Understanding Corrosion Morphology of Duplex Stainless Steel Wire in Chloride Electrolyte
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Microstructure
3.2. Polarisation Behaviour
3.3. Corrosion Morphology
3.4. Pit Cover Collapse and Hydrogen Embrittlement
3.5. Selective Corrosion
3.6. Final Remarks
4. Conclusions
- The corrosion morphology of duplex stainless steel depends on the electrolyte’s corrosivity, which promotes either the evolution of selective corrosion of usually the ferrite phase or pits with perforated lacy covers.
- Perforated lacy metal pit covers are formed when the electrolyte is aggressive.
- Lacy cover pitting is not favoured when the chloride-ion concentration is below a threshold at which the ferrite phase’s selective dissolution occurs.
- The perforation of lacy pit covers is not associated with either the ferrite or austenite phase.
- Lacy cover pit formation occurs stochastically on grains of both phases but is influenced by the material’s processing orientation.
- The ferrite phase’s selective corrosion occurs by simultaneous pit evolution and undercutting events of a grown pit along the rolling direction.
- The collapse of the lacy pit cover is due to hydrogen embrittlement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shibata, T.; Takeyama, T. Stochastic Theory of Pitting Corrosion. Corrosion 1977, 33, 243–251. [Google Scholar] [CrossRef]
- Hospadaruk, V.; Petrocelli, J.V.; Hospadaruk, V.; Petrocelli, J.V. The Pitting Potential of Stainless Steels in Chloride Media. J. Electrochem. Soc. 1966, 113, 878–883. [Google Scholar] [CrossRef]
- Engelhardt, G.R.; Macdonald, D.D. Monte-Carlo Simulation of Pitting Corrosion with a Deterministic Model for Repassivation. J. Electrochem. Soc. 2020, 167, 013540. [Google Scholar] [CrossRef]
- Laycock, N.J.; Krouse, D.P.; Hendy, S.C.; Williams, D.E. Computer Simulation of Pitting Corrosion of Stainless Steels. Electrochem. Soc. Interface 2014, 23, 65–71. [Google Scholar] [CrossRef]
- Valor, A.; Caleyo, F.; Alfonso, L.; Rivas-López, D.; Hallen, J. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits. Corros. Sci. 2007, 49, 559–579. [Google Scholar] [CrossRef]
- Jayalakshmi, M.; Muralidharan, V. Empirical and Deterministic Models of Pitting Corrosion—An Overview. Corros. Rev. 1996, 14, 375–402. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Engelhardt, G. Predicting the future from the past in corrosion science and engineering. In Proceedings of the EUROCORR 2004: Long Term Prediction and Modeling of Corrosion, Nice, France, 12–16 September 2004. [Google Scholar]
- Schultze, J.; Lohrengel, M. Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochimica Acta 2000, 45, 2499–2513. [Google Scholar] [CrossRef]
- Marcus, P.; Maurice, V. The Structure of Passive Films on Metals and Alloys. In Passivity of Metals and Semiconductors; Ives, M.B., Luo, J.L., Rodda, J.R., Eds.; The Electrochemical Society: Jasper Park Lodge, AB, Canada, 1999; pp. 30–64. [Google Scholar]
- Långberg, M.; Örnek, C.; Evertsson, J.; Harlow, G.S.; Linpé, W.; Rullik, L.; Carlà, F.; Felici, R.; Bettini, E.; Kivisäkk, U.; et al. Redefining passivity breakdown of super duplex stainless steel by electrochemical operando synchrotron near surface X-ray analyses. NPJ Mater. Degrad. 2019, 3, 22. [Google Scholar] [CrossRef]
