: Berlin/Heidelberg, Germany, 2020; pp. 197–273. [Google Scholar] [CrossRef]
- Nogueira, E.C.; Humberto Andrei, A.; Da Silva Neto, D.; Tang, Z.; Li, Y.; Mao, Y.; Jucira, P.; Ramachrisna, T.; Yong, Y.; Fidencio Neto, M. The China-Brazil Program of Space Debris Monitoring. In Proceedings of the 39th COSPAR Scientific Assembly, Mysore, India, 14–22 July 2012; p. 1381. [Google Scholar]
- DEFENSE INTELLIGENCE AGENCY (DIA). Challenges to Security in Space; 2019; p. 46. Available online: https://www.dia.mil/News/Articles/Article-View/Article/1754150/defense-intelligence-agency-releases-report-on-challenges-to-us-security-in-spa/ (accessed on 26 October 2020).
- Mehrholz, D. Radar observations in low earth orbit. Adv. Space Res. 1997, 19, 203–212. [Google Scholar] [CrossRef]
- Mehrholz, D.; Leushacke, L.; Jehn, R. COBEAM-1796 Experiment. Adv. Space Res. 1999, 23, 23–32. [Google Scholar] [CrossRef]
- Muntoni, G.; Schirru, L.; Pisanu, T.; Montisci, G.; Valente, G.; Gaudiomonte, F.; Serra, G.; Urru, E.; Ortu, P.; Fanti, A. Space Debris Detection in Low Earth Orbit with the Sardinia Radio Telescope. Electronics 2017, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- European Union. DECISION No 541/2014/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 April 2014 Establishing a Framework for Space Surveillance and Tracking Support; European Union: Brussels, Belgium, 2014. [Google Scholar]
- EU SST. EUSST-EUROPEAN SPACE SURVEILLANCE AND TRACKING PROJECTS. Available online: https://www.eusst.eu (accessed on 8 January 2021).
- Eshbaugh, J.V.; Morrison, R.L.; Hoen, E.W.; Hiett, T.C.; Benitz, G.R. HUSIR Signal Processing. Linc. Lab. J. 2014, 21, 115–134. [Google Scholar]
- Rejto, S. Radar open systems architecture and applications. In Proceedings of the Record of the IEEE 2000 International Radar Conference [Cat. No. 00CH37037], Alexandria, VA, USA, 12 May 2000; pp. 654–659. [Google Scholar] [CrossRef]
- Fonseca, R.; Barbosa, D.; Cupido, L.; Mourao, A.; Santos, D.; Smoot, G.; Tello, C. Site evaluation and RFI spectrum measurements in Portugal at the481frequency range 0.408—10 GHz for a GEM polarized galactic radio emission experiment. New Astron. 2006, 11, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Cree. CGHV59350 Data Sheet, 350 W, 5200–5900 MHz GaN HEMT for C-Band Radar. 2018. Available online: https://www.wolfspeed.com/downloads/dl/file/id/463/product/174/cghv59350.pdf (accessed on 29 May 2018).
- Simons, R.N.; Wintucky, E.G.; Waldstein, S.W. A Novel Reconfigurable GaN Based Fully Solid-State Microwave Power Module for Communications/Radar Applications. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–7. [Google Scholar] [CrossRef]
- General Microwave. Series D195 Octave-Band PIN Diode Attenuator/Modulators. Available online: https://www.rf-microwave.com/resources/products_attachments/5a4387279cb18.pdf (accessed on 26 October 2020).
- Wolfspeed Cree. CGHV59070 70 W, 4.4–5.9 GHz, 50 V, RF Power GaN HEMT. [Rev 2.2—April 2020]. Available online: https://datasheet.octopart.com/CGHV59070F-AMP-Wolfspeed-datasheet-145437932.pdf (accessed on 26 October 2020).
- MTI-Milliren Technologies, Inc. 260 Series OCXO. [Mar 2015]. Available online: http://www.mti-milliren.com/pdfs/260.pdf (accessed on 26 October 2020).
- Advantech. MIO-2360 IntelR©Pentium N4200/Celeron N3350/AtomTME3900 Series Pico-ITX SBC. [Last Updated: 14-Sep-2018]. Available online: https://nnz-ipc.kz/files/documentation/advantech/mio-2360_ds_01_24_18_20180124151117.pdf (accessed on 26 October 2020).
- Skolnik, M.L. An Introduction and Overview of Radar. In Radar Handbook, 3rd ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- International Telecommunication Union. Propagation data and prediction methods required for the design of Earth-space telecommunication systems. In Recommendation ITU-R; International Telecommunication Union: Geneva, Switzerland, 2017. [Google Scholar]
- Riché, V.; Méric, S.; Baudais, J.; Pottier, É. Investigations on OFDM Signal for Range Ambiguity Suppression in SAR Configuration. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4194–4197. [Google Scholar] [CrossRef] [Green Version]
- USSPACECOM. Space-Track. Available online: https://www.space-track.org/ (accessed on 26 October 2020).
- Satellogic, SA. Orbit Predictor. Available online: https://github.com/satellogic/orbit-predictor (accessed on 30 December 2020).
