Brighter Time: A Smartphone App Recording Cognitive Task Performance and Illuminance in Everyday Life
Abstract
:1. Introduction
2. Methods
2.1. Recruitment and Procedure
2.2. Software and Hardware
2.3. Tasks
2.4. Surveys and Measures
2.5. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vetter, C.; Pattison, P.M.; Houser, K.; Herf, M.; Phillips, A.J.K.; Wright, K.P.; Skene, D.J.; Brainard, G.C.; Boivin, D.B.; Glickman, G. A Review of Human Physiological Responses to Light: Implications for the Development of Integrative Lighting Solutions. LEUKOS 2022, 18, 387–414. [Google Scholar] [CrossRef]
- Lucas, R.J.; Gardasevic, M.A.; McDowell, R.J. Non-image forming vision in vertebrates. In The Senses: A Comprehensive Reference; Fritzsch, B., Martin, P.R., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2020; Volume 1, pp. 252–260. [Google Scholar]
- Chellappa, S.L.; Gordijn, M.C.; Cajochen, C. Can light make us bright? Effects of light on cognition and sleep. Prog. Brain Res. 2011, 190, 119–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandewalle, G.; Balteau, E.; Phillips, C.; Degueldre, C.; Moreau, V.; Sterpenich, V.; Albouy, G.; Darsaud, A.; Desseilles, M.; Dang-Vu, T.T.; et al. Daytime light exposure dynamically enhances brain responses. Curr. Biol. 2006, 16, 1616–1621. [Google Scholar] [CrossRef] [PubMed]
- Milosavljevic, N.; Cehajic-Kapetanovic, J.; Procyk, C.A.; Lucas, R.J. Chemogenetic Activation of Melanopsin Retinal Ganglion Cells Induces Signatures of Arousal and/or Anxiety in Mice. Curr. Biol. 2016, 26, 2358–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Huang, P.; Huang, L.; Hu, Z.; Liu, X.; Shen, J.; Xi, Y.; Yang, Y.; Fu, Y.; Tao, Q.; et al. A Visual Circuit Related to the Nucleus Reuniens for the Spatial-Memory-Promoting Effects of Light Treatment. Neuron 2021, 109, 347–362.e347. [Google Scholar] [CrossRef]
- Soler, J.E.; Stumpfig, M.; Tang, Y.P.; Robison, A.J.; Nunez, A.A.; Yan, L. Daytime Light Intensity Modulates Spatial Learning and Hippocampal Plasticity in Female Nile Grass Rats (Arvicanthis niloticus). Neuroscience 2019, 404, 175–183. [Google Scholar] [CrossRef]
- Fisk, A.S.; Tam, S.K.E.; Brown, L.A.; Vyazovskiy, V.V.; Bannerman, D.M.; Peirson, S.N. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal. Front. Neurol. 2018, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Cajochen, C. Alerting effects of light. Sleep Med. Rev. 2007, 11, 453–464. [Google Scholar] [CrossRef]
- Cajochen, C.; Zeitzer, J.M.; Czeisler, C.A.; Dijk, D.J. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav. Brain Res. 2000, 115, 75–83. [Google Scholar] [CrossRef]
- de Zeeuw, J.; Papakonstantinou, A.; Nowozin, C.; Stotz, S.; Zaleska, M.; Hadel, S.; Bes, F.; Munch, M.; Kunz, D. Living in Biological Darkness: Objective Sleepiness and the Pupillary Light Responses Are Affected by Different Metameric Lighting Conditions during Daytime. J. Biol. Rhythms 2019, 34, 410–431. [Google Scholar] [CrossRef]
