Thin Epitaxial Ionic Fluoride Films for Electronics Applications
Abstract
:1. Introduction
Compound | Energy Gap (eV) | Permittivity | Crystal Structure | Lattice Constant (Å) |
---|---|---|---|---|
BaF2 | 11.0 | 7.33 | Cubic (Fluorite) | 6.2001 |
CaF2 | 12.1 | 6.76 | Cubic (Fluorite) | 5.462 |
MgF2 | >10 | 5.42 | Tetragonal (Rutile) | a = 4.621, c = 3.055 |
SrF2 | 11.2 | 6.14 | Cubic (Fluorite) | 5.800 |
2. Fluorides on Semiconductors
2.1. Alkaline Earth Fluorides on Si
2.2. Rare-Earth Trifluorides on Si
2.3. Alkaline Earth Fluorides on Ge
2.4. Fluorides on III–V Semiconductors
3. Growth of Fluorides on Conductive Substrates
3.1. Fluorides on Metals
3.2. Fluorides on HOPG
4. Perspectives and Future Applications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IRDS. International Roadmap for Devices and Systems (IRDS); IEEE: Piscataway, NJ, USA, 2021; pp. 1–55. Available online: https://irds.ieee.org/editions/2020 (accessed on 1 September 2023).
- Almutairi, A.A.; Zhao, Y.; Yin, D.; Yoon, Y. Performance Limit Projection of Germanane Field-Effect Transistors. IEEE Electron. Device Lett. 2017, 38, 673–676. [Google Scholar] [CrossRef]
- Akinwande, D.; Huyghebaert, C.; Wang, C.H.; Serna, M.I.; Goossens, S.; Li, L.J.; Wong, H.S.P.; Koppens, F.H.L. Graphene and Two-Dimensional Materials for Silicon Technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Wei, W.; Tong, Y.; Chim, W.K.; Zhu, C. Electrical Performance and Low Frequency Noise in Hexagonal Boron Nitride Encapsulated MoSe2 Dual-Gated Field Effect Transistors. Appl. Phys. Lett. 2017, 111, 082105. [Google Scholar] [CrossRef]
- Schmidt, M.; Lemme, M.C.; Gottlob, H.D.B.; Driussi, F.; Selmi, L.; Kurz, H. Mobility Extraction in SOI MOSFETs with Sub 1 Nm Body Thickness. Solid. State Electron. 2009, 53, 1246–1251. [Google Scholar] [CrossRef]
- Wen, C.; Lanza, M. Calcium Fluoride as High-k Dielectric for 2D Electronics. Appl. Phys. Rev. 2021, 8, 021307. [Google Scholar] [CrossRef]
- Illarionov, Y.Y.; Banshchikov, A.G.; Polyushkin, D.K.; Wachter, S.; Knobloch, T.; Thesberg, M.; Mennel, L.; Paur, M.; Stöger-Pollach, M.; Steiger-Thirsfeld, A.; et al. Ultrathin Calcium Fluoride Insulators for Two-Dimensional Field-Effect Transistors. Nat. Electron. 2019, 2, 230–235. [Google Scholar] [CrossRef]
- Tomiki, T.; Miyata, T. Optical Studies of Alkali Fluorides and Alkaline Earth Fluorides in VUV Region. J. Phys. Soc. Jpn. 1969, 27, 658–678. [Google Scholar] [CrossRef]
- Meng, K.; Li, Z.; Chen, P.; Ma, X.; Huang, J.; Li, J.; Qin, F.; Qiu, C.; Zhang, Y.; Zhang, D.; et al. Superionic Fluoride Gate Dielectrics with Low Diffusion Barrier for Two-Dimensional Electronics. Nat. Nanotechnol. 2024, 19, 932–940. [Google Scholar] [CrossRef]
- Geyer, R.G.; Baker-Jarvis, J.; Krupka, J. Dielectric characterization of single-crystal LiF, CaF/sub 2/, MgF/sub 2/, BaF/sub 2/, and SrF/sub 2/ at microwave frequencies. In Proceedings of the 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2004, LEOS 2004, Boulder, CO, USA, 20 October 2004; pp. 493–497. [Google Scholar] [CrossRef]