- Symniotis, E. Galvanic Effects on the Active Dissolution of Duplex Stainless Steels. Corrosion 1990, 46, 2–12. [Google Scholar] [CrossRef]
- Aoki, S.; Ito, K.; Yakuwa, H.; Miyasaka, M.; Sakai, J. Potential Dependence of Preferential Dissolution Behavior of a Duplex Stainless Steel in Simulated Solution inside Crevice. Zairyo-to-Kankyo 2011, 60, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Aoki, S.; Yakuwa, H.; Mitsuhashi, K.; Sakai, J.i. Dissolution Behavior of α and γ Phases of a Duplex Stainless Steel in a Simulated Crevice Solution. ECS Trans. 2010, 25, 17–22. [Google Scholar] [CrossRef]
- Ornek, C.; Walton, J.; Hashimoto, T.; Ladwein, T.L.; Lyon, S.; Engelberg, D. Characterization of 475 °C Embrittlement of Duplex Stainless Steel Microstructure via Scanning Kelvin Probe Force Microscopy and Magnetic Force Microscopy. J. Electrochem. Soc. 2017, 164, C207–C217. [Google Scholar] [CrossRef]
- Örnek, C.; Engelberg, D. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel. Corros. Sci. 2015, 99, 164–171. [Google Scholar] [CrossRef]
- Tsai, W.-T.; Chen, J.-R. Galvanic corrosion between the constituent phases in duplex stainless steel. Corros. Sci. 2007, 49, 3659–3668. [Google Scholar] [CrossRef]
- Lee, J.-S.; Fushimi, K.; Nakanishi, T.; Hasegawa, Y.; Park, Y.-S. Corrosion behaviour of ferrite and austenite phases on super duplex stainless steel in a modified green-death solution. Corros. Sci. 2014, 89, 111–117. [Google Scholar] [CrossRef]
- Eckstein, H.-J. Korrosionsbeständige Stähle; Deutscher Verlag für Grundstoffindustrie GmbH: Leipzig, Germany, 1990. [Google Scholar]
- Bettini, E.; Kivisäkk, U.; Leygraf, C.; Pan, J. Study of corrosion behavior of a 22% Cr duplex stainless steel: Influence of nano-sized chromium nitrides and exposure temperature. Electrochim. Acta 2013, 113, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Bettini, E.; Eriksson, T.; Boström, M.; Leygraf, C.; Pan, J. Influence of metal carbides on dissolution behavior of biomedical CoCrMo alloy: SEM, TEM and AFM studies. Electrochim. Acta 2011, 56, 9413–9419. [Google Scholar] [CrossRef]
- Sathirachinda, N.; Pettersson, R.; Wessman, S.; Kivisäkk, U.; Pan, J. Scanning Kelvin probe force microscopy study of chromium nitrides in 2507 super duplex stainless steel—Implications and limitations. Electrochim. Acta 2011, 56, 1792–1798. [Google Scholar] [CrossRef]
- Sathirachinda, N.; Pettersson, R.; Wessman, S.; Pan, J. Study of nobility of chromium nitrides in isothermally aged duplex stainless steels by using SKPFM and SEM/EDS. Corros. Sci. 2010, 52, 179–186. [Google Scholar] [CrossRef]
- Sathirachinda, N.; Pettersson, R.; Pan, J. Depletion effects at phase boundaries in 2205 duplex stainless steel characterized with SKPFM and TEM/EDS. Corros. Sci. 2009, 51, 1850–1860. [Google Scholar] [CrossRef]
- Sathirachinda, N.; Gubner, R.; Pan, J.; Kivisaäkk, U. Characterization of Phases in Duplex Stainless Steel by Magnetic Force Microscopy/Scanning Kelvin Probe Force Microscopy. Electrochem. Solid-State Lett. 2008, 11, C41–C45. [Google Scholar] [CrossRef]
