A Comprehensive Protocol for the Life Cycle Assessment of Green Systems for Painting Cleaning
Abstract
1. Introduction
- climate change (GWP100);
- freshwater ecotoxicity (CTUe);
- human toxicity, both carcinogenic and non-carcinogenic (CTUh);
- water consumption (AWARE);
- hazardous waste generation.
2. Materials and Methods
- First, as per kilogram of formulation, to allow material-to-material comparison;
- Second, normalized per 100 mL of usable solution to account for density differences relevant in practical application;
- Lastly, for a complete treatment scenario, they are scaled as a 0.5 kg application mass to quantify system-level impacts, including application media.
2.1. Green Formulations
2.2. Life Cycle Inventory and Characterization Factors
2.3. Impact Calculation Methodology
- Processing energy by formulation type:
- Simple solvent blends: <0.01 kWh kg−1 (negligible);
- Freeze–thaw gels (PVA/PVP): 0.8 kWh kg−1→0.236 kg CO2 eq kg−1;
- UV photopolymerization (p(HEMA)/PVP): 2.0 kWh kg−1→0.590 kg CO2 eq kg−1;
- Thermal polymerization: 1.2 kWh kg−1→0.354 kg CO2 eq kg−1;
- High-shear emulsification (APG): 0.3 kWh kg−1→0.089 kg CO2 eq kg−1;
- Ambient mixing (Carbopol and DES): 0.05–0.1 kWh kg−1→0.015–0.030 kg CO2 eq kg−1.
- 2.
- Transport: 500 km by European truck, 0.062 kg CO2 eq t−1·km−1.
- 3.
- Disposal: 80% incineration with energy recovery + 20% landfill (EU average).
Gel Formulation Calculation Example
- PVA: 9.0% = 0.090 kg;
- PVP: 3.0% = 0.030 kg;
- Borax: 0.6% = 0.006 kg;
- Water: 87.4% = 0.874 kg.
- PVA: 0.090 × 3.45 = 0.311 kg CO2 eq;
- PVP: 0.030 × 3.10 = 0.093 kg CO2 eq;
- Borax: 0.006 × 0.95 = 0.006 kg CO2 eq;
- Water: 0.874 × 0.001 = 0.001 kg CO2 eq.
- Freeze–thaw: 0.8 kWh × 0.295 = 0.236 kg CO2 eq.
- 500 km truck: 1.0 kg × 0.5 t × 0.062 = 0.031 kg CO2 eq.
- 0.311 + 0.093 + 0.006 + 0.001 + 0.236 + 0.031 = 0.678 kg CO2 eq kg−1.
- Polymers (PVA + PVP): 0.404/0.678 = 59.6%;
- Processing: 0.236/0.678 = 34.8%;
- Transport: 0.031/0.678 = 4.6%;
- Other: 0.007/0.678 = 1.0%.
2.4. Comparative Analysis Framework
- Direct solvent replacement: FAME vs. white spirit, methylal vs. acetone (material-level comparison).
- System substitution: gel vs. cotton swab application (removal of absorbent material and reduction of solvent use).
- Formulation replacement: biosurfactants vs. synthetic surfactants.
2.5. System Boundary Considerations for Application Protocols
2.6. Cross-Study Validation
- White spirit = 0.26 ÷ 0.48 = 0.54 kg CO2 eq kg−1;
- Cotton = 3.41 ÷ 0.50 = 6.82 kg CO2 eq kg−1.
3. Results
3.1. Impact of Green Alternatives
- ChCl: 0.431 kg × 4.00 = 1.724 kg CO2 eq;
- Glycerol: 0.569 kg × 0.90 = 0.512 kg CO2 eq;
- Processing energy: 0.75 kWh × 0.295 kg CO2 eq kWh−1 = 0.221 kg CO2 eq;
- Transport (500 km): 0.013 kg CO2 eq;
- Gross total: 2.470 kg CO2 eq kg−1.
- Glycerol biodiesel co-product allocation [69]: Under economic allocation, waste glycerol from transesterification receives near-zero production burdens, reducing its contribution from 0.512 kg CO2 eq to approximately 0.05 kg CO2 eq (a credit: −0.46 kg CO2 eq).
