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Abstract: Conventional acoustic absorbers like foams, fiberglass or liners are used commonly in
structures for industrial, infrastructural, automotive and aerospace applications to mitigate noise.
However, these have limited effectiveness for low-frequencies (LF, <~500 Hz) due to impractically
large mass or volume requirements. LF content being less evanescent is a major contributor to
environmental noise pollution and induces undesirable structural responses causing diminished
efficiency, comfort, payload integrity and mission capabilities. There is, therefore a need to develop
lightweight, compact, structurally-integrated solutions to mitigate LF noise in several applications.
Inspired by metamaterials, tuned mass-loaded membranes as vibro-impact attachments on a baseline
structure are considered to investigate their performance as an LF acoustic barrier. LF incident
waves are up-converted via impact to higher modes in the baseline structure which may then be
effectively mitigated using conventional means. Such Metamaterials-Inspired Vibro-Impact Structures
(MIVIS) could be tuned to match the dominant frequency content of LF acoustic sources. Prototype
MIVIS unit cells were designed and tested to study energy transfer mechanism via impact-induced
frequency up-conversion and sound transmission loss. Structural acoustic simulations were done to
predict responses using models based on normal incidence transmission loss tests. Simulations were
validated using experiments and utilized to optimize the energy up-conversion mechanism using
parametric studies. Up to 36 dB of sound transmission loss increase is observed at the anti-resonance
frequency (326 Hz) within a tunable LF bandwidth of about 300 Hz for the MIVS under white noise
excitation. Whereas, it is found that under monotonic excitations, the impact-induced up-conversion
redistributes the incident LF monotone to the back plate’s first mode in the transmitted spectrum.
This up-conversion could enable further broadband transmission loss via subsequent dissipation in
conventional absorbers. Moreover, this approach while minimizing parasitic mass addition retains or
could conceivably augment primary functionalities of the baseline structure. Successful transition
to applications could enable new mission capabilities for aerospace and military vehicles and help
create quieter built environments.

Keywords: acoustic metamaterials; vibro-impact; sound transmission loss

1. Introduction

Since the advent of the modern age and industrialization, airborne noise has gradually assumed
increasing significance due to its detrimental consequences to health and safety, the lifecycle of
engineered structures, mission capabilities, and the environment in general. Depending on the nature
of its source, airborne noise could have a variety of spectral characteristics including broadband,
narrowband or periodic dominant content. While several application-specific solutions have been
successfully employed to mitigate its effects in engineered structures, practical means to eliminate
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low-frequency (<~500 Hz) noise in applications where weight and volume constraints prevail have
remained unaddressed. Typically, lower-frequency content is less evanescent and carries over longer
aerial distances. Acoustic treatments such as mass loaded vinyl, foam [1] and fiberglass claddings
and cores, layered barriers and porous materials and liners are employed effectively to mitigate
high-frequency content. However, such conventional approaches tend to impose unacceptable weight
and volume penalties for low-frequency noise mitigation especially in aerospace applications [2].
With increasingly stringent noise regulations being put in place to curb environmental noise pollution
and mission specifications becoming more multifarious and demanding, alternate approaches to tackle
low-frequency noise are of economic and operational significance.

In recent years, with current additive and hybrid manufacturing attaining critical commercial
maturity, it is an opportune time to explore structural acoustic configurations that can benefit from the
new materials and processes that have become available. One research area which has had exceptional
progress over the past few decades and is poised to take advantage of this surge in new manufacturing
techniques is that of Acoustic Metamaterials (AM). AM are manmade structural materials that derive
their unique mechanical wave manipulation capabilities not just from their material constituents
but more so from their engineered local configurations [3,4]. AM can exhibit frequency-dependent
negative and complex effective mass density [5,6] and modulus [7–9] resulting in unusual wave
phenomena [10–13]. Depending on the scale of implementation, these configurations may be deployed
as microscopic inclusions in meta-composites [14] or even as macroscale endo-structures within
load-bearing exo-structures [15].