- Örnek, C.; Engelberg, D.L. Correlative EBSD and SKPFM characterisation of microstructure development to assist determination of corrosion propensity in grade 2205 duplex stainless steel. J. Mater. Sci. 2016, 51, 1931–1948. [Google Scholar] [CrossRef]
- Örnek, C.; Léonard, F.; McDonald, S.A.; Prajapati, A.; Withers, P.J.; Engelberg, D. Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires. NPJ Mater. Degrad. 2018, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Oernek, C.; Zhong, X.; Engelberg, D. Low-Temperature Environmentally Assisted Cracking of Grade 2205 Duplex Stainless Steel Beneath a MgCl2:FeCl3Salt Droplet. Corrosion 2016, 72, 384–399. [Google Scholar] [CrossRef] [Green Version]
- Örnek, C.; Engelberg, D. Towards understanding the effect of deformation mode on stress corrosion cracking susceptibility of grade 2205 duplex stainless steel. Mater. Sci. Eng. A 2016, 666, 269–279. [Google Scholar] [CrossRef]
- Pettersson, R.; Johansson, M.; Westin, E.M. Corrosion Performance of Welds in Duplex, Superduplex and Lean Duplex Stainless Steels. In CORROSION 2013; NACE International: Houston, TX, USA, 2013. [Google Scholar]
- Örnek, C.; Idris, S.A.; Reccagni, P.; Engelberg, D.L. Atmospheric-Induced Stress Corrosion Cracking of Grade 2205 Duplex Stainless Steel—Effects of 475 °C Embrittlement and Process Orientation. Metals 2016, 6, 167. [Google Scholar] [CrossRef] [Green Version]
- Pettersson, R.F.A.; Flyg, J. Electrochemical Evaluation of Pitting and Crevice Corrosion Resistance of Stainless Steels in NaCl and NaBr; Outokumpu: Stockholm, Sweden, 2004. [Google Scholar]
- Ritter, J. The Application of Duplex Stainless Steels in Different Media. In Surface and Materials Engineering, Corrosion Laboratory; Aalen University of Applied Sciences: Aalen, Germany, 2013. [Google Scholar]
- Oldfield, J.W.; Todd, B. Room temperature stress corrosion cracking of stainless steels in indoor swimming pool atmospheres. Br. Corros. J. 1991, 26, 173–182. [Google Scholar] [CrossRef]
- Oldfield, D.J.W. Nickel effect: Lower rate of corrosion in stainless. Emerald Group Publ. Ltd. 1990, 37, 9–11. [Google Scholar] [CrossRef]
- Lu, Y.; Ives, M.; Clayton, C. Synergism of alloying elements and pitting corrosion resistance of stainless steels. Corros. Sci. 1993, 35, 89–96. [Google Scholar] [CrossRef]
- Nilsson, J.-O.; Chai, G. The physical metallurgy of duplex stainless steels. In Proceedings of the International Conference & Expo Duplex 2007, Associazone Italiana di Metallurgia (AIM), Grado, Italy, 18–20 June 2007. [Google Scholar]
- Örnek, C.; Engelberg, D. An experimental investigation into strain and stress partitioning of duplex stainless steel using digital image correlation, X-ray diffraction and scanning Kelvin probe force microscopy. J. Strain Anal. Eng. Des. 2016, 51, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Örnek, C.; Burke, M.G.; Hashimoto, T.; Lim, J.J.H.; Engelberg, D.L. 475 °C Embrittlement of Duplex Stainless Steel—A Comprehensive Microstructure Characterization Study. Mater. Perform. Charact. 2017, 6, 409–436. [Google Scholar] [CrossRef]
- Ghahari, S.M.; Davenport, A.J.; Rayment, T.; Suter, T.; Tinnes, J.-P.; Padovani, C.; Hammons, J.A.; Stampanoni, M.; Marone, F.; Mokso, R. In situ synchrotron X-ray micro-tomography study of pitting corrosion in stainless steel. Corros. Sci. 2011, 53, 2684–2687. [Google Scholar] [CrossRef]
