Effect of Multispecies Microbial Consortia on Microbially Influenced Corrosion of Carbon Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Steel Test Coupons
2.2. Bacteria and Test Media Details
2.3. Corrosion Tests
2.4. Metal Coupon and Microbial Analysis
3. Results
3.1. Surfaces of Coupons Before Cleaning
3.2. Corrosion Evaluation
3.3. Test Solutions
3.4. Analysis of Microbial Populations
4. Discussion
4.1. Surfaces of Coupons Before Cleaning
4.2. Corrosion Attack
4.3. Analysis of Microbial Populations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ijsseling, F. General guidelines for corrosion testing of materials for marine applications: Literature review on sea water as test environment. Br. Corros. J. 1989, 24, 53–78. [Google Scholar] [CrossRef]
- Little, B.J.; Lee, J.S. Microbiologically influenced corrosion. In Kirk-Othmer Encyclopedia of Chemical Technology; Wiley-Interscience: Hoboken, NJ, USA, 2009; pp. 1–38. [Google Scholar]
- Christie, J. The effect of MIC and other corrosion mechanisms on the global ports infrastructure. In Proceedings of the MIC—An International Perspective, Perth, Australia, 14–16 February 2007. [Google Scholar]
- Jeffrey, R.J.; Melchers, R.E. Effect of vertical length on corrosion of steel in the tidal zone. Corrosion 2009, 65, 695–702. [Google Scholar] [CrossRef]
- Beech, I.B.; Campbell, S.A. Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment. Electrochim. Acta 2008, 54, 14–21. [Google Scholar] [CrossRef]
- Dang, H.; Lovell, C.R. Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 2016, 80, 91–138. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 2019, 17, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Little, B.; Ray, R.; Pope, R. Relationship between corrosion and the biological sulfur cycle: A review. Corrosion 2000, 56, 433–443. [Google Scholar] [CrossRef]
- Malard, E.; Gueuné, H.; Fagot, A.; Lemière, A.; Sjogren, L.; Tidblad, J.; Sanchez-Amaya, J.M.; Muijzer, G.; Marty, F.; Quillet, L.; et al. Microbiologically Induced Corrosion of Steel Structures in Port Environment: Improving Prediction and Diagnosis of ALWC (MICSIPE); RFCS Publications: Luxembourg, 2013. [Google Scholar]
- Païssé, S.; Ghiglione, J.F.; Marty, F.; Abbas, B.; Gueuné, H.; Amaya, J.M.S.; Muyzer, G.; Quillet, L. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures. Appl. Microbiol. Biotechnol. 2013, 97, 7493–7504. [Google Scholar] [CrossRef]
- Videla, H.A.; Herrera, L.K.; Edyvean, G. An updated overview of SRB induced corrosion and protection of carbon steel. In Proceedings of the NACE Corrosion, Houston, TX, USA, 3–7 April 2005; NACE International: Houston, TX, USA, 2005; p. 05488. [Google Scholar]
- Enning, D.; Venzlaff, H.; Garrelfs, J.; Dinh, H.T.; Meyer, V.; Mayrhofer, K.; Hassel, A.W.; Stratmann, M.; Widdel, F. Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ. Microbiol. 2012, 14, 1772–1787. [Google Scholar] [CrossRef]
- Gehrke, T.; Sand, W. Interactions between microorganisms and physiochemical factors cause MIC of steel pilings in harbors (ALWC). In Proceedings of the NACE Corrosion, San Diego, CA, USA, 16–20 March 2003; NACE International: Houston, TX, USA, 2003; p. 03557. [Google Scholar]
- Sand, W.; Gehrke, T. Microbially influenced corrosion of steel in aqueous environments. Rev. Environ. Sci. Biotechnol. 2003, 2, 169–176. [Google Scholar] [CrossRef]
- Gubner, R.; Beech, I. Statistical assessment of the risk of the accelerated low-water corrosion in the marine environment. In Proceedings of the NACE Corrosion, San Antonio, TX, USA, 25–30 April 1999; NACE International: Houston, TX, USA, 1999; p. 318. [Google Scholar]