The application of metamaterials-concepts to realize unprecedented physical responses has met
with considerable success. Analytical, numerical and experimental investigations on negative effective
mass [16–18], double negativity [19], tunable absorption in and transmission through membrane-type
acoustic metamaterials [20–28], broadband noise mitigation using metamaterial panels with stacked
membranes [29], impedance mismatch-driven reduction in transmitted sound energy for structures
with attached gas layers [30], acoustic barriers utilizing cellular [31] and flexible [32,33] sub-structures,
coupled membranes displaying monopolar and dipolar resonances [34], absorption using degenerate
resonators [35], and targeted energy transfer from an acoustic medium to a nonlinear membrane [36]
as well as for seismic mitigation [37] have been reported. There have been several studies ranging
from tunable structural-scale AM [38,39] to active AM designs [40] that have clearly demonstrated
their unique advantages. Utilizing AM to develop practical solutions for low-frequency acoustic noise
mitigation is seen to be an area of emphasis. Based on these studies, it is found that there is a need for
alternative, preferably passive approaches that enable low-frequency acoustic noise mitigation with
little or no penalties from the perspective of practical effectiveness in applications.

In this study, a new concept of a Metamaterials-Inspired Vibro-Impact Structure (MIVIS) is
investigated as a lightweight and compact barrier to understand its low-frequency up-conversion
performance. MIVIS utilizes structurally integrated mass-loaded membrane attachments on a backing
structure to act as tuned resonators that pick up energy from incident low-frequency sound waves
and up-convert it via impacts to higher modes in the backing structure. The conceptual hypotheses
and the design of the proof-of-concept test article are discussed followed by an overview of the
experimental methods employed. The materials and processes involved in test article fabrication and
MIVIS and baseline test cases considered are also presented. A structural acoustic simulation model
was developed to predict the transmission loss spectra for the MIVIS and baseline cases. In addition to
the experimental and simulated transmission loss performance vis-à-vis the baseline, the transient
spectral characteristics and the low-frequency up-conversion mechanism are examined. The possibility
for integration with state-of-the-art conventional acoustic treatments to deliver broadband transmission
loss performance encompassing the hitherto unaddressed low-frequency regime is also demonstrated.
Such MIVIS exhibit the potential to be developed into tunable yet lightweight and compact structural
elements for reducing low-frequency airborne noise via up-conversion.
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2. Concept and Design

Drawing inspiration from acoustic metamaterials that utilize the presence of periodic local
engineered features within a host structure or material to manipulate the passage of mechanical
waves through them, the MIVIS concept employs mass-loaded membranes as the vibro-impact
attachment on a back structure through which low-frequency sound transmission loss is to be enhanced.
The central hypothesis of this concept is that by tuning the resonance frequency of the vibro-impact
membrane attachment to suit the dominant low-frequency content of the incident spectrum, sound
transmission loss in this frequency range could be enhanced by up-converting the energy to higher
modes of the backing structure. Further, a subsidiary hypothesis is that the up-converted energy could
subsequently be dissipated using conventional acoustic absorbers such as foam in conjunction with
MIVIS. For realistic sources with multiple dominant low-frequency tones, an array of tuned MIVIS
unit-cells could be utilized to target a wideband frequency range.

In order to test the hypotheses and investigate the parameters that influence the vibro-impact
induced energy up-conversion mechanism, a proof-of-concept test article was designed based on
analytical and numerical studies. CAD drawings of the configuration and components of the MIVIS
test article are shown in Figure 1, while dimensions are shown in Figure 2. The primary MIVIS test
article consists of a filleted square aluminum plate back structure with a 0.508 mm (0.02”) thick ABS
plastic membrane having a steel rivet impactor at its center that is held at a prescribed gap from the
back structure via a set of steel spacer frames affixed to the back structure’s perimeter as shown in
Figure 1. Material properties for its components are listed in Table 1. These material and geometric
properties result in a surface mass density of 1.76 kg/m2 for the back plate and 0.52 kg/m2 for the
membrane. The membrane and impactor selection was based on finite element modal analysis which
predicted its first symmetric mode to be 170 Hz. The proof-of-concept test article was sized to suit a
custom-built normal incidence transmission loss tube [41] having a 63.5 mm × 63.5 mm (2.5” × 2.5”)
square internal cross-section as shown in Figure 3 that was used for experiments.
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Table 1. Material properties for MIVIS components.