- Dorfman, S.M.; Jiang, F.; Mao, Z.; Kubo, A.; Meng, Y.; Prakapenka, V.B.; Duffy, T.S. Phase transitions and equations of state of alkaline earth fluorides CaF2, SrF2, and BaF2 to Mbar pressures. Phys. Rev. B 2010, 81, 174121. [Google Scholar] [CrossRef]
- Rubloff, G.W. Far-Ultraviolet Reflectance Spectra and the Electronic Structure of Ionic Crystals. Phys. Rev. B 1972, 5, 662–684. [Google Scholar] [CrossRef]
- Smith, T.P.; Phillips, J.M.; Augustyniak, W.M.; Stiles, P.J. Fabrication of Metal-Epitaxial Insulator-Semiconductor Field-Effect Transistors Using Molecular Beam Epitaxy of CaF2 on Si. Appl. Phys. Lett. 1984, 45, 907–909. [Google Scholar] [CrossRef]
- Fathauer, R.W.; Schowalter, L.J. MIS Characterization and Modeling of the Electrical Properties of the Epitaxial CaF2/Si(111) Interface. J. Electron. Mater. 1987, 16, 169–175. [Google Scholar] [CrossRef]
- Nishioka, Y.; Cho, C.C.; Summerfelt, S.R.; Gnade, B.E.; Brown, G.A. Radiation Characteristics of Epitaxial CaF2 on Silicon. IEEE Trans. Nucl. Sci. 1991, 38, 1265–1270. [Google Scholar] [CrossRef]
- Waho, T.; Yanagawa, F. A GaAs MISFET Using an MBE Grown CaF2 Gate Insulator Layer. IEEE Electron. Device Lett. 1988, 9, 548–549. [Google Scholar] [CrossRef]
- Waho, T.; Saeki, H. Electrical Properties of (CaSr)F2/GaAs(111)B Interfaces Grown by Molecular Beam Epitaxy: Realization of Unpinning. Jpn. J. Appl. Phys. Takao Waho Saeki 1991, 30, 221–227. [Google Scholar] [CrossRef]
- McMullin, P.G.; Sinharoy, S. A Comparative Study of the Electrical Properties of Epitaxial Fluorides. J. Vac. Sci. Technol. A Vac. Surf. Films 1988, 6, 1367–1370. [Google Scholar] [CrossRef]
- Schowalter, L.J.; Fathauer, R.W.; Goehner, R.P.; Turner, L.G.; Deblois, R.W.; Hashimoto, S.; Peng, J.L.; Gibson, W.M.; Krusius, J.P. Epitaxial Growth and Characterization of CaF2 on Si. J. Appl. Phys. 1985, 58, 302–308. [Google Scholar] [CrossRef]
- Olmstead, M.A.; Uhrberg, R.I.G.; Bringans, R.D.; Bachrach, R.Z. Photoemission Study of Bonding at the CaF2-on-Si(111) Interface. Phys. Rev. B 1987, 8, 15. [Google Scholar] [CrossRef]
- Lucas, C.A.; Loretto, D.; Wong, G.C.L. Epitaxial Growth Mechanisms and Structure of CaF2/Si(111). Phys. Rev. B 1994, 50, 15. [Google Scholar] [CrossRef]
- Sokelov, N.S.; Alvarez, J.C.; Yakovlev, N.L. Fluoride Layers and Superlattices Grown by MBE on Si(111): Dynamic RHEED and Sm2+ Photoluminescence Studies. Appl. Surf. Sci. 1992, 60, 421–425. [Google Scholar] [CrossRef]
- Olmstead, M.A. Thin Films: Heteroepitaxial Systems; Liu, W.K., Santos, M.B., Eds.; World Scientific: Singapore, 1999; pp. 211–266. [Google Scholar]
- Cho, C.C.; Liu, H.Y.; Gnade, B.E.; Kim, T.S.; Nishioka, Y. Epitaxial Relations and Electrical Properties of Low-temperature-grown CaF2 on Si(111). J. Vac. Sci. Technol. A 1992, 10, 769–774. [Google Scholar] [CrossRef]