- Choline chloride waste-stream sourcing: potential production from ethanolamine waste streams (a quaternization by-product from surfactant manufacturing as feedstock) results in avoided disposal credits, reducing the contribution by an estimated −1.20 kg CO2 eq through waste valorization benefits.
- End-of-life biodegradability: full microbial degradation with energy recovery potential providing approximately −0.36 kg CO2 eq through avoided fossil fuel consumption in waste incineration systems.
3.2. Normalized Comparison with Conventional Baselines
3.3. Volume-Normalized Impacts
3.4. Multi-Indicator Environmental Profiles
3.5. Cross-Study Validation and Baseline Sensitivity
3.6. System-Level Comparison: Conventional Protocols Versus Gel Delivery
4. Discussion
- Water-stressed regions (e.g., Mediterranean, Middle East): White spirit uses 93 times less water than DES (0.019 vs. 1.76 m3) and 190 times less than glycerol formal (0.019 vs. 3.23 m3), making it a viable option despite its higher GWP in areas with critical water scarcity.
- Ecologically sensitive environments (wetlands, coral reefs, protected aquatic systems): Methylal (11.3 CTUe), AGE/AGESS microemulsion (8.2 CTUe), or white spirit (3.6 CTUe) warrant prioritization over FAME (212.9 CTUe) regardless of climate performance, as toxic substance releases prove locally catastrophic in vulnerable ecosystems.
- Climate-priority contexts (institutional carbon targets, EU Green Deal alignment): AGE/AGESS microemulsion (0.15), Carbopol gel (0.40), or DES (0.45); achieving the lowest absolute GWP values enables maximum climate mitigation when other environmental constraints prove non-limiting.
- Ordinal rankings should be the primary conclusion, e.g., “DES has a lower climate impact than FAME, which outperforms Solketal.”
- Cardinal claims should be reported as ranges, e.g., “FAME’s climate impact is between −39% and +52% compared to white spirit, depending on refining assumptions.”
- Methodological provenance must be fully disclosed—this includes database version, specific process choices, system models, and geographic scope—allowing readers to understand the assumptions and replicate the analysis.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| LCIA | Life Cycle Impact Assessment |
| LCI | Life Cycle Inventory |
| GWP | Global Warming Potential |
| GWP100 | Global Warming Potential (100-year time horizon) |
| CTUe | Comparative Toxic Units for ecosystems (freshwater ecotoxicity) |
| CTUh | Comparative Toxic Units for humans |
| CTUh-carc | Comparative Toxic Units for humans—carcinogenic |
| CTUh-non-carc | Comparative Toxic Units for humans—non-carcinogenic |
| AWARE | Available WAter REmaining |
| EF | Environmental Footprint |
| PEF | Product Environmental Footprint |
| EHS | Environment, Health, and Safety |
| FAME | Fatty Acid Methyl Esters |
| DES | Deep Eutectic Solvents |
| NADES | Natural Deep Eutectic Solvents |
| DMC | Dimethyl Carbonate |
| DEC | Diethyl Carbonate |
| MIBK | Methyl Isobutyl Ketone |
| IPA | Isopropanol (Isopropyl Alcohol) |
| ChCl | Choline Chloride |
| APG | Alkyl Polyglucoside |
| AGE | Alkyl Glyceryl Ether |
| AGESS | Alkyl Glyceryl Ether Sulfosuccinate |
| HMDI | Hexamethylene Diisocyanate |
| PVA | Poly(vinyl alcohol) |
| PVP | Poly(vinylpyrrolidone) |
| HEMA | 2-Hydroxyethyl Methacrylate |