Component Material
Property

Young’s Modulus (GPa) Mass Density (kg/m3) Poisson’s Ratio

Back plate Aluminum 70 2700 0.32
Spacer frames Stainless steel 197 7900 0.28

Impactor Steel 210 8000 0.30
Membrane ABS plastic 2 1020 0.35

Source: Manufacturer’s specifications.
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3. Experimental Methods

3.1. Test Apparatus and Transmission Loss Measurement Procedure

The experiments in this study were conducted using a custom-built normal incidence transmission
loss tube [41] shown in Figure 3 according to ASTM E2611-09 standard [42]. As per this standard,
the transfer matrix method is used to reduce sound transmission loss from four microphone
measurements. The setup consists of 91.4 cm (36”) long incident (source) and transmitted (receiver)
side tube sections having 6.35 mm (0.25”) thick walls. The tube has a 63.5 mm × 63.5 mm (2.5” × 2.5”)
square internal cross-section. The test article is placed within an acoustically-sealed holder between
the incident and transmission sides of the tube. The acoustic source is provided by a Kicker® KSC4
speaker driven by a function generator and amplifier unit. The source was set at a sound pressure
level of 110 dB throughout the tests. The frequency range that is possible to be tested using this setup
is 60–2600 Hz. An anechoic wedge termination is provided at the far end of the transmitted side
tube to minimize reflections. Four 6.35 mm (0.25”) GRAS microphones, a pair each on the incident
and transmitted sides respectively are used to make sound pressure level measurements as shown in
Figure 3. These microphones are numbered 1 thru 4 sequentially from closest to the source to farthest.

From the pressure measurements made using the four microphones, amplitudes of the forward
and backward components of the standing wavefield on the incident and transmitted side can
be obtained.

A =
j
(

P1ejkx2 − P2ejkx1
)

2 sin(k(x1 − x2))
(1)

B =
j
(

P2e−jkx1 − P1e−jkx2
)

2 sin(k(x1 − x2))
(2)
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C =
j
(

P3ejkx4 − P4ejkx3
)

2 sin(k(x3 − x4))
(3)

D =
j
(

P4e−jkx3 − P3e−jkx4
)

2 sin(k(x3 − x4))
(4)

where A and B are the amplitudes of the forward and backward components respectively of the
standing wave on the incident side and similarly C and D are those on the transmitting side. j is the
imaginary unit and k is the wave number. Pi are the pressures measured by the microphones and xi
are the distances to these microphones from the datum which is located on the upstream (source side)
face of the test article. Once the standing wave components are obtained, the acoustic pressures and
velocities on both faces of the test article are directly obtained.

Ps = A + B (5)

Pr = Ce−jkd + Dejkd (6)

us =
A − B

ρc
(7)

ur =
Ce−jkd − Dejkd

ρc
(8)

where Ps and Pr are the pressures at the source and receiver side faces of the test article respectively and
us and ur are the particle velocities at the source and receiver side faces of the test article respectively
which are separated by an axial distance of d, which is the thickness of the test article. The transfer
matrix relating the pressures and velocities on the source face with those on the receiver face for a
single load case is set up as follow.

[T] =

[
T11 T12

T21 T22

]
=

[
Prur−Psus
Psur−Prus

Ps
2−Pr

2

Psur−Prus
us

2−ur
2

Psur−Prus
Prur−Psus
Psur−Prus

]
(9)

The normal incidence sound transmission loss in dB is then given by

TLni = 20 log10

∣∣∣∣∣∣
T11 +

(
T12
ρc

)
+ ρcT21 + T22

2ejkd

∣∣∣∣∣∣ (10)

where ρ is the density of air and c is the speed of sound in air. The normal incidence sound transmission
loss is used as a primary metric to characterize the acoustic performance of MIVIS and baseline
conventional structures evaluated in this study.

3.2. Test Article Fabrication

Test articles were fabricated by assembling off-the-shelf and custom sub-components.
The sub-components for the MIVIS and the assembled test article are shown in Figure 4. The ABS
membrane which is fitted with the steel impactor is attached with a prescribed gap between it and
the aluminum back plate using a set of chemically etched steel spacer frames that can be stacked to a
precise thickness. Before being placed in the test fixture, the assembly’s lateral surface is coated with
an acoustic sealant to minimize the possibility of flanking paths during testing.
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The baseline and MIVIS test articles consisting of the back plate with foam as detailed in Table 2
have the same cross-sectional dimensions as the MIVIS for evaluation in the normal incidence tube.
The foam treatments were cut to size and bonded using a thin layer of adhesive to the receiver side of
the back plate. Lateral surfaces are sealed for these test articles just as was done for the MIVIS.

Table 2. Experimental cases.