- Sugiyama, M.; Oshima, M. MBE Growth of Fluorides. Microelectron. J. 1996, 27, 361–382. [Google Scholar] [CrossRef]
- Sumiya, T.; Miura, T.; Tanaka, S. Initial Growth Stage of CaF2 on Si(111)-7 × 7 Studied by High Temperature UHV-STM. Surf. Sci. 1996, 357–358, 896–899. [Google Scholar] [CrossRef]
- Olmstead, M.A.; Uhrberg, R.I.G.; Bringans, R.D.; Bachrach, R.Z. Initial Formation of the Interface between a Polar Insulator and a Nonpolar Semiconductor: CaF2 on Si(111). J. Vac. Sci. Technol. B 1986, 4, 1123–1127. [Google Scholar] [CrossRef]
- Himpsel, F.J.; Hillebrecht, F.U.; Hughes, G.; Jordan, J.L.; Karlsson, U.O.; McFeely, F.R.; Morar, J.F.; Rieger, D. Structure and Bonding at the CaF2/Si (111) Interface. Appl. Phys. Lett. 1986, 48, 596–598. [Google Scholar] [CrossRef]
- Ishiwara, H.; Asano, T. Silicon/Insulator Heteroepitaxial Structures Formed by Vacuum Deposition of CaF2 and Si. Appl. Phys. Lett. 1982, 40, 66–68. [Google Scholar] [CrossRef]
- Sullivan, P.W.; Cox, T.I.; Farrow, R.F.C.; Jones, G.R.; Gasson, D.B.; Smith, C.S. Growth of Single Crystal and Polycrystalline Insulating Fluoride Films on Semiconductors by Molecular Beam Epitaxy. J. Vac. Sci. Technol. 1982, 20, 731–732. [Google Scholar] [CrossRef]
- Asano, T.; Ishiwara, H.; Kaifu, N. Heteroepitaxial Growth of Group-IIa-Fluoride Films on Si Substrates. Jpn. J. Appl. Phys. 1983, 22, 1474. [Google Scholar] [CrossRef]
- Fathauer, R.W.; Schowalter, L.J. Surface Morphology of Epitaxial CaF2 Films on Si Substrates. Appl. Phys. Lett. 1984, 45, 519–521. [Google Scholar] [CrossRef]
- Asano, T.; Ishiwara, H. Epitaxial Relations in Group-IIa Fluoride/Si(111) Heterostructures. Appl. Phys. Lett. 1983, 42, 517–519. [Google Scholar] [CrossRef]
- Hashimoto, S.; Peng, J.L.; Gibson, W.M.; Schowalter, L.J.; Fathauer, R.W. Strain Measurement of Epitaxial CaF2 on Si (111) by MeV Ion Channeling. Appl. Phys. Lett. 1985, 47, 1071–1073. [Google Scholar] [CrossRef]
- Wong, G.C.L.; Loretto, D.; Rotenberg, E.; Olmstead, M.A.; Lucas, C.A. CaF2-Si(111) as a Model Ionic-Covalent System: Transition from Chemisorption to Epitaxy. Phys. Rev. B 1993, 48, 5716(R). [Google Scholar] [CrossRef] [PubMed]
- Suturin, S.M.; Banshchikov, A.G.; Sokolov, N.S.; Tyaginov, S.E.; Vexler, M.I. Static Current-Voltage Characteristics of Au/CaF2/n-Si(111) MIS Tunneling Structures. Semiconductors 2008, 42, 1304–1308. [Google Scholar] [CrossRef]
- Loretto, D.; Ross, F.M.; Lucas, C.A. Quasi-One-Dimensional CaF2 Islands Formed on Si(001) by Molecular Beam Epitaxy. Appl. Phys. Lett. 1995, 68, 2363–2365. [Google Scholar] [CrossRef]
- Sumiya, T.; Miura, T.; Fujinuma, H.; Tanaka, S.-I. Surface Reconstruction in CaF2/Si(001)Investigated by Scanning Tunneling Microscopy. Surf. Sci. 1997, 376, 192–204. [Google Scholar] [CrossRef]
- Sokolov, N.S.; Suturin, S.M. MBE Growth of Calcium and Cadmium Fluoride on Silicon. Appl. Surf. Sci. 2001, 175–176, 619–628. [Google Scholar] [CrossRef]