- Domagalik, A.; Oginska, H.; Beldzik, E.; Fafrowicz, M.; Pokrywka, M.; Chaniecki, P.; Rekas, M.; Marek, T. Long-Term Reduction of Short-Wavelength Light Affects Sustained Attention and Visuospatial Working Memory With No Evidence for a Change in Circadian Rhythmicity. Front. Neurosci. 2020, 14, 654. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.C.; Fogerson, P.M.; Lazzerini Ospri, L.; Thomsen, M.B.; Layne, R.M.; Severin, D.; Zhan, J.; Singer, J.H.; Kirkwood, A.; Zhao, H.; et al. Light Affects Mood and Learning through Distinct Retina-Brain Pathways. Cell 2018, 175, 71–84.e18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huiberts, L.M.; Smolders, K.C.; de Kort, Y.A. Shining light on memory: Effects of bright light on working memory performance. Behav. Brain Res. 2015, 294, 234–245. [Google Scholar] [CrossRef]
- Kretschmer, V.; Schmidt, K.-H.; Griefahn, B. Bright light effects on working memory, sustained attention and concentration of elderly night shift workers. Light. Res. Technol. 2012, 44, 316–333. [Google Scholar] [CrossRef]
- Lee, D.-S.; Ko, Y.-H.; Shen, I.H.; Chao, C.-Y. Effect of light source, ambient illumination, character size and interline spacing on visual performance and visual fatigue with electronic paper displays. Displays 2011, 32, 1–7. [Google Scholar] [CrossRef]
- Lockley, S.W.; Evans, E.E.; Scheer, F.A.; Brainard, G.C.; Czeisler, C.A.; Aeschbach, D. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep 2006, 29, 161–168. [Google Scholar]
- Lok, R.; Joyce, D.S.; Zeitzer, J.M. Impact of daytime spectral tuning on cognitive function. J. Photochem. Photobiol. B 2022, 230, 112439. [Google Scholar] [CrossRef]
- Munch, M.; Linhart, F.; Borisuit, A.; Jaeggi, S.M.; Scartezzini, J.L. Effects of prior light exposure on early evening performance, subjective sleepiness, and hormonal secretion. Behav. Neurosci. 2012, 126, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Phipps-Nelson, J.; Redman, J.R.; Dijk, D.J.; Rajaratnam, S.M. Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance. Sleep 2003, 26, 695–700. [Google Scholar] [CrossRef]
- Souman, J.L.; Tinga, A.M.; Te Pas, S.F.; van Ee, R.; Vlaskamp, B.N.S. Acute alerting effects of light: A systematic literature review. Behav. Brain Res. 2018, 337, 228–239. [Google Scholar] [CrossRef]
- Burattini, C.; Piccardi, L.; Curcio, G.; Ferlazzo, F.; Giannin, A.M.; Bisegna, F. Cold LED lighting affects visual but not acoustic vigilance. Build. Environ. 2019, 151, 148–155. [Google Scholar] [CrossRef]
- Kaida, K.; Takeda, Y.; Tsuzuki, K. Can a short nap and bright light function as implicit learning and visual search enhancers? Ergonomics 2012, 55, 1340–1349. [Google Scholar] [CrossRef] [PubMed]
- Lok, R.; Woelders, T.; Gordijn, M.C.M.; Hut, R.A.; Beersma, D.G.M. White Light During Daytime Does Not Improve Alertness in Well-rested Individuals. J. Biol. Rhythms 2018, 33, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Santhi, N.; Groeger, J.A.; Archer, S.N.; Gimenez, M.; Schlangen, L.J.; Dijk, D.J. Morning sleep inertia in alertness and performance: Effect of cognitive domain and white light conditions. PLoS ONE 2013, 8, e79688. [Google Scholar] [CrossRef] [Green Version]