Case Description

Membrane Back Plate Foam Impactor Gap Mass

ABS Plastic,
t = 0.5 mm

Aluminum,
T = 0.65 mm

UL G+ g = 0.1 mm g = 1.0 mm g = 1.7 mm
Approx.,

grams
(excl. spacers)tf = 25.4 mm

1 MIVIS: small gap 4 4 5 5 4 5 5 9.24
2 MIVIS: medium gap 4 4 5 5 5 4 5 9.24
3 MIVIS: large gap 4 4 5 5 5 5 4 9.24
4 Back plate alone 5 4 5 5 5 5 5 7.08
5 Back plate with foam 5 4 4 5 5 5 5 9.64
6 Back plate with foam 5 4 5 4 5 5 5 9.64
7 MIVIS with foam 4 4 4 5 5 5 4 11.80

3.3. Experimental Cases

Based on preliminary trials on several combinations of membrane and back plate materials, the
MIVIS test article consisting of an aluminum back plate and ABS plastic membrane was selected.
Table 2 summarizes the various experimental cases considered in this study.

Three different gap settings were tested for the MIVIS. The gap between the impactor tip and the
back plate was set at 0.1, 1.0 and 1.7 mm for test cases 1, 2, and 3 respectively. All other parameters were
retained unaltered between these three cases. As baseline reference cases, the back plate alone (case 4)
and the back plate with 25.4 mm (1-inch) thick state-of-the-art acoustic foams used in aerostructures
affixed to the receiver side were also tested. Basotect® UL foam was used in case 5 and G+ foam was
used in case 6. The UL foam has a bulk density of 6 kg/m3 and the G+ foam has a bulk density of
9+/−1.5 kg/m3 as per manufacturer’s specifications. These foams have a porosity in the range of
130–200 ppi. In order to evaluate the acoustic performance of MIVIS in conjunction with foam, case 7
combines the MIVIS with the UL foam. Approximate total masses for each test case is listed in Table 2.
It is worth noting that while the MIVIS test articles as listed in Table 2, weighs slightly less than the
back plate with foam which is the baseline case for conventional acoustic treatment, the spacer frame’s
weight has not been included in these estimates since these spacers are added to alter the impactor gap
in increments for experiments. In a potential version of the MIVIS for practical application, a stretched
membrane having distributed impactor masses could conceivably be applied over a lightweight, lattice
structure integral with the back structure. In such a version, this lightweight lattice structure would
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not only provide the prescribed gap spacing for the membrane’s impactors but also contribute to the
stiffness and structural integrity of the back structure owing to being built into the overall design of
the MIVIS composite. Both broadband white noise, as well as monotonic excitations, were used in
the experiments.

4. Simulations

Structural acoustic simulations were conducted using Abaqus FEM software using a model of the
normal incidence transmission loss tube test setup discussed in Section 3.1. Views of the simulation
model are shown in Figure 5. The incident and transmitted side air columns in the tubes are modeled
using acoustic elements with infinite impedance on the lateral surfaces to enforce the confinement
offered by the tube walls. AC3D8R 8-noded acoustic brick elements are used for the air columns in
the tubes, while ACIN3D8 acoustic infinite elements are used at the outboard cross-sectional face of
the transmitted side tube to model the anechoic termination. The MIVIS test article is modeled using
structural elements coupled to the acoustic surfaces on the incident and transmitted sides. M3D4R
elements which are 4-noded membrane elements with reduced integration are used for the membrane
and C3D8R elements (8-noded, reduced integration) are used for the back plate. The spacer frames
are modeled as a solid rigid body. The regions along the edges of the plate clamped between the two
sides of the tube in experiments were prescribed as a fixed boundary in simulations. Element sizes for
individual regions were selected based on convergence and computational time studies. The source is
modeled as a prescribed acoustic pressure on the outboard cross-sectional face of the incident side
tube with pressure intensities and frequency content representing the experimental source. A contact
surface pair is defined for the impactor and back plate surfaces that come into contact. Frictionless,
hard contact interaction is assumed and the direct contact enforcement method with a fixed time
incrementation scheme is employed.
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Figure 5. Views of the simulation model: (a) MIVIS with impactor, (b) transmission loss test
configuration and (c) MIVIS with lumped center mass.