- Pasquali, L.; D’addato, S.; Selvaggi, G.; Nannarone, S.; Sokolov, N.S.; Suturin, S.M.; Zogg, H. Formation of CaF2 Nanostructures on Si(001). Nanotechnology 2001, 12, 403–408. [Google Scholar] [CrossRef]
- Pasquali, L.; Suturin, S.M.; Ulin, V.P.; Sokolov, N.S.; Selvaggi, G.; Giglia, A.; Mahne, N.; Pedio, M.; Nannarone, S. Calcium Fluoride on Si(001): Adsorption Mechanisms and Epitaxial Growth Modes. Phys. Rev. B Condens. Matter. 2005, 72, 045448. [Google Scholar] [CrossRef]
- Pasquali, L.; Suturin, S.M.; Kaveev, A.K.; Ulin, V.P.; Sokolov, N.S.; Doyle, B.P.; Nannarone, S. Interface Chemistry and Epitaxial Growth Modes of SrF2 on Si(001). Phys. Rev. B 2007, 75, 075403. [Google Scholar] [CrossRef]
- Sokolov, N.S.; Suturin, S.M. MBE-Growth Peculiarities of Fluoride (CdF2-CaF2) Thin Film Structures. Thin Solid Films 2000, 367, 112–119. [Google Scholar] [CrossRef]
- Kaveev, A.K.; Kyutt, R.N.; Moisseeva, M.M.; Schowalter, L.J.; Shusterman, Y.V.; Sokolov, N.S.; Suturin, S.M.; Yakovlev, N.L. Molecular Beam Epitaxy and Characterization of CdF Layers on CaF (111). J. Cryst. Growth 1999, 201, 1105–1108. [Google Scholar] [CrossRef]
- Sokolov, N.S.; Gastev, S.V.; Khilko, A.Y.; Kyutt, R.N.; Suturin, S.M.; Zamoryanskaya, M.V. CdF2-CaF2 Superlattices on Si(111): MBE Growth, Structural and Luminescence Studies. J. Cryst. Growth 1999, 201, 1053–1056. [Google Scholar] [CrossRef]
- Jenkins, L.C.; Griffiths, C.L.; Hughes, A.; Richards, J.; Williams, R.H. Epitaxial Rare Earth Fluoride Insulating Layers on Semiconductors: Structure, Phase Transitions, and Interface Reactions. J. Vac. Sci. Technol. B 1993, 11, 1541–1545. [Google Scholar] [CrossRef]
- Sinharoy, S.; Hoffman, R.A.; Rieger, J.H.; Takei, W.J.; Farrow, R.F.C. Epitaxial Growth of Lanthanide Trifluorides by MBE. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 1985, 3, 722–723. [Google Scholar] [CrossRef]
- Sinharoy, S.; Hoffman, R.A.; Farrow, R.F.C.; Rieger, J.H. Epitaxial Growth of CeF3 and NdF3 on Si(111). J. Vac. Sci. Technol. A Vac. Surf. Films 1985, 3, 2323–2326. [Google Scholar] [CrossRef]
- Phillips, J.M.; Feldman, L.C.; Gibson, J.M.; Mcdonald, M.L. Epitaxial Growth of BaF2 on Semiconductor Substrates. Thin Solid Films 1983, 18, 101–107. [Google Scholar] [CrossRef]
- Tsutsui, K.; Ishiwara, H.; Asano, T.; Furukawa, S. Epitaxial Relations in Fluoride Films Grown on GaAs(111) and Ge(111) Substrates. Res. Soc. Symp. Proc. 1985, 47, 93–98. [Google Scholar] [CrossRef]
- Phillips, J.M.; Gibson, J.M. The Growth and Characterization of Epitaxial Fluoride Films on Semiconductors. MRS Online Proc. Libr. (OPL) 1983, 25, 381–391. [Google Scholar] [CrossRef]
- Farrow, R.F.C.; Sullivan, P.W.; Williams, G.M.; Jones, G.R.; Cameron, D.C. MBE-Grown Fluoride Films: A New Class of Epitaxial Dielectrics. J. Vac. Sci. Technol. 1981, 19, 415–420. [Google Scholar] [CrossRef]
- Sullivan, P.W.; Bower, J.E.; Metze, G.M. Growth of Semiconductor/Insulator Structures: GaAs/Fluoride/GaAs (001). J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 1985, 3, 500–507. [Google Scholar] [CrossRef]
