On the Frequency Up-Conversion Mechanism in Metamaterials-Inspired Vibro-Impact Structures
Abstract
:1. Introduction
2. Concept and Design
3. Experimental Methods
3.1. Test Apparatus and Transmission Loss Measurement Procedure
3.2. Test Article Fabrication
3.3. Experimental Cases
4. Simulations
5. Discussion of Results
5.1. Transmission Loss Performance
5.2. Transient Spectral Characteristics
5.3. MIVIS with Foam
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hughes, W.O.; McNelis, A.E.; McNelis, M.E. Acoustic Test Characterization of Melamine Foam for Usage in NASA’s Payload Fairing Acoustic Attenuation Systems. 2014. Available online: https://ntrs.nasa.gov/search.jsp?R=20140008689 (accessed on 15 February 2019).
- Munjal, M.L. Acoustics of Ducts and Mufflers, 2nd ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Manimala, J.M. Dynamic Behavior of Acoustic Metamaterials and Metaconfigured Structures with Local Oscillators. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2014. [Google Scholar]
- Lu, M.; Feng, L.; Chen, Y. Phononic crystals and acoustic metamaterials. Mater. Today 2009, 12, 34–42. [Google Scholar]
- Huang, H.H.; Sun, C.T.; Huang, G.L. On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 2009, 47, 610–617. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, C.M.; Seo, Y.M.; Wang, Z.G.; Kim, C.K. Acoustic metamaterial with negative density. Phys. Lett. A 2009, 373, 4464–4469. [Google Scholar] [CrossRef]
- Fang, N.; Xi, D.; Xu, J.; Ambati, M.; Srituravanich, W.; Sun, C.; Zhang, X. Ultrasonic metamaterials with negative modulus. Nat. Mater. 2006, 5, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Liu, Z.; Qiu, C.; Shi, J. Metamaterial with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 2007, 99, 093904. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, J.Y.; Liu, X.J. One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Phys. Rev. B 2008, 77, 045134. [Google Scholar] [CrossRef]
- Huang, H.H.; Sun, C.T. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New J. Phys. 2009, 11, 013003. [Google Scholar] [CrossRef]
- Yao, S.; Zhou, X.; Hu, G. Investigation of the negative-mass behaviors occurring below a cut-off frequency. New J. Phys. 2010, 12, 103025. [Google Scholar] [CrossRef]
- Huang, H.H.; Sun, C.T. Continuum modeling of a composite material with internal resonators. Mech. Mat. 2012, 46, 1–10. [Google Scholar] [CrossRef]
- Milton, G.W.; Willis, J.R. On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A 2007, 463, 855. [Google Scholar] [CrossRef]
- Lakes, R.S.; Lee, T.; Bersie, A.; Wang, Y.C. Extreme damping in composite materials with negative-stiffness inclusions. Nature 2001, 410, 565. [Google Scholar] [CrossRef] [PubMed]
- Manimala, J.M.; Huang, H.H.; Sun, C.T.; Snyder, R.; Bland, S. Dynamic load mitigation using negative effective mass structures. Eng. Struct. 2014, 80, 458. [Google Scholar] [CrossRef]
- Yao, S.; Zhou, X.; Hu, G. Experimental study on negative effective mass in a 1D mass–spring system. New J. Phys. 2008, 10, 043020. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.Y.; Yang, Z.; Chan, C.T.; Sheng, P. Locally resonant sonic materials. Science 2000, 289, 1734. [Google Scholar] [CrossRef] [PubMed]
- Hirsekorn, M.; Delsanto, P.P.; Batra, N.K.; Matic, P. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials. Ultrasonics 2004, 42, 231–235. [Google Scholar] [CrossRef]
- Li, J.; Chan, C.T. Double-negative acoustic metamaterial. Phys. Rev. E 2004, 70, 055602. [Google Scholar] [CrossRef]
- Naify, C.J.; Chang, C.; McKnight, G.; Nutt, S. Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials. J. Appl. Phys. 2010, 108, 114905. [Google Scholar] [CrossRef]
- Naify, C.J.; Chang, C.; McKnight, G.; Scheulen, F.; Nutt, S. Membrane-type metamaterials: Transmission loss of multi-celled arrays. J. Appl. Phys. 2011, 109, 104902. [Google Scholar] [CrossRef]
- Naify, C.J.; Chang, C.; McKnight, G.; Nutt, S. Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses. J. Appl. Phys. 2011, 110, 124903. [Google Scholar] [CrossRef]
- Naify, C.J.; Chang, C.; McKnight, G.; Nutt, S. Scaling of membrane-type locally resonant acoustic metamaterial arrays. J. Acoust. Soc. Am. 2012, 132, 2784–2792. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Mei, J.; Yang, M.; Chan, N.H.; Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 2008, 101, 204301. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Ma, G.; Yang, M.; Yang, Z.; Wen, W.; Sheng, P. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 2012, 3, 756. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, G.; Zhou, X.; Hu, G.; Sun, C. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Membrane model. J. Acoust. Soc. Am. 2014, 136, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wen, J.; Xiao, Y.; Wen, X.; Wang, J. Theoretical investigation of the sound attenuation of membrane-type acoustic metamaterials. Phys. Lett. A 2012, 376, 1489–1494. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, J.; Zhao, H.; Yu, D.; Cai, L.; Wen, X. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells. J. Appl. Phys. 2013, 114, 063515. [Google Scholar] [CrossRef]
