Microplastic-Related Leachate from Recycled Rubber Tiles: The Role of TiO2 Protective Coating
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Aging Test
2.3. Mechanical Properties—Abrasion Testing
2.4. Characterization
2.4.1. FTIR Spectroscopy
2.4.2. Carbonyl Index (C.I.)
2.5. Water Leachate Testing (LC/MS QTOF)
3. Results and Discussion
3.1. FTIR Analysis
3.2. Carbonyl Index (C.I.)
3.3. Mechanical Properties—Abrasion Testing
3.4. Water Lecheate Testing (LC/MS QTOF)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ETRMA-European Tyre & Rubber Manufacturers’ Association, (n.d.). Available online: https://www.etrma.org/ (accessed on 29 March 2024).
- Valentini, F.; Pegoretti, A. End-of-life options of tyres. A review. Adv. Ind. Eng. Polym. Res. 2022, 5, 203–213. [Google Scholar] [CrossRef]
- Armada, D.; Llompart, M.; Celeiro, M.; Garcia-WCastro, P.; Ratola, N.; Dagnac, T.; de Boer, J. Global evaluation of the chemical hazard of recycled tire crumb rubber employed on worldwide synthetic turf football pitches. Sci. Total Environ. 2022, 812, 152542. [Google Scholar] [CrossRef] [PubMed]
- Martin’s Rubber Company. (n.d.). Available online: https://www.martins-rubber.co.uk/ (accessed on 29 March 2024).
- Itoh, Y.; Gu, H. Effect of Ultraviolet Irradiation on Surface Rubber Used in Bridge Bearings. J. Struct. Eng. 2007, 53, 696–705. [Google Scholar]
- Iwase, Y.; Shindo, T.; Kondo, H.; Ohtake, Y.; Kawahara, S. Ozone degradation of vulcanized isoprene rubber as a function of humidity. Polym. Degrad. Stab. 2017, 142, 209–216. [Google Scholar] [CrossRef]
- Pourebrahimi, S.; Pirooz, M. Microplastic pollution in the marine environment: A review. J. Hazard. Mater. Adv. 2023, 10, 100327. [Google Scholar] [CrossRef]
- Kye, H.; Kim, J.; Ju, S.; Lee, J.; Lim, C.; Yoon, Y. Microplastics in water systems: A review of their impacts on the environment and their potential hazards. Heliyon 2023, 9, e14359. [Google Scholar] [CrossRef]
- Zhai, X.; Zheng, H.; Xu, Y.; Zhao, R.; Wang, W.; Guo, H. Characterization and quantification of microplastics in indoor environments. Heliyon 2023, 9, e15901. [Google Scholar] [CrossRef]
- Sutkar, P.R.; Gadewar, R.D.; Dhulap, V.P. Recent trends in degradation of microplastics in the environment: A state-of-the-art review. J. Hazard. Mater. Adv. 2023, 11, 100343. [Google Scholar] [CrossRef]
- Rasmussen, L.A.; Lykkemark, J.; Andersen, T.R.; Vollertsen, J. Permeable pavements: A possible sink for tyre wear particles and other microplastics? Sci. Total Environ. 2023, 869, 161770. [Google Scholar] [CrossRef]
- Zjačić, J.P.; Vujasinović, M.; Kovačić, M.; Božić, A.L.; Kušić, H.; Katančić, Z.; Hrnjak-Murgić, Z. From Macro to Micro Plastics; Influence of Photo-oxidative Degradation. Kem. Ind. 2023, 72, 463–471. [Google Scholar] [CrossRef]
- Enfrin, M.; Myszka, R.; Giustozzi, F. Paving roads with recycled plastics: Microplastic pollution or eco-friendly solution? J. Hazard. Mater. 2022, 437, 129334. [Google Scholar] [CrossRef]
- Österlund, H.; Blecken, G.; Lange, K.; Marsalek, J.; Gopinath, K.; Viklander, M. Microplastics in urban catchments: Review of sources, pathways, and entry into stormwater. Sci. Total Environ. 2023, 858, 159781. [Google Scholar] [CrossRef] [PubMed]
- Klun, B.; Rozman, U.; Kalčíková, G. Environmental aging and biodegradation of tire wear microplastics in the aquatic environment. J. Environ. Chem. Eng. 2023, 11, 110604. [Google Scholar] [CrossRef]