Key features that dictate the complexity and accuracy of the simulation model are the modeling
approaches chosen for the entrapped air between the membrane and the back plate as well as
the impactor and its contact interaction with the back plate. Several reduced order approaches
were considered to evaluate their relative accuracy and efficiency to arrive at the final approach.
Firstly, the effect of entrapped air and structural damping were considered for the MIVIS in the
absence of contact. The impactor was modeled as a centrally-added lumped mass on the membrane.
A comparison of transmission loss for some early MIVIS design cases from these simulation trials with
that for the aluminum back plate which was calibrated using experiment is shown in Figure 6. As the
actual modal damping in the test articles is unknown, a structural damping factor of 0.1 was used
to match the transmission loss dip from the experiment for the aluminum back plate. Since the total
loss in the experimental setup due to factors such as material damping, structural damping due to
assembly and boundary effects, acoustic flanking paths, and dissipative mechanisms is difficult to
estimate individually, the simulation model was calibrated using a static value of structural damping
across the spectrum. This structural damping value, which approximates the losses in the experimental
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set up is assumed to be frequency invariant for simplicity. In reality, the losses in the set up are
frequency dependent and hence the simulated transmission loss could tend to vary from experiments
especially near higher modes. It is noted that for the MIVIS in the absence of entrapped air in the model,
a very high transmission loss is predicted due to lack of acoustic coupling between the membrane
and the back plate, which is unrealistic. Therefore, it is essential to include acoustic elements with
structural-acoustic coupling to the membrane and back plate in the simulation model to account for
the transmission through the entrapped air. It is also noticed that while the transmission loss dips
obtained for the MIVIS correlate well with the symmetric modes, the use of a frequency invariant
structural damping factor would not accurately represent the actual modal damping present in the test
articles and therefore the relative magnitudes of the transmission loss dips at resonance and peaks
at antiresonance. Overall, diminished magnitudes and shift to higher frequencies for extrema in the
transmission loss curve is noticed as the damping is increased.
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entrapped air for MIVIS without contact and for the aluminum back plate. Insets show MIVIS mode
shapes corresponding to the TL dips.

For the contact simulations, the lumped center mass on the membrane for the MIVIS model was
replaced by a hemispherical rigid body representative of the actual steel rivet impactor in experiments.
In order to initiate and sustain contact interaction between the tip of the impactor and the back plate in
the model, a circular region of the entrapped air between the tip and the back plate having a diameter
half that of the impactor was retained unmeshed. The contribution of this region to transmission loss
was found to be negligible in comparison to the contact-dominated response. Incident and transmitted
spectra of pressure signals at the inboard microphone locations obtained from contact simulations for a
tonal excitation of 564 Hz which is just above the membrane’s first resonance mode (528 Hz) are shown
in Figure 7. Several interesting features are noticeable. A drastic reduction in the pressure intensity
between the incident and transmitted sides is seen as expected, however the generation of higher
frequency content in the vicinity of the back plate’s first mode at about 1100 Hz in the transmitted
spectra is clearly seen at this frequency when impact-induced up-conversion is present due to the
out-of-phase motion near antiresonance. This content is also seen in the incident spectra owing to the
presence of the reflected component. This provides an indication that the tunable frequency range of
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transmission loss increase predicted for MIVIS is accompanied by up-conversion to higher frequencies
due to impact on the backing structure under monotonic excitation.
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A variant of the actual MIVIS design with a membrane having a first mode below 100 Hz was also
simulated to appreciate the change in up-conversion efficiency if the frequency to which the mechanism
is tuned is very low. To better capture the scales involved, power spectral density comparisons for
the incident and transmitted side microphone pressure signals are shown in Figure 8. It is found
that the up-conversion efficiency is significantly improved to the point that the back plate’s mode
(1200 Hz in this case) dominates in the transmitted spectra, while the power amplitude of the excitation
component is about six orders of magnitude smaller. When the separation between the membrane’s
tuned frequency, which is based on the excitation frequency desired to be mitigated and the back
plate’s first mode is large, more number of cycles of the back plate’s motion is achieved between
impact-induced interruptions so that a higher modal velocity is attained by the back plate leading to
greater energy propagation at frequency components close to the back plate’s first mode. The MIVIS
and baseline experimental cases were simulated using this coupled structural-acoustic model in
order to correlate the predicted mechanisms with the actual acoustic performance. Both steady state
perturbation simulations under white noise excitation and transient dynamic simulations under tonal
excitations were considered.
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5. Discussion of Results

Three aspects of the MIVIS test results are emphasised in the following discussion. Firstly,
the transmission loss performance vis-à-vis baseline and the mechanisms involved are addressed.
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Next, the transient spectral characteristics from the experiments are presented followed by the results
from tests on MIVIS with foam.