- Ghahari, S.M.; Krouse, D.P.; Laycock, N.J.; Rayment, T.; Padovani, C.; Suter, T.; Mokso, R.; Marone, F.; Stampanoni, M.; Monir, M.; et al. Pitting corrosion of stainless steel: Measuring and modelling pit propagation in support of damage prediction for radioactive waste containers. Corros. Eng. Sci. Technol. 2011, 46, 205–211. [Google Scholar] [CrossRef]
- Ernst, P.; Newman, R. Pit growth studies in stainless steel foils. II. Effect of temperature, chloride concentration and sulphate addition. Corros. Sci. 2002, 44, 943–954. [Google Scholar] [CrossRef]
- Ernst, P.; Laycock, N.; Moayed, M.; Newman, R. The mechanism of lacy cover formation in pitting. Corros. Sci. 1997, 39, 1133–1136. [Google Scholar] [CrossRef]
- Laycock, N.; Newman, R. The Use of Pitting Transients to Test Microscopic Models of Localized Corrosion. Mater. Sci. Forum 1995, 192-194, 649–662. [Google Scholar] [CrossRef]
- Eguchi, K.; Burnett, T.L.; Engelberg, D. X-Ray tomographic characterisation of pitting corrosion in lean duplex stainless steel. Corros. Sci. 2020, 165, 108406. [Google Scholar] [CrossRef]
- Burnett, T.L.; McDonald, S.A.; Gholinia, A.; Geurts, R.; Janus, M.; Slater, T.; Haigh, S.J.; Ornek, C.; Almuaili, F.; Engelberg, D.L.; et al. Correlative Tomography. Sci. Rep. 2014, 4, 4711. [Google Scholar] [CrossRef] [Green Version]
- Peguet, L.; Gaugain, A. Localized corrosion resistance of duplex stainless steels: Methodology and properties; a review paper. Revue Métallurgie 2011, 108, 231–243. [Google Scholar] [CrossRef]
- Dong, C.; Luo, H.; Xiao, K.; Sun, T.; Liu, Q.; Li, X. Effect of temperature and Cl− concentration on pitting of 2205 duplex stainless steel. J. Wuhan Univ. Technol. Sci. Ed. 2011, 26, 641–647. [Google Scholar] [CrossRef]
- Jae-Ho, S.; Jae-Bong, L. Critical Pitting Temperature of 2205 Duplex Stainless Steels Using Immersion and Electrochemical Polarization Test Methods. J. Korean Inst. Surf. Eng. 2006, 39, 18–24. [Google Scholar]
- Huang, T.-S.; Tsai, W.-T.; Pan, S.-J.; Chang, K.-C. Pitting corrosion behaviour of 2101 duplex stainless steel in chloride solutions. Corros. Eng. Sci. Technol. 2018, 53, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Lothongkum, G.; Wongpanya, P.; Morito, S.; Furuhara, T.; Maki, T. Effect of nitrogen on corrosion behavior of 28Cr–7Ni duplex and microduplex stainless steels in air-saturated 3.5 wt% NaCl solution. Corros. Sci. 2006, 48, 137–153. [Google Scholar] [CrossRef]
- Prawoto, Y.; Ibrahim, K.M.; Nik, W.S.W. Effect of pH and chloride concentration on the corrosion of duplex stainless steel. Arab. J. Sci. Eng. 2009, 34, 115. [Google Scholar]
- Pettersson, R.; Johansson, E. Stress corrosion resistance of duplex grades. In Duplex World 2010; Charles, J., Ed.; Duplex Stailess Steel World: Beaunne, France, 2010. [Google Scholar]
- Bhattacharya, A.; Singh, P.M. Role of Microstructure on the Corrosion Susceptibility of UNS S32101 Duplex Stainless Steel. Corrosion 2008, 64, 532–540. [Google Scholar] [CrossRef]
- Liljas, M.; Johansson, P.; Liu, H.-P.; Olsson, C.-O.A. Development of a Lean Duplex Stainless Steel. Steel Res. Int. 2008, 79, 466–473. [Google Scholar] [CrossRef]