- Siskos, S.; Fontaine, C.; Munoz-Yague, A. Epitaxial Growth of Lattice-Matched CaxSr1-XF2 on (100) and (110) GaAs Substrates. J. Appl. Phys. 1984, 56, 1642–1646. [Google Scholar] [CrossRef]
- Mao, D.; Young, K.; Kahn, A.; Zanoni, R.; Mckinley, J.; Margaritondo, G. Photoemission Study of CaF2-and SrF2-GaAs(110) Interfaces Formed at Room Temperature. Phys. Rev. B 1989, 39, 12735. [Google Scholar] [CrossRef]
- Sullivan, P.W.; Farrow, R.F.C.; Jones, G.R. Insulating Epitaxial Films of BaF2, CaF2 and BaxCa1-XF2 Grown by MBE on InP Substrates. J. Cryst. Growth 1982, 60, 403–407. [Google Scholar] [CrossRef]
- Tu, C.W.; Forrest, S.R.; Johnston, W.D. Epitaxial InP/Fluoride/InP(001) Double Heterostructures Grown by Molecular Beam Epitaxy. Appl. Phys. Lett. 1983, 43, 569–571. [Google Scholar] [CrossRef]
- Farías, D.; Braun, K.-F.; Fölsch, S.; Meyer, G.; Rieder, K.-H. Observation of a Novel Nucleation Mechanism at Step Edges: LiF Molecules on Ag(111). Surf. Sci. Lett. 2000, 470, 93–98. [Google Scholar] [CrossRef]
- Wandelt, K. The Local Work Function: Concept and Implications. Appl. Surf. Sci. 1997, 111, 1–10. [Google Scholar] [CrossRef]
- Hermann, K.; Gumhalter, B.; Wandelt, K. Perturbation of the Adsorbate Electronic Structure by Local Fields at Surface Defects. Surf. Sci. 1991, 251–252, 1128–1132. [Google Scholar] [CrossRef]
- Calleja, F.; Hinarejos, J.J.; Vázquez De Parga, A.L.; Suturin, S.M.; Sokolov, N.S.; Miranda, R. Epitaxial Growth of CaF2(111) on Cu(111) Visualized by STM. Surf. Sci. 2005, 582, 14–20. [Google Scholar] [CrossRef]
- Borghi, M.; Mescola, A.; Paolicelli, G.; Montecchi, M.; D’Addato, S.; Vacondio, S.; Bursi, L.; Ruini, A.; Doyle, B.P.; Grasser, T.; et al. Initial Stages of Growth and Electronic Properties of Epitaxial SrF2 Thin Films on Ag(111). Appl. Surf. Sci. 2024, 656, 159724. [Google Scholar] [CrossRef]
- Sun, Y.; Schouteden, K.; Recaman Payo, M.; Locquet, J.P.; Seo, J.W. Growth and Characterization of Ultrathin Vanadium Oxide Films on HOPG. Nanomaterials 2022, 12, 3134. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Wen, H.; Ohta, T.; Pinchuk, I.V.; Zhu, T.; Beechem, T.; Kawakami, R.K. Molecular Beam Epitaxy Growth of SrO Buffer Layers on Graphite and Graphene for the Integration of Complex Oxides. J. Cryst. Growth 2016, 447, 5–12. [Google Scholar] [CrossRef]
- Cheng, T.S.; Summerfield, A.; Mellor, C.J.; Davies, A.; Khlobystov, A.N.; Eaves, L.; Foxon, C.T.; Beton, P.H.; Novikov, S.V. High-Temperature Molecular Beam Epitaxy of Hexagonal Boron Nitride Layers. J. Vac. Sci. Technol. B 2018, 36, 02D103. [Google Scholar] [CrossRef]