- Yang, Z.; Dai, H.M.; Chan, N.H.; Ma, G.C.; Sheng, P. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 2010, 96, 041906. [Google Scholar] [CrossRef]
- Naify, C.J.; Huang, C.; Sneddon, M.; Nutt, S. Transmission loss of honeycomb sandwich structures with attached gas layers. Appl. Acoust. 2011, 72, 71–77. [Google Scholar] [CrossRef]
- Varanasi, S.; Bolton, J.S.; Siegmund, T.H.; Cipra, R.J. The low-frequency performance of metamaterial barriers based on cellular structures. Appl. Acoust. 2013, 74, 485–495. [Google Scholar] [CrossRef]
- Ma, F.; Wu, J.; Huang, M.; Zhang, W.; Zhang, S. A purely flexible lightweight membrane-type acoustic metamaterial. J. Phys. D 2015, 48, 175105. [Google Scholar] [CrossRef]
- Ma, G.; Yang, M.; Yang, Z.; Sheng, P. Low-frequency narrow-band acoustic filter with large orifice. Appl. Phys. Lett. 2013, 103, 011903. [Google Scholar] [CrossRef]
- Yang, M.; Ma, G.; Yang, Z.; Sheng, P. Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 2013, 110, 134301. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Meng, C.; Fu, C.; Li, Y.; Yang, Z.; Sheng, P. Subwavelength total acoustic absorption with degenerate resonators. Appl. Phys. Lett. 2015, 107, 104104. [Google Scholar] [CrossRef]
- Bellet, R.; Cochelin, B.; Herzog, P.; Mattei, P.O. Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber. J. Sound Vib. 2010, 329, 2768–2791. [Google Scholar] [CrossRef]
- Nucera, F.; Iacono, F.L.; McFarland, D.M.; Bergman, L.A.; Vakakis, A.F. Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Experimental results. J. Sound Vib. 2008, 313, 57–76. [Google Scholar] [CrossRef]
- Lee, S.; Ahn, C.H.; Lee, J.W. Vibro-acoustic metamaterial for longitudinal vibration suppression in a low-frequency range. Inter. J. Mech. Sci. 2018, 144, 223–234. [Google Scholar] [CrossRef]
- Lee, K.J.B.; Jung, M.K.; Lee, S.H. Highly tunable acoustic metamaterials based on a resonant tubular array. Phys. Rev. B 2012, 86, 184302. [Google Scholar] [CrossRef]
- Chen, S.; Fan, Y.; Fu, Q.; Wu, H.; Jin, Y.; Zheng, J.; Zhang, F. A Review of Tunable Acoustic Metamaterials. Appl. Sci. 2018, 8, 1480. [Google Scholar] [CrossRef]
- Callicoat, J.R. Evaluation of Composite Materials Providing Improved Acoustic Transmission Loss for UAVs. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2016. [Google Scholar]
- ASTM: E2611-09. Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method; ASTM Standards: West Conshohocken, PA, USA, 2009; v04.06. [Google Scholar]
Component | Material | Property | ||
---|---|---|---|---|
Young’s Modulus (GPa) | Mass Density (kg/m3) | Poisson’s Ratio | ||
Back plate | Aluminum | 70 | 2700 | 0.32 |
Spacer frames | Stainless steel | 197 | 7900 | 0.28 |
Impactor | Steel | 210 | 8000 | 0.30 |
Membrane | ABS plastic | 2 | 1020 | 0.35 |
Case | Description | Membrane | Back Plate | Foam | Impactor Gap | Mass | |||
---|---|---|---|---|---|---|---|---|---|
ABS Plastic, t = 0.5 mm | Aluminum, T = 0.65 mm | UL | G+ | g = 0.1 mm | g = 1.0 mm | g = 1.7 mm | Approx., grams (excl. spacers) | ||
tf = 25.4 mm | |||||||||
1 | MIVIS: small gap | ✔ | ✔ | ✖ | ✖ | ✔ | ✖ | ✖ | 9.24 |
2 | MIVIS: medium gap | ✔ | ✔ | ✖ | ✖ | ✖ | ✔ | ✖ | 9.24 |
3 | MIVIS: large gap | ✔ | ✔ | ✖ | ✖ | ✖ | ✖ | ✔ | 9.24 |
4 | Back plate alone | ✖ | ✔ | ✖ | ✖ | ✖ | ✖ | ✖ | 7.08 |
5 | Back plate with foam | ✖ | ✔ | ✔ | ✖ | ✖ | ✖ | ✖ | 9.64 |
6 | Back plate with foam | ✖ | ✔ | ✖ | ✔ | ✖ | ✖ | ✖ | 9.64 |
7 | MIVIS with foam | ✔ | ✔ | ✔ | ✖ | ✖ | ✖ | ✔ | 11.80 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rekhy, A.; Snyder, R.; Manimala, J.M. On the Frequency Up-Conversion Mechanism in Metamaterials-Inspired Vibro-Impact Structures. Acoustics 2019, 1, 156-173. https://doi.org/10.3390/acoustics1010011
Rekhy A, Snyder R, Manimala JM. On the Frequency Up-Conversion Mechanism in Metamaterials-Inspired Vibro-Impact Structures. Acoustics. 2019; 1(1):156-173. https://doi.org/10.3390/acoustics1010011
Chicago/Turabian StyleRekhy, Anuj, Robert Snyder, and James M. Manimala. 2019. "On the Frequency Up-Conversion Mechanism in Metamaterials-Inspired Vibro-Impact Structures" Acoustics 1, no. 1: 156-173. https://doi.org/10.3390/acoustics1010011
APA StyleRekhy, A., Snyder, R., & Manimala, J. M. (2019). On the Frequency Up-Conversion Mechanism in Metamaterials-Inspired Vibro-Impact Structures. Acoustics, 1(1), 156-173. https://doi.org/10.3390/acoustics1010011