- Javadhastri, R. Microbiologically Influenced Corrosion—An Engineering Insight; Springer: London, UK, 2008; pp. 125–139. [Google Scholar]
- Smith, M.; Bardiau, M.; Brennan, R.; Burgess, H.; Caplin, J.; Ray, S.; Urios, T. Accelerated low water corrosion: The microbial sulfur cycle in microcosm. NPJ Mater. Degrad. 2019, 3, 37. [Google Scholar] [CrossRef]
- Barco, R.A.; Hoffman, C.L.; Ramírez, G.A.; Toner, B.M.; Edwards, K.J.; Sylvan, J.B. In-situ incubation of iron-sulfur mineral reveals a diverse chemolithoautotrophic community and a new biogeochemical role for Thiomicrospira. Environ. Microbiol. 2017, 19, 1322–1337. [Google Scholar] [CrossRef]
- Celikkol-Aydin, S.; Gaylarde, C.C.; Lee, T.; Melchers, R.E.; Witt, D.L.; Beech, I.B. 16S rRNA gene profiling of planktonic and biofilm microbial populations in the Gulf of Guinea using Illumina NGS. Mar. Environ. Res. 2016, 122, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.; Chen, R.; Wang, L.; Shao, S.; Dai, L.; Ye, Y.; Guo, L.; Huang, G.; Klotz, M.G. Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon and Zetaproteobacteria in Pacific Ocean coastal seawaters. Environ. Microbiol. 2011, 13, 3059–3074. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.C.; Wade, S.A.; Blackall, L.L. Is marine sediment the source of microbes associated with accelerated low water corrosion? Appl. Microbiol. Biotechnol. 2019, 103, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ray, R.; Lemieux, E.; Falster, A.; Little, B. An evaluation of carbon steel corrosion under stagnant seawater conditions. Biofouling 2004, 20, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Marty, F.; Gueune, H.; Malard, E.; Sánchez-Amaya, J.M.; Sjögren, L.; Abbas, B.; Quillet, L.; van Loosdrecht, M.C.M.; Muyzer, G. Identification of key factors in accelerated low water corrosion through experimental simulation of tidal conditions: Influence of stimulated indigenous microbiota. Biofouling 2014, 30, 281–297. [Google Scholar] [CrossRef]
- Pillay, C.; Lin, J. Metal corrosion by aerobic bacteria isolated from stimulated corrosion systems: Effects of additional nitrate sources. Int. Biodeter. Biodegrad. 2013, 83, 158–165. [Google Scholar] [CrossRef]
- Wade, S.; Blackall, L. Development of a laboratory test for microbial involvement in accelerated low water corrosion. Microbiol. Aust. 2018, 39, 170–172. [Google Scholar] [CrossRef]
- Enning, D.; Garrelfs, J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem. Appl. Environ. Microbiol. 2014, 80, 1226–1236. [Google Scholar] [CrossRef]
- Li, Y.; Xu, D.; Chen, C.; Li, X.; Jia, R.; Zhang, D.; Sand, W.; Wang, F.; Gu, T. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. J. Mater. Sci Technol. 2018, 34, 1713–1718. [Google Scholar] [CrossRef]
- Martin, A.; Auger, E.A.; Blum, P.H.; Schultz, J.E. Genetic basis of starvation survival in nondifferentiating bacteria. Annu. Rev. Microbiol. 1989, 43, 293–316. [Google Scholar] [CrossRef]
- Xu, D.; Gu, T. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int. Biodeter. Biodegrad. 2014, 91, 74–81. [Google Scholar] [CrossRef]
- Salgar-Chaparro, S.J.; Lepkova, K.; Pojtanabuntoeng, T.; Darwin, A.; Machuca, L.L. Nutrient level determines biofilm characteristics and subsequent impact on microbial corrosion and biocide effectiveness. Appl. Environ. Microbiol. 2020, 86, e02885–e02919. [Google Scholar] [CrossRef] [PubMed]