| p(HEMA) | Poly(2-hydroxyethyl methacrylate) |
| PEMA | Poly(ethyl methacrylate) |
| MBA | N,N’-Methylenebisacrylamide |
| PKO | Palm Kernel Oil |
| ISO | International Organization for Standardization |
| GLO | Global (geographic scope in Ecoinvent) |
| RER | Europe (geographic scope in Ecoinvent) |
| IPCC | Intergovernmental Panel on Climate Change |
| AR6 | Sixth Assessment Report (IPCC) |
| kg CO2 eq | Kilograms of carbon dioxide equivalent |
| kg CO2 eq kg−1 | Kilograms CO2 equivalent per kilogram |
| kWh | Kilowatt-hour |
| m3 | Cubic meters |
| wt% | Weight percent |
| w/w | Weight per weight |
| g mL−1 | Grams per milliliter |
| t−1·km−1 | Per tonne per kilometer |
| CF | Characterization Factor |
| EU | European Union |
| VOC | Volatile Organic Compounds |
| EDTA | Ethylenediaminetetraacetic acid |
References
- Baglioni, M.; Poggi, G.; Chelazzi, D.; Baglioni, P. Advanced Materials in Cultural Heritage Conservation. Molecules 2021, 26, 3967. [Google Scholar] [CrossRef]
- Melchiorre, C.; Melchiorre, M.; Marra, M.; Rizzo, E.; Fatigati, G.; Rossi, P.; Cerruti, P.; Improta, I.; Amoresano, A.; Marino, G.; et al. Green Solvents and Restoration: Application of Biomass-Derived Solvents in Cleaning Procedures. J. Cult. Herit. 2023, 62, 3–12. [Google Scholar] [CrossRef]
- Passaretti, A.; Cuvillier, L.; Sciutto, G.; Guilminot, E.; Joseph, E. Biologically Derived Gels for the Cleaning of Historical and Artistic Metal Heritage. Appl. Sci. 2021, 11, 3405. [Google Scholar] [CrossRef]
- Gueidão, M.; Vieira, E.; Bordalo, R.; Moreira, P. Available Green Conservation Methodologies for the Cleaning of Cultural Heritage: An Overview. Estud. Conserv. Restauro 2021, 12, 22–44. [Google Scholar] [CrossRef]
- Fife, G.R.; Samyn, P.; Stabik, B.; Chauvat, C.; Sels, H. An Innovative Methodology for Testing and Selecting Greener Solvents for Varnishing Paintings. npj Herit. Sci. 2025, 13, 40. [Google Scholar] [CrossRef]
- Shah, P.; Parikh, S.; Shah, M.; Dharaskar, S. A Holistic Review on Application of Green Solvents and Replacement Study for Conventional Solvents. Biomass Convers. Biorefinery 2022, 12, 1985–1999. [Google Scholar] [CrossRef]
- Nanda, B.; Sailaja, M.; Mohapatra, P.; Pradhan, R.; Nanda, B.B. Green Solvents: A Suitable Alternative for Sustainable Chemistry. Mater. Today Proc. 2021, 47, 1234–1240. [Google Scholar] [CrossRef]
- Mangotra, A.; Singh, S.K. Volatile Organic Compounds: A Threat to the Environment and Health Hazards to Living Organisms—A Review. J. Biotechnol. 2024, 382, 51–69. [Google Scholar] [CrossRef]
- Warner, J.C.; Cannon, A.S.; Dye, K.M. Green Chemistry. Environ. Impact Assess. Rev. 2004, 24, 775–799. [Google Scholar] [CrossRef]
- Macchia, A.; Valentini, F.; Colasanti, I.A.; Zaratti, C. Prediction of Green Solvent Applicability in Cultural Heritage Using Hansen Solubility Parameters, Cremonesi Method and Integrated Toxicity Index. Sustainability 2025, 17, 2944. [Google Scholar] [CrossRef]
- Persakis, A.; Nikolopoulos, T.; Negkakis, I.C.; Pavlopoulos, A. Greenwashing in Marketing: A Systematic Literature Review and Bibliometric Analysis. Int. Rev. Public Nonprofit Mark. 2025, 22, 957–992. [Google Scholar] [CrossRef]
- de Freitas Netto, S.V.; Sobral, M.F.F.; Ribeiro, A.R.B.; Soares, G.R.D.L. Concepts and Forms of Greenwashing: A Systematic Review. Environ. Sci. Eur. 2020, 32, 19. [Google Scholar] [CrossRef]