- Prasittisopin, L.; Ferdous, W.; Kamchoom, V. Microplastics in construction and built environment. Dev. Built Environ. 2023, 15, 100188. [Google Scholar] [CrossRef]
- An, L.; Liu, Q.; Deng, Y.; Wu, W.; Gao, Y.; Ling, W. Sources of Microplastic in the Environment. Handb. Environ. Chem. 2020, 95, 143–159. [Google Scholar] [CrossRef]
- Chae, E.; Yang, S.R.; Choi, S.S. Test method for abrasion behavior of tire tread compounds using the wear particles. Polym. Test. 2022, 115, 107758. [Google Scholar] [CrossRef]
- Järlskog, I.; Jaramillo-Vogel, D.; Rausch, J.; Gustafsson, M.; Strömvall, A.M.; Andersson-Sköld, Y. Concentrations of tire wear microplastics and other traffic-derived non-exhaust particles in the road environment. Environ. Int. 2022, 170, 107618. [Google Scholar] [CrossRef]
- Kovochich, M.; Oh, S.C.; Lee, J.P.; Parker, J.A.; Barber, T.; Unice, K. Characterization of tire and road wear particles in urban river samples. Environ. Adv. 2023, 12, 100385. [Google Scholar] [CrossRef]
- Rausch, J.; Jaramillo-Vogel, D.; Perseguers, S.; Schnidrig, N.; Grobéty, B.; Yajan, P. Automated identification and quantification of tire wear particles (TWP) in airborne dust: SEM/EDX single particle analysis coupled to a machine learning classifier. Sci. Total Environ. 2022, 803, 149832. [Google Scholar] [CrossRef]
- Halle, L.L.; Palmqvist, A.; Kampmann, K.; Khan, F.R. Ecotoxicology of micronized tire rubber: Past, present and future considerations. Sci. Total Environ. 2020, 706, 135694. [Google Scholar] [CrossRef]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire wear particles in the aquatic environment—A review on generation, analysis, occurrence, fate and effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Järlskog, I.; Strömvall, A.M.; Magnusson, K.; Gustafsson, M.; Polukarova, M.; Galfi, H.; Aronsson, M.; Andersson-Sköld, Y. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. Sci. Total Environ. 2020, 729, 138950. [Google Scholar] [CrossRef] [PubMed]
- Goßmann, I.; Halbach, M.; Scholz-Böttcher, B.M. Car and truck tire wear particles in complex environmental samples—A quantitative comparison with “traditional” microplastic polymer mass loads. Sci. Total Environ. 2021, 773, 145667. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.; Homem, V.; Cereceda-Balic, F.; Fadic, X.; Alves, A.; Ratola, N. Are volatile methylsiloxanes in downcycled tire microplastics? Levels and human exposure estimation in synthetic turf football fields. Environ. Sci. Pollut. Res. 2024, 31, 11950–11967. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Jan Kole, P.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Rødland, E.S.; Gustafsson, M.; Jaramillo-Vogel, D.; Järlskog, I.; Müller, K.; Rauert, C.; Rausch, J.; Wagner, S. Analytical challenges and possibilities for the quantification of tire-road wear particles. TrAC Trends Anal. Chem. 2023, 165, 117121. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci. Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef]
- Baensch-Baltruschat, B.; Kocher, B.; Kochleus, C.; Stock, F.; Reifferscheid, G. Tyre and road wear particles—A calculation of generation, transport and release to water and soil with special regard to German roads. Sci. Total Environ. 2021, 752, 141939. [Google Scholar] [CrossRef]
- Rødland, E.S.; Lind, O.C.; Reid, M.J.; Heier, L.S.; Okoffo, E.D.; Rauert, C.; Thomas, K.V.; Meland, S. Occurrence of tire and road wear particles in urban and peri-urban snowbanks, and their potential environmental implications. Sci. Total Environ. 2022, 824, 153785. [Google Scholar] [CrossRef]