- Lin, Y.-M.; Dimitrakopoulos, C.; Jenkins, K.A.; Farmer, D.B.; Chiu, H.-Y.; Grill, A.; Avouris, P. 100 GHz Transistors from Wafer Scale Epitaxial Graphene. Science 2010, 327, 662. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G. Quantum Engineering of Transistors Based on 2D Materials Heterostructures. Nat. Nanotechnol. 2018, 13, 183–191. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van Der Waals Heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Borghi, M.; Giovanelli, G.; Montecchi, M.; Capelli, R.; Mescola, A.; Paolicelli, G.; D’Addato, S.; Grasser, T.; Pasquali, L. Comprehensive Study of SrF2 Growth on Highly Oriented Pyrolytic Graphite (HOPG): Temperature-Dependent van Der Waals Epitaxy. Appl. Surf. Sci. 2025, 680, 161310. [Google Scholar] [CrossRef]
- Candia, A.E.; Gómez, L.; Vidal, R.A.; Ferrón, J.; Passeggi, M.C.G. An STM and Monte Carlo Study of the AlF3 Thin Film Growth on Cu(111). J. Phys. D Appl. Phys. 2015, 48, 265305. [Google Scholar] [CrossRef]
- Park, J.H.; Fathipour, S.; Kwak, I.; Sardashti, K.; Ahles, C.F.; Wolf, S.F.; Edmonds, M.; Vishwanath, S.; Xing, H.G.; Fullerton-Shirey, S.K.; et al. Atomic Layer Deposition of Al2O3 on WSe2 Functionalized by Titanyl Phthalocyanine. ACS Nano 2016, 10, 6888–6896. [Google Scholar] [CrossRef]
- Li, W.; Zhou, J.; Cai, S.; Yu, Z.; Zhang, J.; Fang, N.; Li, T.; Wu, Y.; Chen, T.; Xie, X.; et al. Uniform and Ultrathin High-κ Gate Dielectrics for Two-Dimensional Electronic Devices. Nat. Electron. 2019, 2, 563–571. [Google Scholar] [CrossRef]
- Chamlagain, B.; Cui, Q.; Paudel, S.; Cheng, M.M.C.; Chen, P.Y.; Zhou, Z. Thermally Oxidized 2D TaS2 as a High-κ Gate Dielectric for MoS2 Field-Effect Transistors. 2D Mater. 2017, 4, 031002. [Google Scholar] [CrossRef]
- Mleczko, M.J.; Zhang, C.; Lee, H.R.; Kuo, H.-H.; Magyari-Köpe, B.; Moore, R.G.; Shen, Z.-X.; Fisher, I.R.; Nishi, Y.; Pop, E. HFSe2 and ZrSe2: Two-Dimensional Semiconductors with Native High-k Oxides. Sci. Adv. 2017, 3, e1700481. [Google Scholar] [CrossRef]
- Peimyoo, N.; Barnes, M.D.; Mehew, J.D.; De Sanctis, A.; Amit, I.; Escolar, J.; Anastasiou, K.; Rooney, A.P.; Haigh, S.J.; Russo, S.; et al. Laser-Writable High-k Dielectric for van Der Waals Nanoelectronics. Sci. Adv. 2019, 5, 906–924. [Google Scholar] [CrossRef] [PubMed]
- Lemme, M.C.; Echtermeyer, T.J.; Baus, M.; Kurz, H. A Graphene Field-Effect Device. IEEE Electron. Device Lett. 2007, 28, 282–284. [Google Scholar] [CrossRef]
- Illarionov, Y.Y.; Smithe, K.K.H.; Waltl, M.; Knobloch, T.; Pop, E.; Grasser, T. Improved Hysteresis and Reliability of MoS2 Transistors with High-Quality CVD Growth and Al2O3 Encapsulation. IEEE Electron. Device Lett. 2017, 38, 1763–1766. [Google Scholar] [CrossRef]
- Di Bartolomeo, A.; Genovese, L.; Giubileo, F.; Iemmo, L.; Luongo, G.; Foller, T.; Schleberger, M. Hysteresis in the Transfer Characteristics of MoS2 Transistors. 2D Mater. 2018, 5, 015014. [Google Scholar] [CrossRef]
- Vu, Q.A.; Fan, S.; Lee, S.H.; Joo, M.K.; Yu, W.J.; Lee, Y.H. Near-Zero Hysteresis and near-Ideal Subthreshold Swing in h-BN Encapsulated Single-Layer MoS2 Field-Effect Transistors. 2D Mater. 2018, 5, 031001. [Google Scholar] [CrossRef]
- Grasser, T. Bias Temperature Instability for Devices and Circuits; Springer Science & Business Media: Cham, Switzerland, 2013. [Google Scholar]
