Exposure to High-Frequency Sound and Ultrasound in Public Places: Examples from Zurich, Switzerland
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussions, Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Leighton, T.G. Are some people suffering as a result of increasing mass exposure of the public to ultrasound in air? Proc. R. Soc. A 2016, 472, 20150624. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, M.D.; Jones, S.L.; White, R.R.; Dolder, C.N.; Lineton, B.; Leighton, T.G. Public exposure to ultrasound and very high-frequency sound in air. J. Acoust. Soc. Am. 2018, 144, 2554–2564. [Google Scholar] [CrossRef] [PubMed]
- Leighton, T.G. Comment on ‘are some people suffering as a result of increasing mass exposure of the public to ultrasound in air?’. Proc. R. Soc. A 2017, 473, 20160828. [Google Scholar] [CrossRef] [PubMed]
- Leighton, T.G. Ultrasound in air-guidelines, applications, public exposures, and claims of attacks in cuba and china. J. Acoust. Soc. Am. 2018, 144, 2473–2489. [Google Scholar] [CrossRef] [PubMed]
- Mapp, P. Potential audibility of ultrasonic signal monitoring of public address and life safety sound systems. J. Acoust. Soc. Am. 2018, 144, 2539–2547. [Google Scholar] [CrossRef]
- European Union, DS/ EN 54–16, 2008. Fire detection and fire alarm systems-part 16: Voice alarm control and indicating equipment. Available online: https://standards.globalspec.com/std/1109363/ds-en-54-16 (accessed on 28 May 2019).
- Leighton, T.G.; Dolder, C. Citizen scientist records of ultrasound in air. Instagram #ultrasoundinair. Available online: https://www.Instagram.Com/explore/tags/ultrasoundinair (accessed on 28 May 2019).
- Alvares-Sanches, T.; Osborne, P.E.; White, P.; Bahaj, A. Spatial variation in sound frequency components across an urban area derived from mobile surveys. Future Cities Environ. 2019, 5, 1–17. [Google Scholar] [CrossRef]
- Paxton, B.; Harvie-Clark, J.; Albert, M. Measurements of ultrasound from public address and voice alarm systems in public places. J. Acoust. Soc. Am. 2018, 144, 2548–2553. [Google Scholar] [CrossRef]
- Ueda, M.; Ota, A.; Takahashi, H. Investigation on high-frequency noise in public space. In Inter-Noise and Noise-Con Congress and Conference Proceedings; Institue of Noise Control Engineering: Reston, VA, USA, 16–19 November 2014; pp. 2692–2698. [Google Scholar]
- Acton, W.I.; Carson, M.B. Auditory and subjective effects of airborne noise from industrial ultrasonic sources. Occup. Environ. Med. 1967, 24, 297–304. [Google Scholar] [CrossRef]
- Ahmadi, F.; McLoughlin, I.V.; Chauhan, S.; ter-Haar, G. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog. Biophys. Mol. Biol. 2012, 108, 119–138. [Google Scholar] [CrossRef]
- Acton, W.I. The effects of industrial airborne ultrasound on humans. Ultrasonics 1974, 12, 124–128. [Google Scholar] [CrossRef]