- Levanon, N.; Mozeson, E. Ambiguity Function. In Radar Signals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 34–52. [Google Scholar]
- Levanon, N.; Mozeson, E. Matched Filter. In Radar Signals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 20–33. [Google Scholar]
- Skolnik, M.L. Pulse Compression Radar. In Radar Handbook; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Levanon, N.; Mozeson, E. Phase-Coded Pulse. In Radar Signals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 100–167. [Google Scholar]
- Dzvonkovskaya, A.; Rohling, H. Long binary phase codes with good autocorrelation properties. In Proceedings of the 2008 International Radar Symposium, Wroclaw, Poland, 21–23 May 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Levanon, N.; Mozeson, E. Basic Radar Signals. In Radar Signals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 53–73. [Google Scholar]
- Marques, P.A. Noise radar detection optimized for selected targets. In Proceedings of the 2017 18th International Radar Symposium (IRS), Prague, Czech Republic, 28–30 June 2017; pp. 1–9. [Google Scholar] [CrossRef]
- Savci, K.; Stove, A.G.; De Palo, F.; Erdogan, A.Y.; Galati, G.; Lukin, K.A.; Lukin, S.; Marques, P.; Pavan, G.; Wasserzier, C. Noise Radar—Overview and Recent Development. IEEE Aerosp. Electron. Mag. 2020, 35, 8–20. [Google Scholar] [CrossRef]
- Palo, F.D.; Galati, G.; Pavan, G.; Wasserzier, C.; Savci, K. Introduction to Noise Radar and Its Waveforms. Sensors 2020, 20, 5187. [Google Scholar] [CrossRef] [PubMed]
- Levanon, N.; Mozeson, E. Coherent train of diverse pulses. In Radar Signals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 262–270. [Google Scholar]
- Marques, P.A. More Illumination for Passive Radar. In Proceedings of the European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018; Volume 1. [Google Scholar]
ATLAS | TIRA | BIRALET | HAX | Haystack | |
---|---|---|---|---|---|
Operating Frequency | 5.56 GHz | 1.333 GHz | 410 MHz | 16.7 GHz | 10 GHz |
Peak power | 5 kW | 1 MW | 4 kW | 50 kW | 250 kW |
Waveform type | Pulsed | Pulsed | Continuous | Pulsed | Pulsed |
Antenna Gain | 46 dB | 49.7 dB | 13 dB (TX), 47 dB (RX) | 63.64 dB | 67.23 dB |
Antenna Beamwidth | 0.73° | 0.50° | 30° (TX), 0.8° (RX) | 0.1° | 0.058° |
Receiver Bandwidth | 80 MHz | 250 kHz | 5 MHz | 1 MHz | 1 MHz |
Topology | Monostatic | Monostatic | Bistatic | Monostatic | Monostatic |
Optical Configuration | Cassegrain |
Mount configuration | Alt-Azimuthal |
Primary aperture | 9.0 m |
Primary depth | 1.53 |
Secondary aperture | 1.17 |
F/D | 0.368 |
Surface rms (static) | 0.5 mm |
Azimuth Travel | 0° to 360° |
Azimuth Travel Rate | 4 rpm |
Elevation Travel | 35° to 90° |
Elevation Travel Rate | 2°/s |
Maximum Operational Wind (5 GHz) | 25 km/h |
Survival Winds | 150 km/h |
Reflector Weight | 1900 kg |
Pedestal Weight | 3500 Kg |
Foundation Size | 4.5 × 4.5 × 0.75 m |
Concrete Volume | 12 ms |
Beamwidth @ 5 GHz | 44 arcmin |
Beamwidth @ 10 GHz | 22 arcmin |
Pointing Accuracy (wind limited) | <1/20 beamwidth |
Gain @ 5 GHz (G) | 46 dB |
G/T (5 GHz) | 39 dB/K |
Peak power | 5 kW |
Transmitter Frequency () | 5.56 GHz |
Waveform | Arbitrary amplitude modulation |
Max. Pulse length () | 10 s |
Phase Noise | −91.3 dBc [Hz] @ 100 kHz |
Modulator | Modified D195 [29] |
PA Transistors | CGHV59070 [30], CGHV59350 [27] |
IF | 400 MHz |
LNA Noise figure (<15 °C) () | 0.7 dB |
Receiver Temperature (T) | 15 °C |
IF Filter BW (B) | 80 MHz @ −3 dB |
IQ Detector output BW | 50 MHz |
Waveform resolution | 10 ns |
Pulse repetition frequency () | 10 MHz (max) |
Duty Cycle | 10% (max) |
Number of pulses for integration | Variable |
Temperature Monitoring | Tx, Rx, LNC, Driver, PA, Coupler |
System Monitoring | Pulse shape file name, Tx/Rx gain, No. Pulses, PRF, Pulse length … |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandeirada, J.; Bergano, M.; Neves, J.; Marques, P.; Barbosa, D.; Coelho, B.; Ribeiro, V. Development of the First Portuguese Radar Tracking Sensor for Space Debris. Signals 2021, 2, 122-137. https://doi.org/10.3390/signals2010011
Pandeirada J, Bergano M, Neves J, Marques P, Barbosa D, Coelho B, Ribeiro V. Development of the First Portuguese Radar Tracking Sensor for Space Debris. Signals. 2021; 2(1):122-137. https://doi.org/10.3390/signals2010011
Chicago/Turabian StylePandeirada, João, Miguel Bergano, João Neves, Paulo Marques, Domingos Barbosa, Bruno Coelho, and Valério Ribeiro. 2021. "Development of the First Portuguese Radar Tracking Sensor for Space Debris" Signals 2, no. 1: 122-137. https://doi.org/10.3390/signals2010011
APA StylePandeirada, J., Bergano, M., Neves, J., Marques, P., Barbosa, D., Coelho, B., & Ribeiro, V. (2021). Development of the First Portuguese Radar Tracking Sensor for Space Debris. Signals, 2(1), 122-137. https://doi.org/10.3390/signals2010011