- Calarnou, L.; Traïkia, M.; Leremboure, M.; Malosse, L.; Dronet, S.; Delort, A.-M.; Besse-Hoggan, P.; Eyheraguibel, B. Assessing biodegradation of roadway particles via complementary mass spectrometry and NMR analyses. Sci. Total Environ. 2023, 900, 165698. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, C.; Liggio, J.; Zhang, X.; Saini, A.; Harner, T. Composition and transformation chemistry of tire-wear derived organic chemicals and implications for air pollution. Atmos. Pollut. Res. 2022, 13, 101533. [Google Scholar] [CrossRef]
- Knight, L.J.; Parker-Jurd, F.N.F.; Al-Sid-Cheikh, M.; Thompson, R.C. Tyre wear particles: An abundant yet widely unreported microplastic? Environ. Sci. Pollut. Res. 2020, 27, 18345–18354. [Google Scholar] [CrossRef] [PubMed]
- Giechaskiel, B.; Grigoratos, T.; Mathissen, M.; Quik, J.; Tromp, P.; Gustafsson, M.; Franco, V.; Dilara, P. Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution. Sustainability 2024, 16, 522. [Google Scholar] [CrossRef]
- Rauert, C.; Rødland, E.S.; Okoffo, E.D.; Reid, M.J.; Meland, S.; Thomas, K.V. Challenges with Quantifying Tire Road Wear Particles: Recognizing the Need for Further Refinement of the ISO Technical Specification. Environ. Sci. Technol. Lett. 2021, 8, 231–236. [Google Scholar] [CrossRef]
- Rosso, B.; Gregoris, E.; Litti, L.; Zorzi, F.; Fiorini, M.; Bravo, B.; Barbante, C.; Gambaro, A.; Corami, F. Identification and quantification of tire wear particles by employing different cross-validation techniques: FTIR-ATR Micro-FTIR, Pyr-GC/MS, and SEM. Environ. Pollut. 2023, 326, 121511. [Google Scholar] [CrossRef]
- Skoczyńska, E.; Leonards, P.E.G.; Llompart, M.; de Boer, J. Analysis of recycled rubber: Development of an analytical method and determination of polycyclic aromatic hydrocarbons and heterocyclic aromatic compounds in rubber matrices. Chemosphere 2021, 276, 130076. [Google Scholar] [CrossRef]
- Ciccu, R.; Costa, G. Recycling of secondary raw materials from end-of-life car tires. WIT Trans. Ecol. Environ. 2012, 155, 1115–1126. [Google Scholar] [CrossRef]
- Patricio, J.; Andersson-Sköld, Y.; Gustafsson, M. End-of-Life Tyres Applications—Technologies and Environmental Impacts. 2021. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1611409&dswid=9797 (accessed on 17 March 2024).
- Armada, D.; Celeiro, M.; Dagnac, T.; Llompart, M. Green methodology based on active air sampling followed by solid phase microextraction and gas chromatography-tandem mass spectrometry analysis to determine hazardous substances in different environments related to tire rubber. J. Chromatogr. A 2022, 1668, 462911. [Google Scholar] [CrossRef]
- Grynkiewicz-Bylina, B.; Słomka-Słupik, B.; Rakwic, B. Tests of Cement and Slag Mortars with SBR Rubber Granulates in Terms of Ecotoxicity and Strength. Inżynieria Miner. 2024, 2, 153–162. [Google Scholar] [CrossRef]
- Yu, H.; Bai, X.; Qian, G.; Wei, H.; Gong, X.; Jin, J.; Li, Z. Impact of Ultraviolet Radiation on the Aging Properties of SBS-Modified Asphalt Binders. Polymers 2019, 11, 1111. [Google Scholar] [CrossRef]
- Bokkers, B.G.H.; Guichelaar, S.K.; Bakker, M.I. Assessment of the Product Limit for PAHs in Rubber Articles. The Case of Shock-Absorbing Tiles. 2016. Available online: https://www.rivm.nl/bibliotheek/rapporten/2016-0184.html (accessed on 29 April 2024).