- Vexler, M.I.; Tyaginov, S.E.; Illarionov, Y.Y.; Sing, Y.K.; Shenp, A.D.; Fedorov, V.V.; Isakov, D.V. A General Simulation Procedure for the Electrical Characteristics of Metal-Insulator-Semiconductor Tunnel Structures. Semiconductors 2013, 47, 686–694. [Google Scholar] [CrossRef]
- Register, L.F.; Rosenbaum, E.; Yang, K. Analytic Model for Direct Tunneling Current in Polycrystalline Silicon-Gate Metal-Oxide-Semiconductor Devices. Appl. Phys. Lett. 1999, 74, 457–459. [Google Scholar] [CrossRef]
- Lee, G.H.; Yu, Y.J.; Cui, X.; Petrone, N.; Lee, C.H.; Choi, M.S.; Lee, D.Y.; Lee, C.; Yoo, W.J.; Watanabe, K.; et al. Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano 2013, 7, 7931–7936. [Google Scholar] [CrossRef]
- Lee, C.; Rathi, S.; Khan, M.A.; Lim, D.; Kim, Y.; Yun, S.J.; Youn, D.H.; Watanabe, K.; Taniguchi, T.; Kim, G.H. Comparison of Trapped Charges and Hysteresis Behavior in HBN Encapsulated Single MoS2 Flake Based Field Effect Transistors on SiO2 and HBN Substrates. Nanotechnology 2018, 29, 335202. [Google Scholar] [CrossRef] [PubMed]
- Illarionov, Y.Y.; Rzepa, G.; Waltl, M.; Knobloch, T.; Grill, A.; Furchi, M.M.; Mueller, T.; Grasser, T. The Role of Charge Trapping in MoS2/SiO2 and MoS2/HBN Field-Effect Transistors. 2D Mater. 2016, 3, 035004. [Google Scholar] [CrossRef]
- Knobloch, T.; Illarionov, Y.Y.; Ducry, F.; Schleich, C.; Wachter, S.; Watanabe, K.; Taniguchi, T.; Mueller, T.; Waltl, M.; Lanza, M.; et al. The Performance Limits of Hexagonal Boron Nitride as an Insulator for Scaled CMOS Devices Based on Two-Dimensional Materials. Nat. Electron. 2021, 4, 98–108. [Google Scholar] [CrossRef]
- Watanabe, S.; Maeda, M.; Sugisaki, T.; Tsutsui, K. Fluoride Resonant Tunneling Diodes on Si Substrates Improved by Additional Thermal Oxidation Process. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2005, 44, 2637–2641. [Google Scholar] [CrossRef]
- Guerriero, E.; Pedrinazzi, P.; Mansouri, A.; Habibpour, O.; Winters, M.; Rorsman, N.; Behnam, A.; Carrion, E.A.; Pesquera, A.; Centeno, A.; et al. High-Gain Graphene Transistors with a Thin AlOx Top-Gate Oxide. Sci. Rep. 2017, 7, 2419. [Google Scholar] [CrossRef]
- Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene Field-Effect Transistors Operating at Room-Temperature. Nat. Nanotechnol. 2015, 10, 227–231. [Google Scholar] [CrossRef]
- Nazzari, D.; Genser, J.; Ritter, V.; Bethge, O.; Bertagnolli, E.; Grasser, T.; Weber, W.M.; Lugstein, A. Epitaxial Growth of Crystalline CaF2 on Silicene. ACS Appl. Mater. Interfaces 2022, 14, 32675–32682. [Google Scholar] [CrossRef]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black Phosphorus Field-Effect Transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef]
- Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G.; Sun, Y.; Yang, Y.; Ren, T.L. Vertical MoS2 Transistors with Sub-1-Nm Gate Lengths. Nature 2022, 603, 259–264. [Google Scholar] [CrossRef]