- Wade, S.A.; Javed, M.A.; Palombo, E.A.; McArthur, S.L.; Stoddart, P.R. On the need for more realistic experimental conditions in laboratory-based microbiologically influenced corrosion testing. Int. Biodeter. Biodegrad. 2017, 121, 97–106. [Google Scholar] [CrossRef]
- Javed, M.; Neil, W.; McAdam, G.; Wade, S. Effect of sulphate-reducing bacteria on the microbiologically influenced corrosion of ten different metals using constant test conditions. Int. Biodeter. Biodegrad. 2017, 125, 73–85. [Google Scholar] [CrossRef]
- Li, H.-B.; Zhang, L.-P.; Chen, S.-F. Halomonas korlensis sp. nov., a moderately halophilic, denitrifying bacterium isolated from saline and alkaline soil. Int. J. Syst. Evol. Microbiol. 2008, 58, 2582–2588. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, S.; Sankaralingam, S.; Shankar, T.; Vijayabaskar, P. Alkalophilic protease enzyme production from estuarine Bacillus aquimaris. World J. Fish Mar. Sci. 2010, 2, 436–443. [Google Scholar]
- Marques, J.M.; de Almeida, F.P.; Lins, U.; Seldin, L.; Korenblum, E. Nitrate treatment effects on bacterial community biofilm formed on carbon steel in produced water stirred tank bioreactor. World J. Microbiol. Biotechnol. 2012, 28, 2355–2363. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.C.; Wade, S.A.; Blackall, L.L. Microbial communities of orange tubercles in accelerated low water corrosion. Appl. Environ. Microbiol. 2020, 86, e00610–e00620. [Google Scholar] [CrossRef]
- Cavaleiro, A.J.; Abreu, A.A.; Sousa, D.Z.; Pereira, M.A.; Alves, M.M. The role of marine anaerobic bacteria and archaea in bioenergy production. In Management of Microbial Resources in the Environment; Malik, A., Grohmann, E., Alves, M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 445–469. [Google Scholar]
- Makita, H. Iron-oxidizing bacteria in marine environments: Recent progresses and future directions. World J. Microbiol. Biotechnol. 2018, 34, 110. [Google Scholar] [CrossRef]
- Garrity, G.M.; Bell, J.A.; Lilburn, T. Rhodobacteraceae. In Bergey’s Manual of Systematic Bacteriology: The Proteobacteria: Part C: The Alpha-, Beta-, Delta-, and Epsilonproteobacteria; Brenner, D.J., Krieg, N.R., Staley, J.T., Eds.; Springer Science & Business Media: New York, NY, USA, 2006; Volume 2, pp. 161–229. [Google Scholar]
- Javed, M.A.; Stoddart, P.R.; Wade, S.A. Corrosion of carbon steel by sulphate reducing bacteria: Initial attachment and the role of ferrous ions. Corros. Sci. 2015, 93, 48–57. [Google Scholar] [CrossRef]
- ASTM G1 Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens; ASTM International: West Conshohocken, PA, USA, 2017.
- Cypionka, H. Oxygen respiration by Desulfovibrio species. Ann. Rev. Microbiol. 2000, 54, 827–848. [Google Scholar] [CrossRef]
- Lobo, S.A.; Melo, A.M.; Carita, J.N.; Teixeira, M.; Saraiva, L.M. The anaerobe Desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels. FEBS Lett. 2007, 581, 433–436. [Google Scholar] [CrossRef]
- Kwon, M.J.; O’Loughlin, E.J.; Boyanov, M.I.; Brulc, J.M.; Johnston, E.R.; Kemner, K.M.; Dionysios, A.; Antonopoulo, D.A. Impact of organic carbon electron donors on microbial community development under iron- and sulfate-reducing conditions. PLoS ONE 2016, 11, e0146689. [Google Scholar] [CrossRef]
- Zhan, M.; Liu, X.; Li, Y.; Wang, G.; Wang, Z.; Wen, J. Microbial community and metabolic pathway succession driven by changed nutrient inputs in tailings: Effects of different nutrients on tailing remediation. Sci. Rep. 2017, 7, 474. [Google Scholar] [CrossRef]