- Smolders, K.C.H.J.; de Kort, Y.A.W. Bright light and mental fatigue: Effects on alertness, vitality, performance and physiological arousal. J. Environ. Psychol. 2014, 39, 77–91. [Google Scholar] [CrossRef]
- Chang, A.M.; Scheer, F.A.; Czeisler, C.A.; Aeschbach, D. Direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans depend on prior light history. Sleep 2013, 36, 1239–1246. [Google Scholar] [CrossRef]
- Huiberts, L.M.; Smolders, K.; De Kort, Y.A.W. Seasonal and time-of-day variations in acute non-image forming effects of illuminance level on performance, physiology, and subjective well-being. Chronobiol. Int. 2017, 34, 827–844. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Martinez, J.M.; Castillo-Martinez, A.; Medina-Merodio, J.A.; Aguado-Delgado, J.; Martinez-Herraiz, J.J. Smartphones as a light measurement too:case of study. Appl. Sci. 2017, 7, 616. [Google Scholar] [CrossRef]
- Balkin, T.J.; Bliese, P.D.; Belenky, G.; Sing, H.; Thorne, D.R.; Thomas, M.; Redmond, D.P.; Russo, M.; Wesensten, N.J. Comparative utility of instruments for monitoring sleepiness-related performance decrements in the operational environment. J. Sleep Res. 2004, 13, 219–227. [Google Scholar] [CrossRef]
- Kirchner, W.K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 1958, 55, 352–358. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Perrig, W.J.; Meier, B. The concurrent validity of the N-back task as a working memory measure. Memory 2010, 18, 394–412. [Google Scholar] [CrossRef] [PubMed]
- Drury, C.G.; Clement, M.R. The effect of area, density, and number of background characters on visual search. Hum. Factors 1978, 20, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Wirz-Justice, A.; Merrow, M. Life between Clocks: Daily Temporal Patterns of Human Chronotypes. J. Biol. Rhythm. 2003, 18, 80–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akerstedt, T.; Gillberg, M. Subjective and objective sleepiness in the active individual. Int. J. Neurosci. 1990, 52, 29–37. [Google Scholar] [CrossRef]
- Townsend, J.T.; Ashby, F.G. Methods of Modeling Capacity in Simple Processing Systems. In Cognitive Theory; Castellan, J., Restle, F., Eds.; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1978; Volume 3, pp. 199–239. [Google Scholar]
- Wolfe, J.M. Visual Search Revived: The Slopes Are Not That Slippery: A Reply to Kristjansson (2015). I Percept. 2016, 7, 2041669516643244. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Hubalek, S.; Brink, M.; Schierz, C. Office workers’ daily exposure to light and its influence on sleep quality and mood. Light. Res. Technol. 2010, 42, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Scheuermaier, K.; Laffan, A.M.; Duffy, J.F. Light exposure patterns in healthy older and young adults. J. Biol. Rhythms 2010, 25, 113–122. [Google Scholar] [CrossRef]