- Gong, Y.; Lin, Z.; Ye, G.; Shi, G.; Feng, S.; Lei, Y.; Elías, A.L.; Perea-Lopez, N.; Vajtai, R.; Terrones, H.; et al. Tellurium-Assisted Low-Temperature Synthesis of MoS2 and WS2 Monolayers. ACS Nano 2015, 9, 11658–11666. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Sebastian, A.; Pop, E.; McClellan, C.J.; Franklin, A.D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A.V.; Appenzeller, J.; et al. Transistors Based on Two-Dimensional Materials for Future Integrated Circuits. Nat. Electron. 2021, 4, 786–799. [Google Scholar] [CrossRef]
- Lian, H.; Liu, J.; Ye, Z.; Shi, C. Synthesis and Photoluminescence Properties of Erbium-Doped BaF2 Nanoparticles. Chem. Phys. Lett. 2004, 386, 291–294. [Google Scholar] [CrossRef]
- Wojtowicz, A.J. Rare-Earth-Activated Wide Bandgap Materials for Scintillators. Nucl. Instrum. Methods Phys. Res. A 2002, 486, 201–207. [Google Scholar] [CrossRef]
- Maier, J. Nanoionics: Ion Transport and Electrochemical Storage in Confined Systems. Nat. Mater. 2005, 4, 805–815. [Google Scholar] [CrossRef]
- Waser, R.; Aono, M. Nanoionics-Based Resistive Switching Memories. Nat. Mater. 2007, 6, 833–840. [Google Scholar] [CrossRef]
- Gombotz, M.; Pregartner, V.; Hanzu, I.; Wilkening, H.M.R. Fluoride-Ion Batteries: On the Electrochemical Stability of Nanocrystalline La0.9Ba0.1F2.9 against Metal Electrodes. Nanomaterials 2019, 9, 1517. [Google Scholar] [CrossRef]
- Sun, G.; Wang, H.; Jiang, Z. Humidity Response Properties of a Potentiometric Sensor Using LaF3 Thin Film as the Solid Electrolyte. Rev. Sci. Instrum. 2011, 82, 083901. [Google Scholar] [CrossRef]
- Moritz, W.; Fillipov, V.; Vasiliev, A.; Cherkashinin, G.; Szeponik, J. A Field Effect Based Hydrogen Sensor for Low and High Concentrations. ECS Trans. 2006, 3, 223. [Google Scholar] [CrossRef]
- Sasidharan, S.; Aswathy, J.; Sajid, F.; Manzoor, K.; Shantikumar, N.; Deepthy, M. Ambient Temperature Synthesis of Citrate Stabilized and Biofunctionalized, Fluorescent Calcium Fluoride Nanocrystals for Targeted Labeling of Cancer Cells. Biomater. Sci. 2012, 1, 294–305. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovanelli, G.; Borghi, M.; Lodi, A.; Grasser, T.; Pasquali, L. Thin Epitaxial Ionic Fluoride Films for Electronics Applications. Surfaces 2025, 8, 22. https://doi.org/10.3390/surfaces8020022
Giovanelli G, Borghi M, Lodi A, Grasser T, Pasquali L. Thin Epitaxial Ionic Fluoride Films for Electronics Applications. Surfaces. 2025; 8(2):22. https://doi.org/10.3390/surfaces8020022
Chicago/Turabian StyleGiovanelli, Giulia, Mauro Borghi, Alessandro Lodi, Tibor Grasser, and Luca Pasquali. 2025. "Thin Epitaxial Ionic Fluoride Films for Electronics Applications" Surfaces 8, no. 2: 22. https://doi.org/10.3390/surfaces8020022
APA StyleGiovanelli, G., Borghi, M., Lodi, A., Grasser, T., & Pasquali, L. (2025). Thin Epitaxial Ionic Fluoride Films for Electronics Applications. Surfaces, 8(2), 22. https://doi.org/10.3390/surfaces8020022