- Parthipan, P.; Elumalai, P.; Ting, Y.P.; Rahman, P.K.; Rajasekar, A. Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX. Int. Biodeter. Biodegrad. 2018, 129, 67–80. [Google Scholar] [CrossRef]
- Rajasekar, A.; Babu, G.T.; Pandian, K.S.; Maruthamuthu, S.; Palaniswamy, N.; Rajendran, A. Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline. Corros. Sci. 2007, 49, 2694–2710. [Google Scholar] [CrossRef]
- Xu, D.; Li, Y.; Song, F.; Gu, T. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corros. Sci. 2013, 77, 385–390. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, T.; Cheng, Y.F.; Guo, N.; Yin, Y. Adhesion of Bacillus subtilis and Pseudoalteromonas lipolytica to steel in a seawater environment and their effects on corrosion. Colloids Surf. B 2017, 157, 157–165. [Google Scholar] [CrossRef]
- Jayaraman, A.; Cheng, E.T.; Earthman, J.C.; Wood, T.K. Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Appl. Microbiol. Biotechnol. 1997, 48, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, A.; Hallock, P.; Carson, R.; Lee, C.-C.; Mansfeld, F.; Wood, T. Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl. Microbiol. Biotechnol. 1999, 52, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Karn, S.K.; Guan, F.; Duan, J. Bacillus sp. acting as dual role for corrosion induction and corrosion inhibition with carbon steel. Front. Microbiol. 2017, 8, 2038. [Google Scholar] [CrossRef]
- Zuo, R.; Wood, T.K. Inhibiting mild steel corrosion from sulfate-reducing and iron-oxidizing bacteria using gramicidin-S-producing biofilms. Appl. Microbiol. Biotechnol. 2004, 65, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Beech, I.B.; Sunner, J. Sulphate-reducing bacteria and their role in corrosion of ferrous materials. In Sulphate-Reducing Bacteria: Environmental and Engineered Systems; Barton, L.L., Hamilton, W.A., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 459–482. [Google Scholar]
- Hamilton, W. Microbially influenced corrosion as a model system for the study of metal microbe interactions: A unifying electron transfer hypothesis. Biofouling 2003, 19, 65–76. [Google Scholar] [CrossRef]
- Hardy, J.; Bown, J. The corrosion of mild steel by biogenic sulfide films exposed to air. Corrosion 1984, 40, 650–654. [Google Scholar] [CrossRef]
- Lee, W.; Lewandowski, Z.; Morrison, M.; Characklis, W.G.; Avci, R.; Nielsen, P.H. Corrosion of mild steel underneath aerobic biofilms containing sulfate-reducing bacteria part II: At high dissolved oxygen concentration. Biofouling 1993, 7, 217–239. [Google Scholar] [CrossRef]
- Li, X.; Xiao, H.; Zhang, W.; Li, Y.; Tang, X.; Duan, J.; Yang, Z.; Wang, J.; Guan, F.; Ding, G. Analysis of cultivable aerobic bacterial community composition and screening for facultative sulfate-reducing bacteria in marine corrosive steel. J. Oceanol. Limnol. 2019, 37, 600–614. [Google Scholar] [CrossRef]
- Qian, H.; Ju, P.; Zhang, D.; Ma, L.; Hu, Y.; Li, Z.; Huang, L.; Lou, Y.; Du, C. Effect of dissolved oxygen concentration on the microbiologically influenced corrosion of Q235 carbon steel by halophilic archaea Natronorubrum tibetense. Front. Microbiol. 2019, 10, 844. [Google Scholar] [CrossRef]
- McBeth, J.M.; Emerson, D. In situ microbial community succession on mild steel in estuarine and marine environments: Exploring the role of iron-oxidizing bacteria. Front. Microbiol. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.H.; Lee, K.W.K.; Burmølle, M.; Kjelleberg, S.; Rice, S.A. All together now: Experimental multispecies biofilm model systems. Environ. Microbiol. 2017, 19, 42–53. [Google Scholar] [CrossRef]