- Pronk, M.E.J.; Woutersen, M.; Herremans, J.M.M. Synthetic turf pitches with rubber granulate infill: Are there health risks for people playing sports on such pitches? J. Expo. Sci. Environ. Epidemiol. 2020, 30, 567–584. [Google Scholar] [CrossRef] [PubMed]
- Celeiro, M.; Armada, D.; Ratola, N.; Dagnac, T.; de Boer, J.; Llompart, M. Evaluation of chemicals of environmental concern in crumb rubber and water leachates from several types of synthetic turf football pitches. Chemosphere 2021, 270, 128610. [Google Scholar] [CrossRef] [PubMed]
- Perkins, A.N.; Inayat-Hussain, S.H.; Deziel, N.C.; Johnson, C.H.; Ferguson, S.S.; Garcia-Milian, R.; Thompson, D.C.; Vasiliou, V. Evaluation of potential carcinogenicity of organic chemicals in synthetic turf crumb rubber. Environ. Res. 2019, 169, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Pfautsch, S.; Wujeska-Klause, A.; Walters, J. Outdoor playgrounds and climate change: Importance of surface materials and shade to extend play time and prevent burn injuries. Build. Environ. 2022, 223, 109500. [Google Scholar] [CrossRef]
- Benjak, P.; Radetić, L.; Tomaš, M.; Brnardić, I.; Radetić, B.; Špada, V.; Grčić, I. Rubber Tiles Made from Secondary Raw Materials with Immobilized Titanium Dioxide as Passive Air Protection. Processes 2023, 11, 125. [Google Scholar] [CrossRef]
- Leng, Z.; Yu, H. Novel Method of Coating Titanium Dioxide on to Asphalt Mixture Based on the Breath Figure Process for Air-Purifying Purpose. J. Mater. Civ. Eng. 2016, 28, 04015188. [Google Scholar] [CrossRef]
- Boonen, E.; Beeldens, A. Recent photocatalytic applications for air purification in Belgium. Coatings 2014, 4, 553–573. [Google Scholar] [CrossRef]
- La Russa, M.F.; Rovella, N.; De Buergo, M.A.; Belfiore, C.M.; Pezzino, A.; Crisci, G.M.; Ruffolo, S.A. Nano-TiO2 coatings for cultural heritage protection: The role of the binder on hydrophobic and self-cleaning efficacy. Prog. Org. Coatings 2016, 91, 1–8. [Google Scholar] [CrossRef]
- Gherardi, F.; Maravelaki, P.N. Advances in the application of nanomaterials for natural stone conservation. RILEM Tech. Lett. 2022, 7, 20–29. [Google Scholar] [CrossRef]
- Ruffolo, S.A.; Francesco, M.; Russa, L. Nanostructured Coatings for Stone Protection: An Overview. Front. Mater. 2019, 6, 147. [Google Scholar] [CrossRef]
- Esposito, C.; Ingrosso, C.; Petronella, F.; Comparelli, R.; Striccoli, M.; Agostiano, A.; Frigione, M.; Curri, M.L. Progress in Organic Coatings A designed UV—Vis light curable coating nanocomposite based on colloidal TiO2 NRs in a hybrid resin for stone protection. Prog. Org. Coatings 2018, 122, 290–301. [Google Scholar] [CrossRef]
- Nazir, M.; Irfan, M.; Ali, I.; Abdul, M. Photonics and Nanostructures—Fundamentals and Applications Revealing antimicrobial and contrasting photocatalytic behavior of metal chalcogenide deposited P25-TiO2 nanoparticles. Photonics Nanostruct. Fundam. Appl. 2019, 36, 100721. [Google Scholar] [CrossRef]
- Dds, A.S.; Bahador, A.; Khalil, S.; Saffar, A.; Dds, S.; Zaman, M. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J. Prosthodont. Res. 2013, 57, 15–19. [Google Scholar] [CrossRef]
- Salama, A.; Kamel, B.M.; Osman, T.A.; Rashad, R.M. Investigation of mechanical properties of UHMWPE composites reinforced with HAP þ TiO2 fabricated by solvent dispersing technique. J. Mater. Res. Technol. 2022, 21, 4330–4343. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Q.; Jing, D.; Zhou, S.; Shao, L. ScienceDirect Biomechanical properties of nano-TiO2 addition to a medical silicone elastomer: The effect of artificial ageing. J. Dent. 2014, 42, 475–483. [Google Scholar] [CrossRef]