5.1. Transmission Loss Performance

Comparisons of experimental and simulated transmission loss for MIVIS with those for the back
plate for cases 1, 2 and 3 are shown in Figures 9–11 respectively. These cases differ in the gap setting
between the impactor tip and the back plate for MIVIS. Both white noise and monotonic excitation
were used in experiments. For the white noise excitation tests, case 1, which has the minimum gap
(g = 0.1 mm) displays the lowest overall increase in transmission loss performance over the back plate.
The bandwidth of appreciable transmission loss increase (>5 dB) is over 400 Hz in the 300 to 700 Hz
region, which is the highest among the three cases with variation in the gap. A peak transmission
loss increase of about 23 dB above the baseline case is obtained at 324 Hz. Case 2 with an impactor
gap, g = 1.0 mm, has a bandwidth of about 300 Hz and the highest peak transmission loss increase of
about 36 dB at 326 Hz. Case 3, which has the maximum impactor gap (g = 1.7 mm), has a bandwidth
close to 370 Hz and a peak transmission loss increase of 31 dB at 326 Hz. The experimental and
simulated transmission loss curves for the white noise case depict very close agreement, although
extrema induced due to modal responses tend to have some mismatch as the exact modal damping in
experiments is unknown, whereas the simulations have a frequency invariant structural damping factor
of 0.1 calibrated from the baseline case. Nevertheless, the critical modal features seen in experiments in
the frequency range of interest have been captured to a large extent in the simulations. The transmission
loss dip locations agree very well with the first four symmetric modes predicted for the MIVIS as
shown in Figure 12. Therefore, the bandwidth of transmission loss increase can be engineered to the
desired frequency range by tuning these modes for the MIVIS. It is also evident from these three MIVIS
cases that the up-conversion efficiency is closely linked to the gap between the impactor tip and the
back plate, although bandwidth of appreciable transmission loss increase is much less affected by
this. On the one hand, if the gap is inadequate (as in case 1), the membrane is unable to pick up as
much energy as it could from the source due to the inability to acquire sufficient motion. On the other
hand, if the gap is excessive, contact between impactor and the back plate may become impossible.
It is difficult to quantitatively determine the optimal gap without more accurate knowledge of the
damping in the structure and the variation in stiffness offered by the entrapped air with increase in
membrane amplitude, however, case 2 with a gap, g = 1 mm, that is between the other two cases, gives
the best peak transmission loss increase. This provides a qualitative indication that the optimal gap
may be in the vicinity of this value for the MIVIS configuration that was tested. The transmission loss
trends for the MIVIS and its equivalent double walled structure would share similarities because key
structural resonances in both would be about the same. However, MIVIS incorporates the additional
vibro-impact mechanism that up-converts part of the low-frequency excitation tonal energy to a higher
frequency bandwidth in the vicinity of the back plate’s first mode.
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Transmission loss in the very low-frequency region from 60 Hz to ~400 Hz was also determined
using monotonic excitation. Although very close agreement with white noise results is obtained from
the monotonic tests in general, the phase reversal accompanying transition after the onset of resonance
is observed to be delayed, while peak transmission loss increase is seen to be reduced. It is possible
that the nonlinear stiffening originating from the transient build up to large amplitude motion of the
membrane is manifested in the monotonic excitation test, but not in the broadband white noise test.
This observation could provide a design guideline for tuning the membrane’s resonance frequency to
be suitable for specific bandwidths and dominant contents associated with the low-frequency source
that is to be targeted.