- Crowley, S.J.; Molina, T.A.; Burgess, H.J. A week in the life of full-time office workers: Work day and weekend light exposure in summer and winter. Appl. Ergon. 2015, 46, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Grant, D.A.; Honn, K.A.; Layton, M.E.; Riedy, S.M.; Van Dongen, H.P.A. 3-minute smartphone-based and tablet-based psychomotor vigilance tests for the assessment of reduced alertness due to sleep deprivation. Behav. Res. Methods 2017, 49, 1020–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ru, T.; Smolders, K.; Chen, Q.; Zhou, G.; de Kort, Y.A.W. Diurnal effects of illuminance on performance: Exploring the moderating role of cognitive domain and task difficulty. Light. Res. Technol. 2021, 53, 727–747. [Google Scholar] [CrossRef]
- Kaida, K.; Takahashi, M.; Akerstedt, T.; Nakata, A.; Otsuka, Y.; Haratani, T.; Fukasawa, K. Validation of the Karolinska sleepiness scale against performance and EEG variables. Clin. Neurophysiol. 2006, 117, 1574–1581. [Google Scholar] [CrossRef]
- Cordani, L.; Tagliazucchi, E.; Vetter, C.; Hassemer, C.; Roenneberg, T.; Stehle, J.H.; Kell, C.A. Endogenous modulation of human visual cortex activity improves perception at twilight. Nat. Commun. 2018, 9, 1274. [Google Scholar] [CrossRef]
- Shieh, K.-K.; Lin, C.-C. Effects of screen type, ambient illumination, and color combination on VDT visual performance and subjective preference. Int. J. Ind. Ergon. 2000, 26, 527–536. [Google Scholar] [CrossRef]
- Lucas, R.J.; Peirson, S.N.; Berson, D.M.; Brown, T.M.; Cooper, H.M.; Czeisler, C.A.; Figueiro, M.G.; Gamlin, P.D.; Lockley, S.W.; O’Hagan, J.B.; et al. Measuring and using light in the melanopsin age. Trends Neurosci. 2014, 37, 1–9. [Google Scholar] [CrossRef]
- Brown, T.M.; Brainard, G.C.; Cajochen, C.; Czeisler, C.A.; Hanifin, J.P.; Lockley, S.W.; Lucas, R.J.; Munch, M.; O’Hagan, J.B.; Peirson, S.N.; et al. Recommendations for daytime, evening, and nighttime indoor light exposure to best support physiology, sleep, and wakefulness in healthy adults. PLoS Biol. 2022, 20, e3001571. [Google Scholar] [CrossRef]
- Perrin, F.; Peigneux, P.; Fuchs, S.; Verhaeghe, S.; Laureys, S.; Middleton, B.; Degueldre, C.; Del Fiore, G.; Vandewalle, G.; Balteau, E.; et al. Nonvisual responses to light exposure in the human brain during the circadian night. Curr. Biol. 2004, 14, 1842–1846. [Google Scholar] [CrossRef]
Min. | 1st Quantile | 3rd Quantile | Max. | Median | Mean | Standard Deviation | |
---|---|---|---|---|---|---|---|
PVT | |||||||
Median reaction time (ms) | 260.0 | 366.0 | 483.0 | 860.0 | 419.5 | 431.3 | 88.6 |
Hit rate (%) | 40.5 | 91.9 | 100.0 | 100.0 | 97.3 | 94.7 | 7.6 |
False alarm rate (%) | 0.0 | 0.0 | 2.7 | 43.2 | 0.0 | 2.1 | 3.6 |
Inverse efficiency score | 271.8 | 392.7 | 555.4 | 1644.0 | 456.6 | 487.2 | 90.3 |
Number of lapses | 0.0 | 2.0 | 14.0 | 37.0 | 7.0 | 9.4 | 8.6 |
N-back | |||||||
Median reaction time (ms) | 329.5 | 454.2 | 694.8 | 1192.0 | 571.0 | 587.0 | 161.6 |
Hit rate (%) | 46.7 | 93.3 | 100.0 | 100.0 | 100.0 | 95.7 | 7.7 |
False alarm rate (%) | 0.0 | 0.0 | 3.3 | 26.7 | 3.3 | 3.2 | 4.0 |
Inverse efficiency score | 336.3 | 511.6 | 789.8 | 1876.4 | 635.9 | 667.8 | 213.4 |