- Elsaka, S.E.; Hamouda, I.M.; Swain, M.V. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: Influence on physical and antibacterial properties. J. Dent. 2011, 39, 589–598. [Google Scholar] [CrossRef]
- Nuzaimah, M.; Sapuan, S.M.; Nadlene, R.; Jawaid, M. Sodium hydroxide treatment ofwaste rubber crumb and its effects on properties of unsaturated polyester composites. Appl. Sci. 2020, 10, 3913. [Google Scholar] [CrossRef]
- Tawfik, M.; Tonnellier, X.; Sansom, C. Light source selection for a solar simulator for thermal applications: A review. Renew. Sustain. Energy Rev. 2018, 90, 802–813. [Google Scholar] [CrossRef]
- Krug, N.; Zarges, J.-C.; Heim, H.-P. Influence of ethylene oxide and gamma irradiation sterilization processes on the degradation behaviour of poly(lactic acid) (PLA) in the course of artificially accelerated aging. Polym. Test. 2024, 132, 108362. [Google Scholar] [CrossRef]
- Lamberti, M.; Maurel-Pantel, A.; Lebon, F. Experimental and numerical evaluation of hydro-thermal ageing’s effects on adhesive connections in offshore structures. Ocean Eng. 2023, 290, 116303. [Google Scholar] [CrossRef]
- ISO 4649:2024; Rubber, Vulcanized or Thermoplastic—Determination of Abrasion Resistance Using a Rotating Cylindrical Drum Device. International Organization for Standardization (ISO): Geneva, Switzerland, 2024.
- Almond, J.; Sugumaar, P.; Wenzel, M.N.; Hill, G.; Wallis, C. Determination of the carbonyl index of polyethylene and polypropylene using speci fi ed area under band methodology with ATR-FTIR Spectroscopy. e-Polymers 2020, 20, 369–381. [Google Scholar] [CrossRef]
- Brandon, J.; Goldstein, M.; Ohman, M.D. Long-term aging and degradation of microplastic particles: Comparing in situ oceanic and experimental weathering patterns. Mar. Pollut. Bull. 2016, 110, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Berset, J.D.; Rennie, E.; Glauner, T. Screening and Identification of Emerging Contaminants in Wastewater Treatment Plant Effluents Using UHPLC/Q-TOF MS and an Accurate Mass Database and Library. 2016. Available online: https://sem.com.tr/wp-content/uploads/Screening-and-Identification-of-Emerging-Contaminants-in-Wastewater-Treatment-Plant.pdf (accessed on 17 September 2024).
- Redon, A.; Le Cam, J.B.; Robin, E.; Miroir, M.; Fralin, J.C. Aging characterization of different nitrile butadiene rubbers for sealing in a pneumatic system: Linking the change of the physicochemical state to the mechanical properties. J. Appl. Polym. Sci. 2023, 140, e54068. [Google Scholar] [CrossRef]
- Aielo, P.B.; Borges, F.A.; Romeira, K.M.; Miranda, M.C.R.; Arruda, L.B.D.; Paulo, P.N.; Drago, B.D.C.; Herculano, R.D. Evaluation of sodium diclofenac release using natural rubber latex as carrier. Mater. Res. 2014, 17, 146–152. [Google Scholar] [CrossRef]
- Ling, L.; Li, J.; Zhang, G.; Sun, R.; Wong, C.P. Self-Healing and Shape Memory Linear Polyurethane Based on Disulfide Linkages with Excellent Mechanical Property. Macromol. Res. 2018, 26, 365–373. [Google Scholar] [CrossRef]
- InstaNANO, FTIR Functional Group Database Table with Search-InstaNANO, (n.d.). Available online: https://instanano.com/ (accessed on 2 May 2024).
- Merck, IR Spectrum Table by Frequency Range. (n.d.). Available online: https://www.sigmaaldrich.com/HR/en (accessed on 2 May 2024).