5.2. Transient Spectral Characteristics

In order to query for the transient spectral characteristics, low, as well as high, input SPL settings
were used to explore the incident and transmitted spectral evolution for the no impact, low impact
and high impact behavior for various cases. These SPLs were set repeatably by changing the gain
level for the amplifier to specific settings. For SPL below impact-initiation levels, the membrane
deflections involved point to operation in the linear regime, whereas for the impact cases, the transition
to nonlinear up-conversion should be expected. Spectrograms were generated from various test cases
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to investigate the transient characteristics further. A comparison of the transmitted side spectrograms
for the MIVIS (case 2) and that for the aluminum back plate alone (case 4) is shown in Figure 13.
The evolution of the transmitted spectra in each case is shown as the source is operated at low power
and then at high power setting. The low and high power settings for this case were chosen such that no
impact occurs at low power and full impact occurs at high power for the MIVIS. For both the MIVIS and
back plate cases, the monotonic incident side excitation frequency was close to 326 Hz. The amplitude
of the excitation component in the incident spectra for MIVIS was noted to be nearly 600 Pa for the high
power setting. Initially, when the source is operated at low power setting, the excitation component
is entirely diminished in the transmitted spectra for the MIVIS, but a small component of its third
harmonic is seen. For the same low power setting, a much more significant excitation component is
present in the case of the back plate, while any harmonics are comparatively negligible. When the
source is operated at high power setting for the MIVIS, the transmitted component of the excitation
has an amplitude close to 20 Pa but is accompanied by a 10 Pa component at around 1070 Hz due to
impact-induced up-conversion to the back plate’s first mode. Some higher harmonic generation is
also evident. Therefore, a portion of the transmitted energy is distributed to higher frequencies for
MIVIS, which could be subsequently mitigated more efficiently by conventional means. In the case of
the back plate, this mechanism is absent and the excitation component dominates in the transmitted
spectrogram at high power.
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The comparison of the incident and transmitted side spectrograms for MIVIS (case 3) showing
evolution between low and high power settings is shown in Figure 14. Here, low-intensity impact
is induced at the low power setting, whereas full-fledged impact occurs at the high power setting.
The incident spectrogram is clearly dominated by the excitation component at 326 Hz for both low and
high power settings as is to be expected. It is interesting to note the transmitted spectral evolution
when the transition occurs from low power impact to high power impact. For low power impact, only
about 10% of the transmitted spectral content resides in the vicinity of the back plate’s first mode.
The dominant content is clearly still around the excitation component. This distribution is significantly
altered under high power impact. Along with an overall decrease in the amplitude levels across the
spectrum, now about 40% of the spectral content is available around the back plate’s first mode. This
is comparable to the excitation component in the transmitted spectrum, indicating that significant
up-conversion is accomplished.
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Figure 14. (a) Incident and (b) transmitted side spectrograms for MIVIS (Case 3: g = 1.7 mm) showing
evolution between low and high power settings for the source.

In order to inspect the effect of the impactor gap on transient evolution of up-conversion, the
transmitted spectrograms for MIVIS (case 2: g = 1.0 mm) and MIVIS (case 3: g = 0.1 mm) are compared
in Figure 15. The power setting was stepped up from an initial “no contact” regime having no impact
to a “contact” regime with full-fledged impact. Comparison of the relative amplitudes of the excitation
and up-converted components in the transmitted spectra for both cases reveals that for the low gap
(case 1), the up-converted component is restricted about 20% of the excitation component when contact
is established. Case 2, which has a gap that is 10 times larger, displays an up-converted component
about 40% of the excitation component, clearly illustrating the role played by the impactor gap in the
efficiency of the up-conversion mechanism.
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Figure 15. Transmitted side spectrogram for (a) MIVIS (Case 2: g = 1.0 mm) and (b) MIVIS (Case 1:
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It is also interesting to note the possibility of interactive effects between the harmonics of the
excitation and the back plate’s first mode in the context of up-conversions in MIVIS. Since the MIVIS
designs investigated in this study were tuned to up-convert a low-frequency (<~500 Hz) excitation to
a sufficiently high (~>1000 Hz) value for the back plate’s first mode in order to be in a frequency range
where conventional absorbers start to become effective, this aspect of the excitation’s harmonic being
approximately close to back plate’s mode was incidental rather than purposeful. However, due to the
inherently nonlinear response in MIVIS, harmonic generation and interaction with the back structure’s
mode are a possibility worth exploring and perhaps exploiting for MIVIS design. While the interactive
effects of both of these up-conversion mechanisms are not quantified, the excitation’s harmonic and the
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back plate’s first mode are distinctly seen in the transmitted spectrogram when evolving from the low
power setting to high power setting (in Figure 13 for instance). In general, it has been observed that
the up-conversion efficiency is better when the separation is large between the excitation and the back
plate’s first mode. In such cases, it is more probable that a harmonic is closer to the back plate’s mode.