d′ | 1.0 | 3.0 | 4.0 | 4.0 | 3.5 | 3.4 | 0.6 |
Visual search | |||||||
Median reaction time (ms) | 315.0 | 2225.8 | 3514.5 | 7084.5 | 2747.5 | 2924.6 | 1094.2 |
Hit rate (%) | 40.2 | 84.3 | 94.1 | 100.0 | 90.2 | 87.1 | 10.6 |
False alarm rate (%) | 0.0 | 5.9 | 14.7 | 59.8 | 9.8 | 12.6 | 10.3 |
Inverse efficiency score | 887.0 | 2570.0 | 3969.0 | 14,069.4 | 3131.8 | 3356.6 | 1198.9 |
Search efficiency slope (ms/item) | −51.6 | 19.5 | 54.0 | 147.7 | 36.1 | 39.0 | 28.7 |
Median Reaction Time (ms) | Number of Lapses | Hit Rate (%) | False Alarm Rate (%) | Inverse Efficiency Score | |
---|---|---|---|---|---|
Model-1 | |||||
Intercept | 413.13 | 7.82 | 94.89 | 1.90 | 467.04 |
KSS | |||||
Coef. | 5.37 | 0.46 | −0.16 | 0.07 | 6.99 |
SE | 0.77 | 0.08 | 0.08 | 0.05 | 1.30 |
p | 6.01 × 10−12 | 9.08 × 10−9 | 6.53 × 10−2 | 1.29 × 10−1 | 9.76 × 10−8 |
Model-2 | |||||
Intercept | 434.14 | 9.36 | 95.96 | 1.83 | 482.37 |
Time awake (h) | |||||
Coef. | 1.35 | 0.11 | −0.15 | 0.05 | 2.25 |
SE | 0.49 | 0.05 | 0.05 | 0.03 | 0.83 |
p | 5.69 × 10−3 | 2.95 × 10−2 | 6.59 × 10−3 | 1.26 × 10−1 | 7.02 × 10−3 |
Ambient light (log lx) | |||||
Coef. | −4.37 | −0.20 | −0.65 | 0.04 | −0.49 |
SE | 3.19 | 0.32 | 0.35 | 0.20 | 5.46 |
p | 1.71 × 10−1 | 5.46 × 10−1 | 6.56 × 10−2 | 8.42 × 10−1 | 9.29 × 10−1 |
Time awake × Ambient light | |||||
Coef. | −0.56 | −0.06 | 0.03 | 0.00 | −0.51 |
SE | 0.34 | 0.03 | 0.04 | 0.02 | 0.57 |
p | 9.37 × 10−2 | 9.35 × 10−2 | 4.30 × 10−1 | 9.95 × 10−1 | 3.79 × 10−1 |
Model-3 | |||||
Mesor | 438.18 | 9.89 | 94.19 | 2.26 | 499.71 |
Cosine | |||||
Coef. | 8.43 | 0.53 | −0.40 | 0.25 | 12.87 |
SE | 1.86 | 0.19 | 0.20 | 0.11 | 3.12 |
p | 6.49 × 10−6 | 5.29 × 10−3 | 4.66 × 10−2 | 2.26 × 10−2 | 3.98 × 10−5 |
Sine | |||||
Coef. | 3.21 | 0.06 | 0.07 | 0.10 | 3.91 |
SE | 2.48 | 0.25 | 0.27 | 0.15 | 4.15 |
p | 1.95 × 10−1 | 8.03 × 10−1 | 7.95 × 10−1 | 5.01 × 10−1 | 3.46 × 10−1 |
Amplitude | 9.02 | 0.53 | 0.41 | 0.27 | 13.45 |
Nadir (clock time) | 13:23 | 12:27 | 23:20 | 13:26 | 13:08 |
Median Reaction Time (ms) | Slope (Reaction time/Number of Distractor) | Hit Rate (%) | False Alarm Rate (%) | Inverse Efficiency Score | |
---|---|---|---|---|---|
Model-1 | |||||
Intercept | 2736.72 | 36.71 | 88.16 | 11.48 | 3115.93 |
KSS | |||||
Coef. | 47.76 | 0.60 | −0.37 | 0.37 | 66.54 |
SE | 10.36 | 0.36 | 0.09 | 0.08 | 13.16 |
p | 4.44 × 10−6 | 9.54 × 10−2 | 1.72 × 10−5 | 7.14 × 10−6 | 4.91 × 10−7 |
Model-2 | |||||
Intercept | 3248.42 | 45.74 | 87.03 | 12.60 | 3708.16 |
Time awake (h) | |||||
Coef. | −16.71 | −0.57 | −0.07 | 0.05 | −15.74 |
SE | 6.51 | 0.22 | 0.05 | 0.05 | 8.34 |
p | 1.04 × 10−2 | 1.05 × 10−2 | 2.15 × 10−1 | 3.04 × 10−1 | 5.95 × 10−2 |
Ambient light (log lx) | |||||
Coef. | −133.95 | −2.64 | 0.05 | −0.05 | −150.59 |
SE | 46.48 | 1.59 | 0.37 | 0.36 | 59.57 |
p | 4.03 × 10−3 | 9.86 × 10−2 | 8.86 × 10−1 | 8.94 × 10−1 | 1.16 × 10−2 |
Time awake × Ambient light | |||||
Coef. | 0.05 | 0.18 | 0.00 | 0.01 | 1.93 |
SE | 4.76 | 0.16 | 0.04 | 0.04 | 6.10 |