- Liao, M.; Liu, Z.; Gao, Y.; Liu, L.; Xiang, S. Study on UV aging resistance of nano-TiO2/montmorillonite/styrene-butadiene rubber composite modified asphalt based on rheological and microscopic properties. Constr. Build. Mater. 2021, 301, 124108. [Google Scholar] [CrossRef]
- Gomes, F.O.; Rocha, M.R.; Alves, A.; Ratola, N. A review of potentially harmful chemicals in crumb rubber used in synthetic football pitches. J. Hazard. Mater. 2021, 409, 124998. [Google Scholar] [CrossRef]
- Paredes, M.; Viteri, R.; Castillo, T.; Caminos, C.; Enyoh, C.E. Microplastics from degradation of tires in sewer networks of the city of Riobamba, Ecuador. Environ. Eng. Res. 2020, 26, 200276. [Google Scholar] [CrossRef]
- Liu, M.; Xu, H.; Feng, R.; Gu, Y.; Bai, Y.; Zhang, N.; Wang, Q.; Ho, S.S.H.; Qu, L.; Shen, Z.; et al. Chemical composition and potential health risks of tire and road wear microplastics from light-duty vehicles in an urban tunnel in China. Environ. Pollut. 2023, 330, 121835. [Google Scholar] [CrossRef]
- Celeiro, M.; Dagnac, T.; Llompart, M. Determination of priority and other hazardous substances in football fields of synthetic turf by gas chromatography-mass spectrometry: A health and environmental concern. Chemosphere 2018, 195, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Seiwert, B.; Klöckner, P.; Wagner, S.; Reemtsma, T. Source-related smart suspect screening in the aqueous environment: Search for tire-derived persistent and mobile trace organic contaminants in surface waters. Anal. Bioanal. Chem. 2020, 412, 4909–4919. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information, Compound Summary for CID 13625, 2(3H)-Benzothiazolone, PubChem. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/13625 (accessed on 28 June 2024).
- National Center for Biotechnology Information, PubChem Compound Summary for CID 17520, 1,2-Benzisothiazol-3(2H)-one, PubChem. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1_2-Benzisothiazol-3_2H_-one (accessed on 28 June 2024).
- Vazquet-Duhalt, R.; Marquez-Rocha, F.; Ponce, E.; Licea, A.F.; Viana, M.T. Nonylphenol, an integrated vision of a pollutant. Scientific review. Appl. Ecol. Environ. Res. 2005, 4, 1–25. [Google Scholar] [CrossRef]
- Duque-Villaverde, A.; Armada, D.; Dagnac, T.; Llompart, M. Recycled tire rubber materials in the spotlight. Determination of hazardous and lethal substances. Sci. Total Environ. 2024, 929, 172674. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tang, T.; Li, Y.; Wang, R.; Chen, X.; Song, D.; Du, X.; Tao, X.; Zhou, J.; Dang, Z.; et al. Non-targeted screening and photolysis transformation of tire-related compounds in roadway runoff. Sci. Total Environ. 2024, 924, 171622. [Google Scholar] [CrossRef]
- Binda, G.; Kalčíková, G.; Allan, I.J.; Hurley, R.; Rødland, E.; Spanu, D.; Nizzetto, L. Microplastic aging processes: Environmental relevance and analytical implications. TrAC Trends Anal. Chem. 2024, 172, 117566. [Google Scholar] [CrossRef]
Sample | C=O 1850–1650 | C−O 1300–1140 | Sample | C=O 1850–1650 | C−O 1300–1140 |
---|---|---|---|---|---|
RRT/0 | 0.6204 | 1.2262 | SGT/0 | 0.5410 | 1.1561 |