5.3. MIVIS with Foam

Comparison of experimental transmission loss for MIVIS (Case 2: g = 1.0 mm) with those for
aluminum back plate alone (Case 4) and for a back plate with 25.4 mm thick foam treatment (Cases 5
and 6) in the low-frequency range of interest is shown in Figure 16. While, both foams (Basotect® UL
and G+ type) display a more or else uniform trend of STL increase over the back plate alone, the UL
foam which has about 5–10 dB STL increase clearly outperforms the G+ foam which has only about
2–5 dB STL increase. This is expected as foams are typically better performing at higher frequencies
(~1000 Hz and above.) Whereas, for the MIVIS, the presence of transmission loss peaks in the 300
to 400 Hz range resulting from the anti-resonance behavior is seen. The bandwidth of appreciable
STL increase could conceivably be extended to encompass a wider low-frequency range of interest by
incorporating MIVIS unit-cells with multiple tuned anti-resonances. Thus, the contrast in transmission
loss performance between MIVIS and foam cases indicates the potential to combine MIVIS and foam
designs to obtain interactive enhancement.
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back plate with state-of-the-art foam treatments under white noise excitation.

The possibility of utilizing interactive mechanisms between MIVIS and foam barriers to augment
STL performance is evidenced in the comparison of the incident and transmitted spectral characteristics
for MIVIS alone (Case 3: g = 1.7 mm) with those for MIVIS with foam (Case 7) as shown in Figure 17.
For about the same incident low-frequency spectral content centered on a tone at 326 Hz, it is observed
that while low-frequency transmitted spectra is similar in magnitude and spread for both cases,
the up-converted high-frequency transmitted spectral content in the vicinity of the back plate’s first
mode is noticeably diminished for the MIVIS with foam compared to the MIVIS alone. More than
5 dB of the decrease in the up-converted content is seen for the MIVIS with foam. It is observed
that the vibro-impact induced up-conversion mechanism picks up the incident low-frequency energy
of the source and makes available more of the transmitted energy at higher frequencies thereby
enabling its effective mitigation using conventional lightweight absorbers such as foam. This reinforces
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the subsidiary hypothesis for MIVIS that the up-conversion mechanism is amenable for coactive
integration with conventional acoustic absorbers such as foam to engineer relatively lightweight
structural acoustic barriers that sustain appreciable STL improvement within a broadband frequency
range encompassing the hitherto unaddressed low-frequency range below ~500 Hz.
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Figure 17. Comparison of the incident and transmitted side spectra for MIVIS with and without foam
depicting the reduction in high-frequency content when foam is present. Panels (a), (b) and (c) show
the incident spectrum, low-frequency and high-frequency transmitted spectra respectively for Case 3
(MIVIS: g = 1.7 mm, no foam) and panels (d), (e) and (f) show the incident spectrum, low-frequency
and high-frequency transmitted spectra respectively for Case 7 (MIVIS: g= 1.7 mm with 25.4 mm thick
Basotect UL foam).

6. Conclusions

A Metamaterials-Inspired Vibro-Impact Structure (MIVIS) concept was investigated as a
lightweight and compact acoustic barrier with improved low-frequency (<~500 Hz) sound transmission
loss performance. In contrast to conventional methods such as foam, fiberglass or massive treatments
that are used to enhance sound transmission loss, MIVIS is compact, relatively lightweight and tunable
to suit specific source characteristics. Moreover, the mechanism of frequency up-conversion via impacts
to higher modes in the backing structure could be utilized to transition the incident energy to spectral
bandwidths that can be effectively dissipated by conventional foams. A coupled structural-acoustic
simulation model of the normal incidence transmission loss tube was used to predict and optimize the
transmission loss performance of MIVIS designs. Experiments using prototype MIVIS test articles were
performed to gauge their performance vis-à-vis baseline structures. Under white noise excitation, up to
36 dB of sound transmission loss increase is observed at the anti-resonance frequency (326 Hz) within
a tunable LF bandwidth of about 300 Hz. The experimental and simulated transmission loss curves
depict close agreement. Under monotonic excitation, an estimation of the optimal separation between
the impactor tip and the back structure for efficient up-conversion was obtained. The possibility of
utilizing interactive mechanisms between MIVIS and foam barriers to augment transmission loss is
demonstrated. More than 5 dB of decrease in the up-converted content is seen for the MIVIS with
foam. It is envisioned that the coupled structural-acoustic design approach inherent to MIVIS could be
applied in specialized cases where the mitigation of particular low-frequency tones across a structural
barrier become a priority. In such a design approach, the stretched membrane attachments would
be affixed at separation to the base structure via a lightweight yet stiff lattice network attached to
it that would create higher “local” modes in the base structure. With current additive and hybrid
manufacturing attaining critical commercial maturity, successful transition to technologies that enable
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new mission capabilities for aerospace and military vehicles and help create quieter built environments
could become possible.
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