Test (Incubation Atmosphere) | Brief Description | Microbes (cfu/mL) |
---|---|---|
T1 (aerobic) | No inoculum | None |
T2 (aerobic) | Orange tubercle | Diverse consortium from an orange tubercle on steel sheet piling (≥105) |
T3 (aerobic) | D. desulfuricans | D. desulfuricans (2 × 106) |
T4 (aerobic) | Four marine isolates | B. aquimaris (9 × 105), H. korlensis (3 × 105), S. pontiacus (3 × 106), P. bellariivorans (7 × 104) |
T5 (aerobic) | Four marine isolates + D. desulfuricans | D. desulfuricans (2 × 106), B. aquimaris (9 × 105), H. korlensis (3 × 105), S. pontiacus (3 × 106), P. bellariivorans (7 × 104) |
T6 (anaerobic) | D. desulfuricans | D. desulfuricans (2 × 106) |
Test (T1–T5: O2; T6: AnO2) | Total Bacterial Plate Count (cfu/mL) | pH Measurement | ||||
---|---|---|---|---|---|---|
Initial | Week 2 | Week 4 | Week 8 | Week 4 | Week 8 | |
T1 (uninoculated) | – | – | – | – | 7.58 ± 0.02 | 7.55 ± 0.02 |
T2 (orange tubercle) | ≥105 | 107–108 | 1 × 108 | 108–109 | 7.47 ± 0.03 | 7.32 ± 0.06 |
T3 (D. desulfuricans) | 2 × 106 | 7 × 105 | 2 × 106 | 103–104 | 7.56 ± 0.04 | 7.73 ± 0.10 |
T4 (Four isolates) | 4 × 106 | 4 × 107 | 6 × 107 | 9 × 107 | 7.74 ± 0.05 | 7.90 ± 0.06 |
T5 (Four isolates + D. desulfuricans) | 6 × 106 | 3 × 107 | 1 × 108 | 106–107 | 7.32 ± 0.04 | 7.42 ± 0.06 |
T6 (D. desulfuricans) | 2 × 106 | 5 × 107 | 5 × 107 | 104–105 | 6.98 ± 0.10 | 6.98 ± 0.09 |
Test (Inoculum, Aeration Status) | Comments |
---|---|
T1 (uninoculated, aerobic) | Oxygen in solution led to general corrosion |
Some localised corrosion but with relatively low volumes | |
T2 (orange tubercle, aerobic) | Aerobic bacteria likely utilised oxygen and reduced general corrosion |
SRB present, sulfate reduction suspected | |
Some localised corrosion but with relatively low volumes | |
T3 (D. desulfuricans, aerobic) | Oxygen in solution led to general corrosion |
SRB present, sulfate reduction suspected | |
Localised corrosion with relatively high volumes | |
T4 (Four isolates, aerobic) | Aerobic bacteria likely utilised oxygen and reduced general corrosion |
Some localised corrosion but with relatively low volumes | |
T5 (Four isolates + D. desulfuricans, aerobic) | Aerobic bacteria likely utilised oxygen and reduced general corrosion |
SRB present, sulfate reduction suspected | |
Localised corrosion with relatively high volumes | |
T6 (D. desulfuricans, anaerobic) | Anaerobic environment reduced general corrosion |
SRB present, sulfate reduction suspected | |
Localised corrosion with relatively high volumes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, H.C.; Blackall, L.L.; Wade, S.A. Effect of Multispecies Microbial Consortia on Microbially Influenced Corrosion of Carbon Steel. Corros. Mater. Degrad. 2021, 2, 133-149. https://doi.org/10.3390/cmd2020008
Phan HC, Blackall LL, Wade SA. Effect of Multispecies Microbial Consortia on Microbially Influenced Corrosion of Carbon Steel. Corrosion and Materials Degradation. 2021; 2(2):133-149. https://doi.org/10.3390/cmd2020008
Chicago/Turabian StylePhan, Hoang C., Linda L. Blackall, and Scott A. Wade. 2021. "Effect of Multispecies Microbial Consortia on Microbially Influenced Corrosion of Carbon Steel" Corrosion and Materials Degradation 2, no. 2: 133-149. https://doi.org/10.3390/cmd2020008
APA StylePhan, H. C., Blackall, L. L., & Wade, S. A. (2021). Effect of Multispecies Microbial Consortia on Microbially Influenced Corrosion of Carbon Steel. Corrosion and Materials Degradation, 2(2), 133-149. https://doi.org/10.3390/cmd2020008