- Al-Hashem, A.; Caceres, P.G.; Abdullah, A.; Shalaby, H.M. Cavitation Corrosion of Duplex Stainless Steel in Seawater. Corrosion 1997, 53, 103–113. [Google Scholar] [CrossRef]
- Örnek, C.; Leygraf, C.; Pan, J. Passive film characterisation of duplex stainless steel using scanning Kelvin probe force microscopy in combination with electrochemical measurements. NPJ Mater. Degrad. 2019, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Bunge, H.-J. Texture Analysis in Materials Science: Mathematical Methods; Butterworth & Co.: Göttingen, Germany, 1982. [Google Scholar]
- Frankel, G.S. Pitting Corrosion of Metals: A Review of the Critical Factors. J. Electrochem. Soc. 1998, 145, 2186–2198. [Google Scholar] [CrossRef]
- Örnek, C.; Engelberg, D.L. Effect of “475 °C Embrittlement” on the Corrosion Behaviour of Grade 2205 Duplex Stainless Steel Investigated Using Local Probing Techniques. In Corrosion Management; The Institute of Corrosion: Northampton, UK, 2013; pp. 9–11. [Google Scholar]
- Moura, V.; Lima, L.; Pardal, J.M.; Kina, A.; Corte, R.; Tavares, S. Influence of microstructure on the corrosion resistance of the duplex stainless steel UNS S31803. Mater. Charact. 2008, 59, 1127–1132. [Google Scholar] [CrossRef]
- Nascimento, A.D.; Ierardi, M.; Kina, A.; Tavares, S. Pitting corrosion resistance of cast duplex stainless steels in 3.5%NaCl solution. Mater. Charact. 2008, 59, 1736–1740. [Google Scholar] [CrossRef]
- Långberg, M.; Zhang, F.; Grånäs, E.; Örnek, C.; Cheng, J.; Liu, M.; Wiemann, C.; Gloskovskii, A.; Keller, T.; Schlueter, C.; et al. Lateral variation of the native passive film on super duplex stainless steel resolved by synchrotron hard X-ray photoelectron emission microscopy. Corros. Sci. 2020, 174, 108841. [Google Scholar] [CrossRef]
- Långberg, M.; Örnek, C.; Zhang, F.; Cheng, J.; Liu, M.; Grånäs, E.; Wiemann, C.; Gloskovskii, A.; Matveyev, Y.; Kulkarni, S.; et al. Characterization of Native Oxide and Passive Film on Austenite/Ferrite Phases of Duplex Stainless Steel Using Synchrotron HAXPEEM. J. Electrochem. Soc. 2019, 166, C3336–C3340. [Google Scholar] [CrossRef]
- Eguchi, K.; Burnett, T.L.; Engelberg, D.L. X-ray tomographic observation of environmental assisted cracking in heat-treated lean duplex stainless steel. Corros. Sci. 2021, 184, 109363. [Google Scholar] [CrossRef]
- Li, W.; Li, D. Effect of surface geometrical configurations induced by microcracks on the electron work function. Acta Mater. 2005, 53, 3871–3878. [Google Scholar] [CrossRef]
- Li, W.; Li, D.Y. Effect of Grain Size on the Electron Work Function of Cu and Al. Surf. Rev. Lett. 2004, 11, 173–178. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, M.; Zhang, C.; Leygraf, C.; Wen, L.; Pan, J. First-Principle Calculation of Volta Potential of Intermetallic Particles in Aluminum Alloys and Practical Implications. J. Electrochem. Soc. 2017, 164, C465–C473. [Google Scholar] [CrossRef]
- Nazarov, A.; Thierry, D. Application of Volta potential mapping to determine metal surface defects. Electrochim. Acta 2007, 52, 7689–7696. [Google Scholar] [CrossRef]