- Maccà, I.; Scapellato, M.L.; Carrieri, M.; Maso, S.; Trevisan, A.; Bartolucci, G.B. High-frequency hearing thresholds: Effects of age, occupational ultrasound and noise exposure. Int. Arch. Occup. Environ. Health 2014, 88, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Skillern, C.P. Human response to measured sound pressure levels from ultrasonic devices. Am. Ind. Hyg. Assoc. J. 2007, 26, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Damongeot, A.; André, G. Noise from ultrasonic welding machines: Risks and prevention. Appl. Acoust. 1988, 25, 49–66. [Google Scholar] [CrossRef]
- Van Wieringen, A.; Glorieux, C. Assessment of short-term exposure to an ultrasonic rodent repellent device. J. Acoust. Soc. Am. 2018, 144, 2501–2510. [Google Scholar] [CrossRef]
- Fletcher, M.D.; Jones, S.L.; White, P.R.; Dolder, C.N.; Leighton, T.G.; Lineton, B. Effects of very high-frequency sound and ultrasound on humans. Part ii: A double-blind randomized provocation study of inaudible 20-khz ultrasound. J. Acoust. Soc. Am. 2018, 144, 2521–2531. [Google Scholar] [CrossRef]
- Fletcher, M.D.; Jones, S.L.; White, P.R.; Dolder, C.N.; Leighton, T.G.; Lineton, B. Effects of very high-frequency sound and ultrasound on humans. Part i: Adverse symptoms after exposure to audible very-high frequency sound. J. Acoust. Soc. Am. 2018, 144, 2511–2520. [Google Scholar] [CrossRef]
- Kühler, R.; Weichenberger, M.; Bauer, M.; Hensel, J.; Brühl, B.; Ihlenfeld, A.; Ittermann, B.; Sander, T.; Kühn, S.; Koch, C. Does airborne ultrasound lead to activation of the auditory cortex? Biomed. Eng.-Biomed. Tech. 2019, 64, 481–493. [Google Scholar] [CrossRef]
- Rodríguez Valiente, A.; Trinidad, A.; García Berrocal, J.R.; Górriz, C.; Ramírez Camacho, R. Extended high-frequency (9–20 khz) audiometry reference thresholds in 645 healthy subjects. Int. J. Audiology 2014, 53, 531–545. [Google Scholar] [CrossRef]
- Rekhi, A.S.; Khuri-Yakub, B.T.; Arbabian, A. Wireless power transfer to millimeter-sized nodes using airborne ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1526–1541. [Google Scholar] [CrossRef]
- Rekhi, A.S.; Arbabian, A. Ultrasonic wake-up with precharged transducers. IEEE J. Solid-State Circuits 2019, 54, 1475–1486. [Google Scholar] [CrossRef]
- Kriebel, D.; Tickner, J.; Epstein, P.; Lemons, J.; Levins, R.; Loechler, E.L.; Quinn, M.; Rudel, R.; Schettler, T.; Stoto, M. The precautionary principle in environmental science. Environ. Health Perspect. 2001, 109, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.K.; Jeon, J.Y. Influence of noise sensitivity on annoyance of indoor and outdoor noises in residential buildings. Appl. Acoust. 2011, 72, 336–340. [Google Scholar] [CrossRef]
- Grimen, H.L.; Diseth, Å. Sensory processing sensitivity. Compre. Psychology 2016, 5, 1–10. [Google Scholar] [CrossRef]
- Bakker, K.; Moulding, R. Sensory-processing sensitivity, dispositional mindfulness and negative psychological symptoms. Personality and Individual Differences 2012, 53, 341–346. [Google Scholar] [CrossRef]
- Jawer, M. Environmental sensitivity: A neurobiological phenomenon? Semin. Integr. Med. 2005, 3, 104–109. [Google Scholar] [CrossRef]