p | 9.92 × 10−1 | 2.74 × 10−1 | 9.53 × 10−1 | 7.38 × 10−1 | 7.52 × 10−1 |
Model-3 | |||||
Mesor | 2992.66 | 39.68 | 86.47 | 13.16 | 3459.68 |
Cosine | |||||
Coef. | −1.25 | −0.84 | −0.40 | 0.38 | 13.20 |
SE | 23.91 | 0.84 | 0.20 | 0.19 | 30.62 |
p | 9.58 × 10−1 | 3.15 × 10−1 | 4.48 × 10−2 | 4.75 × 10−2 | 6.67 × 10−1 |
Sine | |||||
Coef. | 186.21 | 1.55 | −0.17 | 0.20 | 202.96 |
SE | 32.34 | 1.13 | 0.27 | 0.26 | 41.42 |
p | 1.10 × 10−8 | 1.72 × 10−1 | 5.39 × 10−1 | 4.39 × 10−1 | 1.10 × 10−6 |
Amplitude | 186.21 | 1.76 | 0.43 | 0.42 | 203.39 |
Nadir | 18:02 | 19:54 | 01:30 | 13:51 | 17:45 |
Median Reaction Time (ms) | d′ | Hit Rate (%) | False Alarm Rate (%) | Inverse Efficiency Score | |
---|---|---|---|---|---|
Model-1 | |||||
Intercept | 563.86 | 3.47 | 97.20 | 2.91 | 612.82 |
KSS | |||||
Coef. | 5.62 | −0.02 | −0.36 | 0.06 | 13.13 |
SE | 2.37 | 0.01 | 0.16 | 0.09 | 3.52 |
p | 1.80 × 10−2 | 1.06 × 10−1 | 2.51 × 10−2 | 5.05 × 10−1 | 2.09 × 10−4 |
Model-2 | |||||
Intercept | 639.83 | 3.37 | 94.53 | 2.47 | 744.37 |
Time awake (h) | |||||
Coef. | −3.16 | 0.00 | 0.06 | 0.02 | −3.96 |
SE | 1.29 | 0.01 | 0.09 | 0.05 | 1.94 |
p | 1.44 × 10−2 | 7.71 × 10−1 | 5.25 × 10−1 | 7.00 × 10−1 | 4.22 × 10−2 |
Ambient light (log lx) | |||||
Coef. | −21.63 | 0.02 | 0.49 | 0.22 | −29.66 |
SE | 8.69 | 0.05 | 0.60 | 0.32 | 13.13 |
p | 1.32 × 10−2 | 7.39 × 10−1 | 4.12 × 10−1 | 4.87 × 10−1 | 2.43 × 10−2 |
Time awake × Ambient light | |||||
Coef. | 1.02 | 0.00 | −0.02 | 0.03 | 0.91 |
SE | 0.90 | 0.00 | 0.06 | 0.03 | 1.36 |
p | 2.57 × 10−1 | 4.25 × 10−1 | 7.09 × 10−1 | 4.19 × 10−1 | 5.04 × 10−1 |
Model-3 | |||||
Mesor | 591.74 | 3.38 | 95.45 | 3.12 | 676.42 |
Cosine | |||||
Coef. | −4.64 | 0.00 | −0.07 | −0.02 | −5.69 |
SE | 5.53 | 0.03 | 0.38 | 0.20 | 8.28 |
p | 4.02 × 10−1 | 9.37 × 10−1 | 8.60 × 10−1 | 9.28 × 10−1 | 4.92 × 10−1 |
Sine | |||||
Coef. | 11.73 | 0.01 | −0.43 | −0.30 | 17.39 |
SE | 7.05 | 0.04 | 0.48 | 0.26 | 10.56 |
p | 9.69 × 10−2 | 8.24 × 10−1 | 3.73 × 10−1 | 2.52 × 10−1 | 1.00 × 10−1 |
Amplitude | 12.61 | 0.01 | 0.43 | 0.30 | 18.30 |
Nadir (clock time) | 19:26 | 19:02 | 05:25 | 05:46 | 19:13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gardesevic, M.; Didikoglu, A.; Lawrence, S.J.D.; Vetter, C.; Brown, T.M.; Allen, A.E.; Lucas, R.J. Brighter Time: A Smartphone App Recording Cognitive Task Performance and Illuminance in Everyday Life. Clocks & Sleep 2022, 4, 577-594. https://doi.org/10.3390/clockssleep4040045
Gardesevic M, Didikoglu A, Lawrence SJD, Vetter C, Brown TM, Allen AE, Lucas RJ. Brighter Time: A Smartphone App Recording Cognitive Task Performance and Illuminance in Everyday Life. Clocks & Sleep. 2022; 4(4):577-594. https://doi.org/10.3390/clockssleep4040045
Chicago/Turabian StyleGardesevic, Marina, Altug Didikoglu, Samuel J. D. Lawrence, Céline Vetter, Timothy M. Brown, Annette E. Allen, and Robert J. Lucas. 2022. "Brighter Time: A Smartphone App Recording Cognitive Task Performance and Illuminance in Everyday Life" Clocks & Sleep 4, no. 4: 577-594. https://doi.org/10.3390/clockssleep4040045