RRT/4W/U | 1.5639 | 7.3035 | SGT/4W/U | 0.8111 | 1.3107 |
RRT/6W/U | 0.9748 | 4.2755 | SGT/6W/U | 0.7781 | 1.2532 |
RRT/8W/U | 1.1850 | 0.8438 | SGT/8W/U | 0.8130 | 1.2663 |
RRT/4W/B | 1.1167 | 2.3274 | SGT/4W/B | 0.7811 | 1.0137 |
RRT/6W/B | 2.1125 | 1.3821 | SGT/6W/B | 0.7234 | 1.5315 |
RRT/8W/B | 0.7485 | 1.2005 | SGT/8W/B | 0.8445 | 1.1907 |
Name | CAS | Mass | RT (min) | RSD (Mass, ppm) | Possible Origin |
---|---|---|---|---|---|
HOBT/2-Hydroxybenzothiazole | 934-34-9 | 151.0101 | 14.617 | 1.59 | rubber accelerator |
BIT/Benzisothiazolinone | 2634-33-5 | 151.0101 | 14.617 | 1.59 | rubber and polymerized materials preservatives |
2-Mercaptobenzoxazole | 2382-96-9 | 151.0101 | 14.617 | 1.59 | rubber accelerator |
4-Nonylphenoxyacetic acid | 3115-49-9 | 278.1885 | 17.605 | 1.57 | Surfactant degradation |
Benzothiazole-2-sulfonic acid | 941-57-1 | 214.9721 | 12.509 | 2.52 | rubber accelerator |
4-Hydroxybenzoic acid | 138.0326 | 12.576 | 2.58 | Additive, corrosion inhibitor | |
Camphor | 152.1205 | 17.122 | 1.46 | Additive, plasticizer | |
Isoborneol | 124-76-5 | 154.1359 | 16.247 | 5.03 | Flavor and fragrance additive |
Dibutyl adipate | 105-99-7 | 258.1839 | 16.576 | 2.38 | Plasticizers |
Methylsalicylate | 119-36-8 | 152.0484 | 13.839 | 1.45 | UV light stabilizer |
4-Methoxybenzoic acid | 100-09-4 | 180.1156 | 17.132 | 5.6 | Flavoring Agents |
2-tert-Butyl-4-methoxyphenol | 25013-16-5 | 192.1523 | 16.786 | 5.3 | Antioxidant, additive |
Ionone | 256.0636 | 17.671 | 1.94 | Flavoring agent | |
N4-Acetylsulfaguanidin (Acetamide) | 19077-97-5 | 206.1682 | 18.594 | 5.27 | solvent, plasticizer, stabilizer |
4-tert-Octylphenol | 140-66-9 | 125.9992 | 5.377 | 1.84 | rubber additives, antioxidant |
Ethyl sulfate | 540-82-9 | 135.0155 | 12.801 | 1.44 | Environmental contaminant |
4-tert-Butylbenzoic acid | 98-73-7 | 144.1147 | 16.283 | 2.86 | Regulator of polymerization, inhibitor of corrosion |
Benzothiazole | 166.9865 | 15.414 | 1.56 | rubber accelerator | |
MBT/2-Mercaptobenzothiazole | 149-30-4 | 198.1414 | 17.767 | 4.38 | Rubber accelerator |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benjak, P.; Radetić, L.; Presečki, I.; Brnardić, I.; Sakač, N.; Grčić, I. Microplastic-Related Leachate from Recycled Rubber Tiles: The Role of TiO2 Protective Coating. Surfaces 2024, 7, 786-800. https://doi.org/10.3390/surfaces7030051
Benjak P, Radetić L, Presečki I, Brnardić I, Sakač N, Grčić I. Microplastic-Related Leachate from Recycled Rubber Tiles: The Role of TiO2 Protective Coating. Surfaces. 2024; 7(3):786-800. https://doi.org/10.3390/surfaces7030051
Chicago/Turabian StyleBenjak, Paula, Lucija Radetić, Ivana Presečki, Ivan Brnardić, Nikola Sakač, and Ivana Grčić. 2024. "Microplastic-Related Leachate from Recycled Rubber Tiles: The Role of TiO2 Protective Coating" Surfaces 7, no. 3: 786-800. https://doi.org/10.3390/surfaces7030051
APA StyleBenjak, P., Radetić, L., Presečki, I., Brnardić, I., Sakač, N., & Grčić, I. (2024). Microplastic-Related Leachate from Recycled Rubber Tiles: The Role of TiO2 Protective Coating. Surfaces, 7(3), 786-800. https://doi.org/10.3390/surfaces7030051