- Tsay, L.W.; Young, M.C.; Shin, C.-S.; Chan, S. Hydrogen-enhanced cracking of 2205 duplex stainless steel. Fatigue Fract. Eng. Mater. Struct. 2007, 30, 1228–1236. [Google Scholar] [CrossRef]
- Perdahcıoğlu, E.; Geijselaers, H.; Groen, M. Influence of plastic strain on deformation-induced martensitic transformations. Scr. Mater. 2008, 58, 947–950. [Google Scholar] [CrossRef]
- Örnek, C.; Müller, T.; Kivisäkk, U.; Zhang, F.; Långberg, M.; Lienert, U.; Hwang, K.-H.; Lundgren, E.; Pan, J. Operando time- and space-resolved high-energy X-ray diffraction measurement to understand hydrogen-microstructure interactions in duplex stainless steel. Corros. Sci. 2020, 175, 108899. [Google Scholar] [CrossRef]
- Örnek, C.; Larsson, A.; Harlow, G.S.; Zhang, F.; Kroll, R.; Carlà, F.; Hussain, H.; Kivisäkk, U.; Engelberg, D.L.; Lundgren, E.; et al. Time-resolved grazing-incidence X-ray diffraction measurement to understand the effect of hydrogen on surface strain development in super duplex stainless steel. Scr. Mater. 2020, 187, 63–67. [Google Scholar] [CrossRef]
- Örnek, C.; Larsson, A.; Harlow, G.S.; Zhang, F.; Kroll, R.; Carlà, F.; Hussain, H.; Kivisäkk, U.; Engelberg, D.L.; Lundgren, E.; et al. Metastable Precursor Structures in Hydrogen-infused Super Duplex Stainless Steel Microstructure—An Operando Diffraction Experiment. Corros. Sci. 2020, 176, 109021. [Google Scholar] [CrossRef]
- Ernst, P.; Newman, R. Explanation of the effect of high chloride concentration on the critical pitting temperature of stainless steel. Corros. Sci. 2007, 49, 3705–3715. [Google Scholar] [CrossRef]
- Newman, R.C. W.R. Whitney Award Lecture:Understanding the Corrosion of Stainless Steel. Corrosion 2001, 57, 1030–1041. [Google Scholar] [CrossRef]
- Trautmann, A.; Mori, G.; Oberndorfer, M.; Bauer, S.; Holzer, C.; Dittmann, C. Hydrogen Uptake and Embrittlement of Carbon Steels in Various Environments. Materials 2020, 13, 3604. [Google Scholar] [CrossRef]
- Jeon, S.-H.; Kim, S.-T.; Lee, I.-S.; Park, J.-H.; Kim, K.-T.; Kim, J.-S.; Park, Y.-S. Effects of copper addition on the formation of inclusions and the resistance to pitting corrosion of high performance duplex stainless steels. Corros. Sci. 2011, 53, 1408–1416. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Örnek, C.; Davut, K.; Kocabaş, M.; Bayatlı, A.; Ürgen, M. Understanding Corrosion Morphology of Duplex Stainless Steel Wire in Chloride Electrolyte. Corros. Mater. Degrad. 2021, 2, 397-411. https://doi.org/10.3390/cmd2030021
Örnek C, Davut K, Kocabaş M, Bayatlı A, Ürgen M. Understanding Corrosion Morphology of Duplex Stainless Steel Wire in Chloride Electrolyte. Corrosion and Materials Degradation. 2021; 2(3):397-411. https://doi.org/10.3390/cmd2030021
Chicago/Turabian StyleÖrnek, Cem, Kemal Davut, Mustafa Kocabaş, Aleyna Bayatlı, and Mustafa Ürgen. 2021. "Understanding Corrosion Morphology of Duplex Stainless Steel Wire in Chloride Electrolyte" Corrosion and Materials Degradation 2, no. 3: 397-411. https://doi.org/10.3390/cmd2030021
APA StyleÖrnek, C., Davut, K., Kocabaş, M., Bayatlı, A., & Ürgen, M. (2021). Understanding Corrosion Morphology of Duplex Stainless Steel Wire in Chloride Electrolyte. Corrosion and Materials Degradation, 2(3), 397-411. https://doi.org/10.3390/cmd2030021