Place No. | Measurement Location, Peak Frequencies and Levels of the Signals, and Signal Characteristics |
---|---|
1 | University, passage area in front of lecture halls E3, E5 (47°22′35.2″ N, 8°32′51.2″ E) f1 = 17.7 kHz (28.3 dB, −129.8 dB FS), AM (T = 1.5 s), HFBL = 25.8 dB, −133 dB FS, ∆SPL = 2.5 dB f2 = 22.5–23.5 kHz (−133.8 dB FS), AM (T1 = 1.5 s and T2 = 30 s), HFBL = −135 dB FS f3 = 24.5–25.5 kHz (−133.8 dB FS), AM (T1 = 1.5 s and T2 = 30 s), HFBL = −135 dB FS |
2 | Shop 1, clothes shop, sales area (47°22′28.4″ N 8°32′16.7″ E) f1 = 19.2 kHz (39.4 dB, −115.5 dB FS), HFBL = 26.2 dB, −132.5 dB FS f2 = 22.4 kHz (−115.5 dB FS), IA, HFB L = −135 dB FS f3 = 25.6 kHz (−115.5 dB FS), IA, HFBL = −135 dB FS f4 = 28.8 kHz (−115.5 dB FS), IA, HFBL = −135 dB FS |
3 | Shop 2, clothes shop, first and second floor (47°22′29.4″ N, 8°32′17.4″ E) f = 24.0 kHz (−125 dB FS), ACA, HFBL = −135 dB FS |
4 | Shop 3, cosmetics shop, sales area (47°22′20.1″ N, 8°32′38.5″ E) f = 19.8 kHz (39.0 dB, −116 dB FS), ACA, HFBL = 26.2 dB, −132.5 dB FS |
5 | Shop 4, book shop, sales area (47°24′41.4″ N, 8°32′40.5″ E) f1 = 15.5-16-5 kHz (30.1 dB, −127.5 dB FS), ACA, HFBL = 25.8 dB, −133 dB FS f2 = 22.0 kHz (−130 dB), IA, HFBL = −134.5 dB FS |
6 | Zurich main station, passage, basement (47°22′39.0″ N, 8°32′20.6″ E) f1 = 19.9 kHz (41.7 dB, −112.5 dB FS), ACA, HFBL = 25.4 dB, −133.5 dB FS f2 = 28.0 kHz (−131 dB FS), IA, HFBL = −134.0 dB FS |
7 | Zurich main station, passage, basement (47°22′40.3″ N 8°32′21.7″ E) f = 36.0 kHz (−135.4 dB FS), IA, HFBL = −135.5 dB FS |
8 | Zurich main station, waiting area, railway (47°22′39.8″ N, 8°32′19.2″ E) f = 28.0 kHz (−134.9 dB FS), IA, HFBL = −135.5 dB FS |
9 | Zurich main station, passage, basement (47°22′38.2″ N, 8°32′24.2″ E) f1 = 18.2 kHz (35.9 dB, −120 dB FS), AM (T = 6.5 s), HFBL = 30.5 dB, −127 dB FS f2 = 20.0 kHz (36.7 dB, −119 dB FS), ACA, HFBL = 28.2 dB, −130 dB FS f3 = 28.0 kHz (−122 dB FS), ACA, HFBL = −135 dB FS f4 = 36.0 kHz (-129 dB FS), HFBL = −135 dB FS |
10 | Fast food restaurant, sales area (47°22′34.6″ N, 8°32′23.0″ E) f1 = 23.3 kHz (−132.3 dB FS), AM (T = 1.5 s), HFBL = −135 dB FS f2 = 25.0 kHz (−132.3 dB FS), AM (T = 1.5 s), HFBL = −135 dB FS |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholkmann, F. Exposure to High-Frequency Sound and Ultrasound in Public Places: Examples from Zurich, Switzerland. Acoustics 2019, 1, 816-824. https://doi.org/10.3390/acoustics1040048
Scholkmann F. Exposure to High-Frequency Sound and Ultrasound in Public Places: Examples from Zurich, Switzerland. Acoustics. 2019; 1(4):816-824. https://doi.org/10.3390/acoustics1040048
Chicago/Turabian StyleScholkmann, Felix. 2019. "Exposure to High-Frequency Sound and Ultrasound in Public Places: Examples from Zurich, Switzerland" Acoustics 1, no. 4: 816-824. https://doi.org/10.3390/acoustics1040048
APA StyleScholkmann, F. (2019). Exposure to High-Frequency Sound and Ultrasound in Public Places: Examples from Zurich, Switzerland. Acoustics, 1(4), 816-824. https://doi.org/10.3390/acoustics1040048