Surface Migration of Fatty Acid to Improve Sliding Properties of Hypromellose-Based Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Film Preparation Method
2.2.2. Determination of Moisture Sorption Isotherms
2.2.3. Film Water Vapor Transmission Rate (WVTR) Determination
2.2.4. Contact Angle Measurements
2.2.5. FTIR-ATR Spectrometry
2.2.6. Tribology Measurements
3. Results
3.1. Thickness and Appearance of HM-Formulated Films
3.2. Water Affinity of HM and HM-Formulated Films
3.2.1. Moisture Sorption Isotherms of HM and HM-SA Films
3.2.2. WVTR Determination of HM and HM-SA Films
3.3. Surface Roughness of HM and HM-SA Films
3.4. Water Contact Angle of HM and HM-SA Films
3.5. Variation in Surface Free Energy with SA Content
3.6. Quantification of the Migration of SA Molecules at the Film Surface
3.7. IR Spectrometric Characterization of HM and HM-SA Films and Quantification of the Migration of SA Molecules at the HM-SA Film
3.8. Effect of Stearic Acid on the Friction Properties of HM-SA Films
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villalobos, R.; Hernández-Munõz, P.; Chiralt, A. Effect of surfactants on water sorption and barrier properties of hydroxypropyl methylcellulose films. Food Hydrocolloids 2006, 20, 502–509. [Google Scholar] [CrossRef]
- Sebti, I.; Ham-Pichavant, F.; Coma, V. Edible bioactive fatty acid−cellulosic derivative composites used in food-packaging applications. J. Agric. Food Chem. 2002, 50, 4290–4294. [Google Scholar] [CrossRef] [PubMed]
- Suyatma, N.E.; Tighzert, L.; Copinet, A.; Coma, V. Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. J. Agric. Food Chem. 2005, 53, 3950–3957. [Google Scholar] [CrossRef]
- Debeaufort, F.; Voilley, A. Methylcellulose-based edible films and coatings: 2. Mechanical and thermal properties as a function of plasticizer content. J. Agric. Food Chem. 1997, 45, 685–689. [Google Scholar] [CrossRef]
- Gallo, J.A.Q.; Debeaufort, F.; Voilley, A. Interactions between aroma and edible films. 1. Permeability of methylcellulose and low-density polyethylene films to methyl ketones. J. Agric. Food Chem. 1999, 47, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Kester, J.J.; Fennema, O.R. Edible films and coatings: A review. Food Technol. 1986, 40, 47–59. [Google Scholar]
- Möller, H.; Grelier, S.; Pardon, P.; Coma, V. Antimicrobial and physicochemical properties of chitosan−HPMC-based films. J. Agric. Food Chem. 2004, 52, 6585–6591. [Google Scholar] [CrossRef] [PubMed]
- Sebti, I.; Chollet, E.; Degraeve, P.; Noel, C.; Peyrol, E. Water sensitivity, antimicrobial, and physicochemical analyses of edible films based on HPMC and/or chitosan. J. Agric. Food Chem. 2007, 55, 693–699. [Google Scholar] [CrossRef]
- Villalobos-Carvagal, R.; Hernandez-Munoz, P.; Albors, A.; Chiralt, A. Barrier and optical properties of edible hydroxypropyl methylcellulose coatings containing surfactants applied to fresh cut carrot slices. Food Hydrocoll. 2009, 23, 526–535. [Google Scholar] [CrossRef]
- Hagenmaier, R.D.; Shaw, P.E. Moisture permeability of edible films made with fatty acid and hydroxypropyl methyl cellulose. J. Agric. Food Chem. 1990, 38, 1799–1803. [Google Scholar] [CrossRef]
- Ayranci, E.; Tunc, S. The effect of fatty acid content on water vapour and carbon dioxide transmissions of cellulose-based edible films. Food Chem. 2001, 72, 231–236. [Google Scholar] [CrossRef]
- Coma, V.; Sebti, I.; Pardon, P.; Deschamps, A.; Pichavant, H. Antimicrobial edible packaging based on cellulosic ethers, fatty acids, and nisin incorporation to inhibit Listeria innocua and Staphylococcus aureus. J. Food Protect. 2001, 64, 470–475. [Google Scholar] [CrossRef]
- Felton, L.A.; Austin-Forbes, T.; Moore, T.A. Influence of surfactants in aqueous-based polymeric dispersions on the thermomechanical and adhesive properties of acrylic films. Drug Dev. Ind. Pharm. 2000, 26, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Weller, C.L.; Vergano, P.J.; Testin, R.F. Permeability and mechanical properties of cellulose-based edible films. J. Food Sci. 1993, 58, 1361–1364. [Google Scholar] [CrossRef]
- McHugh, T.H.; Aujard, J.F.; Krochta, J.M. Plasticized whey protein edible films: Water vapor permeability properties. J. Food Sci. 1994, 59, 416–419. [Google Scholar] [CrossRef]
- ASTM E 96/E 96 M-05; Standard Test Methods for Water Vapor Transmission of Materials. ASTM International: West Conshohocken, PA, USA, 2005.
