Nonlinear Behavior of High-Intensity Ultrasound Propagation in an Ideal Fluid
Abstract
:1. Introduction
2. Nonlinear Wave Propagation and Shock Formation
- Change of the wave propagation speed due to drift with velocity .
- Change in local sound speed from .
3. Nonlinear Interactions Within the Acoustic Mode
3.1. Head Shock
3.2. Rarefaction
3.3. Tail Shock
4. Decaying of N-Wave
4.1. Shock Wave Overtaken by a Rarefaction Wave
- A transmitted shock and a reflected rarefaction wave
- A transmitted shock and a reflected compression wave that steepens into a shock wave
- A transmitted rarefaction wave and a reflected rarefaction wave
- A transmitted rarefaction wave and reflected compression wave that steepens into a shock wave
4.2. Shock Wave Overtaking a Rarefaction Wave
5. Discussions of Results
6. Summary and Conclusions
7. Suggestions for Future Work
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Gallego-Juárez, J.A.; Graff, K.F. (Eds.) Introduction to Power Ultrasonics. In Power Ultrasonics: Applications of High-Intensity Ultrasound; Woodhead Publishing: Cambridge, UK, 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Sapozhnikov, O.A. High-intensity Ultrasonics Waves in Fluids: Nonlinear Propagation and Effects. In Power Utrasonics Appl. High-Intensity Ultrasound; Gallego-Juárez, J.A., Graff, K.F., Eds.; Woodhead Publishing: Cambridge, UK, 2015; pp. 9–35. [Google Scholar] [CrossRef]
- Pierce, A.D. Acoustics: An Introduction to Its Physical Principle and Applications; Acoustical Society of America: Woodbury, NY, USA, 1994. [Google Scholar]
- Blackstock, D.T.; Hamilton, M.F. Progressive Waves in Lossless and Lossy Fluids. In Nonlinear Acoustics; Hamilton, M.F., Ed.; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Murnaghan, F. Finite Deformation of an Elastic Solid. Am. J. Math. 1937, 59, 235–260. [Google Scholar] [CrossRef]
- Bjørnø, L. Introduction to nonlinear acoustics. Phys. Procedia 2010, 3, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Leighton, T. What is Ultrasound? Prog. Biophys. Mol. Biol. 2007, 93, 3–83. [Google Scholar] [CrossRef] [PubMed]
- Pierce, A.D. Entropy Acoustic, and Vorticity Mode Decomposition as an Initial step in Nonlinear Acoustic Formulations. In Nonlinear Acoustics at the Beginning of the 21st Century; Moscow State University: Moscow, Russia, 2002; pp. 11–19. [Google Scholar]
- Brunet, T.; Jia, X.; Johnson, P.A. Transitional nonlinear elastic behaviour in dense granular media. Geophys. Res. Lett. 2008. [Google Scholar] [CrossRef] [Green Version]
- Courant, R.; Friedrichs, K.O. Supersonic Flow and Shock Waves; Springer: New York, NY, USA, 1948. [Google Scholar]
- Landau, L.D.; Lifshits, E.M. Fluid Mechanics; Pergamon Press: New York, NY, USA, 1987. [Google Scholar]
- Bukiet, B. Application of Front Tracking to Two-Dimensional Curved Detonation Fronts. Soc. Ind. Appl. Math. 1988, 9, 80–99. [Google Scholar] [CrossRef]
- Zhenting, Z. Long-Term Management and Condition Assessment of Concrete Culvert; New Jersey Institute of Technology: Newark, NJ, USA, 2017. [Google Scholar]
- Igra, O. One-Dimensional Interactions. In Handbook of Shock Waves; Ben-Dor, G., Igra, O., Tov, E., Eds.; Academic Press: San Diego, CA, USA, 2001; Volume 2. [Google Scholar]
- Glass, I.I.; Heuckroth, L.E.; Molder, S. On the One-Dimensional Overtaking of a Shock Wave by a Rarefaction Wave; Institute of Aerophysics, University of Toronto: Toronto, ON, Canada, 1959. [Google Scholar]
- Bremner, G.F.; Dukowicz, J.K.; Glass, I.I. On the One-Dimensional Overtaking of a Rarefaction Wave by a Shock Wave; Institute of Aerophysics, University of Toronto: Toronto, ON, Canada, 1960. [Google Scholar]
Power Level, W (watt) | Frequency, f (kHz) | Intensity, I (W/m2) | Amplitude, A (10−6 m) | Particle Speed, V (m/s) |
---|---|---|---|---|
1500 | 20 | 9,477,702.96 | 1691 | 212.39 |
1500 | 500 | 9,477,702.96 | 67.6 | 212.39 |
1500 | 2000 | 9,477,702.96 | 16.9 | 212.39 |
500 | 20 | 3,152,941.98 | 976.3 | 122.61 |
500 | 500 | 3,152,941.98 | 39.1 | 122.61 |
500 | 2000 | 3,152,941.98 | 9.76 | 122.61 |
150 | 20 | 94,772.6 | 534.7 | 67.22 |
150 | 500 | 94,772.6 | 21.4 | 67.2 |
150 | 2000 | 94,772.6 | 5.34 | 67.22 |
50 | 20 | 315,924.2 | 308.7 | 38.78 |
50 | 500 | 315,924.2 | 12.3 | 38.78 |
50 | 2000 | 315,924.2 | 3.08 | 38.78 |
Particle Speed, V(m/s) | P1 (Pa) | Pr1 (Pa) | Pr (Pa) | Pr2 (Pa) | P2 (Pa) | Pr12 = Pr13 (Pa) | Pr22 = Pr23 (Pa) | Head Shock, U1 (m/s) |
---|---|---|---|---|---|---|---|---|
212.39 | 101,325 | 229,029 | 101,161 | 40,055 | 99,954 | 101,269 | 100,527 | 490.8 |
122.61 | 101,325 | 164,678 | 102,005 | 60,027 | 101,058 | 102,004 | 101,152 | 421.7 |
67.22 | 101,325 | 132,853 | 102,220 | 76,414 | 101,281 | 102,228 | 101,294 | 383 |
38.78 | 101,325 | 118,629 | 102,258 | 86,225 | 101,317 | 102,260 | 101,319 | 364 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kewalramani, J.A.; Zou, Z.; Marsh, R.W.; Bukiet, B.G.; Meegoda, J.N. Nonlinear Behavior of High-Intensity Ultrasound Propagation in an Ideal Fluid. Acoustics 2020, 2, 147-163. https://doi.org/10.3390/acoustics2010011
Kewalramani JA, Zou Z, Marsh RW, Bukiet BG, Meegoda JN. Nonlinear Behavior of High-Intensity Ultrasound Propagation in an Ideal Fluid. Acoustics. 2020; 2(1):147-163. https://doi.org/10.3390/acoustics2010011
Chicago/Turabian StyleKewalramani, Jitendra A., Zhenting Zou, Richard W. Marsh, Bruce G. Bukiet, and Jay N. Meegoda. 2020. "Nonlinear Behavior of High-Intensity Ultrasound Propagation in an Ideal Fluid" Acoustics 2, no. 1: 147-163. https://doi.org/10.3390/acoustics2010011
APA StyleKewalramani, J. A., Zou, Z., Marsh, R. W., Bukiet, B. G., & Meegoda, J. N. (2020). Nonlinear Behavior of High-Intensity Ultrasound Propagation in an Ideal Fluid. Acoustics, 2(1), 147-163. https://doi.org/10.3390/acoustics2010011