- Fowkes, F.M. Additivity of intermolecular forces at interfaces. I. Determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids. J. Phys. Chem. 1963, 67, 2538–2541. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Galliano, A.; Bistac, S.; Schultz, J. The role of free chains in adhesion and friction of poly(dimethylsiloxane) (PDMS) networks. J. Adhesion 2003, 79, 973–991. [Google Scholar] [CrossRef]
- Yang, L.; Paulson, A.T. Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food Res. Int. 2000, 33, 571–578. [Google Scholar] [CrossRef]
- Lim, L.T.; Mine, Y.; Tung, M.A. Barrier and tensile properties of transglutaminase cross-linked gelatin films as affected by relative humidity, temperature, and glycerol content. J. Food Sci. 1999, 64, 616–622. [Google Scholar] [CrossRef]
- Chinnan, M.S.; Park, H.J. Effect of plasticizer level and temperature on water vapor transmission of cellulose-based edible films. J. Food Process Eng. 1995, 18, 417–429. [Google Scholar] [CrossRef]
- Debeaufort, F.; Voilley, A. Methyl cellulose-based edible films and coatings. I. Effect of plasticizer content on water and 1-octen-3-ol sorption and transport. Cellulose 1995, 2, 205–213. [Google Scholar] [CrossRef]
- Tanaka, M.; Ishizaki, S.; Suzuki, T.; Takai, R. Water vapor permeability of edible films prepared from fish water soluble proteins as affected by lipid type. J. Tokyo Univ. Fish. 2001, 87, 31–37. [Google Scholar]
- McHugh, T.; Krochta, J.M. Water vapor permeability properties of edible whey protein-lipid emulsion films. J. Am. Oil Chem. Soc. 1994, 71, 307–312. [Google Scholar] [CrossRef]
- Péroval, C.; Debeaufort, F.; Despré, D.; Voilley, A. Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics. J. Agric. Food Chem. 2002, 50, 3977–3983. [Google Scholar] [CrossRef] [PubMed]
- Fowkes, F.M. Hydrophobic Surfaces; Academic Press Inc.: New York, NY, USA, 1969. [Google Scholar]
- Cassie, A.B.D. Contact angles. Discuss. Faraday Soc. 1948, 3, 11–15. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2004. [Google Scholar]
- O’Shea, S.J.; Welland, M.E.; Rayment, T. Atomic force microscope study of boundary layer lubrication. Appl. Phys. Lett. 1992, 61, 2240–2242. [Google Scholar] [CrossRef]
Film | Slope |
---|---|
HM | 87 ± 1 |
HM–0.1% SA | 86 ± 1 |
HM–0.5% SA | 84 ± 1 |
HM–1% SA | 80 ± 1 |
Film | Ra (nm) |
---|---|
HM | 2.3 ± 0.2 |
HM–0.1% SA | 1.8 ± 0.2 |
HM–0.5% SA | 1.2 ± 0.3 |
HM–1% SA | 0.8 ± 0.3 |
Film | θ (°) |
---|---|
HM | 69 ± 2 |
HM–0.1% SA | 84 ± 2 |
HM–0.5% SA | 91 ± 2 |
HM–1% SA | 94 ± 2 |
Film | γs (mJ.m−2) | γsD (mJ.m−2) | γsND (mJ.m−2) |
---|---|---|---|
HM | 43 ± 1 | 33 ± 1 | 10 ± 1 |
SA | 22 ± 1 | 22 ± 1 | / |
HM–0.1% SA | 36 ± 1 | 32 ± 1 | 4 ± 1 |
HM–0.5% SA | 34 ± 1 | 32 ± 1 | 2 ± 1 |
HM–1% SA | 31 ± 1 | 30 ± 1 | 1 ± 1 |
Film | I (2916 cm−1) | I (2847 cm−1) | Surface Fraction of SA (%) |
---|---|---|---|
HM | 0.081 | 0.050 | 0 |
SA | 0.077 | 0.070 | 100 |
HM–0.1% SA | 0.084 | 0.051 | 5 |
HM–0.5% SA | 0.098 | 0.060 | 50 |
HM–1% SA | 0.107 | 0.066 | 80 |
Film | µmacro |
---|---|
HM | 0.38 |
HM–0.1% SA | 0.12 |
HM–0.5% SA | 0.10 |
HM–1% SA | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brogly, M.; Bistac, S.; Fahs, A. Surface Migration of Fatty Acid to Improve Sliding Properties of Hypromellose-Based Coatings. Surfaces 2024, 7, 666-679. https://doi.org/10.3390/surfaces7030043
Brogly M, Bistac S, Fahs A. Surface Migration of Fatty Acid to Improve Sliding Properties of Hypromellose-Based Coatings. Surfaces. 2024; 7(3):666-679. https://doi.org/10.3390/surfaces7030043
Chicago/Turabian StyleBrogly, Maurice, Sophie Bistac, and Armand Fahs. 2024. "Surface Migration of Fatty Acid to Improve Sliding Properties of Hypromellose-Based Coatings" Surfaces 7, no. 3: 666-679. https://doi.org/10.3390/surfaces7030043
APA StyleBrogly, M., Bistac, S., & Fahs, A. (2024). Surface Migration of Fatty Acid to Improve Sliding Properties of Hypromellose-Based Coatings. Surfaces, 7(3), 666-679. https://doi.org/10.3390/surfaces7030043