- Heyrman, J.; Mergaert, J.; Denys, R.; Swings, J. The Use of Fatty Acid Methyl Ester Analysis (FAME) for the Identification of Heterotrophic Bacteria Present on Three Mural Paintings Showing Severe Damage by Microorganisms. FEMS Microbiol. Lett. 1999, 181, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Zaratti, C.; Marinelli, L.; Colasanti, I.A.; Barbaccia, F.I.; Aureli, H.; Prestileo, F.; De Caro, T.; La Russa, M.F.; Macchia, A. Evaluation of Fatty Acid Methyl Esters (FAME) as a Green Alternative to Common Solvents in Conservation Treatments. Appl. Sci. 2024, 14, 1970. [Google Scholar] [CrossRef]
- Macchia, A.; Rivaroli, L.; Gianfreda, B. The GREEN RESCUE: A “Green” Experimentation to Clean Old Varnishes on Oil Paintings. Nat. Prod. Res. 2019, 35, 2335–2345. [Google Scholar] [CrossRef] [PubMed]
- Hikmawanti, N.P.E.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural Deep Eutectic Solvents (NADES): Phytochemical Extraction Performance Enhancer for Pharmaceutical and Nutraceutical Product Development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Acosta-Vega, L.; Cifuentes, A.; Ibáñez, E.; Galeano Garcia, P. Exploring Natural Deep Eutectic Solvents (NADES) for Enhanced Essential Oil Extraction: Current Insights and Applications. Molecules 2025, 30, 284. [Google Scholar] [CrossRef]
- Macchia, A.; Strangis, R.; De Angelis, S.; Cersosimo, M.; Docci, A.; Ricca, M.; Gabriele, B.; Mancuso, R.; La Russa, M.F. Deep Eutectic Solvents (DESs): Preliminary Results for Their Use Such as Biocides in the Building Cultural Heritage. Materials 2022, 15, 4005. [Google Scholar] [CrossRef]
- Macchia, A.; Mancuso, R.; Strangis, R.; Colasanti, I.A.; Novello, M.; La Russa, M.F.; Gabriele, B.; Beneduci, R. Deep Eutectic Solvents as More Sustainable Dispersion Media for Beeswax Coatings from Cultural Heritage: Experimental Insights and Theoretical Modeling. Chem.—Asian J. 2025, 20, e00673. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Tan, J.-N.; Wei, Y.; Li, C.; Dou, Y.; Zhang, Z. Application of Choline Chloride-Based Deep Eutectic Solvents for the Extraction of Dopamine from Purslane (Portulaca oleracea L.). Results Chem. 2022, 4, 100299. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, C.; Liu, C.; Lu, X.; Feng, X.; Ji, X. Thermodynamic Study of Choline Chloride-Based Deep Eutectic Solvents with Water and Methanol. J. Chem. Eng. Data 2020, 65, 2446–2457. [Google Scholar] [CrossRef]
- Babu, A.S.; Sangeetha, A.; Jaganmohan, R. Green Solvents for Food Processing Applications. In Food Chemistry: The Role of Additives, Preservatives and Adulteration; Wiley: Hoboken, NJ, USA, 2021; pp. 341–374. [Google Scholar] [CrossRef]
- Zaib, Q.; Eckelman, M.J.; Yang, Y.; Kyung, D. Are Deep Eutectic Solvents Really Green? A Life-Cycle Perspective. Green Chem. 2022, 24, 7924–7930. [Google Scholar] [CrossRef]
- Macchia, A.; Zaratti, C.; Colasanti, I.A.; Prestileo, F.; De Caro, T.; Valentini, F. Bio-Based Surfactants in Heritage Conservation: Performance, Challenges and Future Directions. Chem.—Asian J. 2025, 20, e70355. [Google Scholar] [CrossRef]
- Chelazzi, D.; Bordes, R.; Giorgi, R.; Holmberg, K.; Baglioni, P. The Use of Surfactants in the Cleaning of Works of Art. Curr. Opin. Colloid Interface Sci. 2020, 45, 108–123. [Google Scholar] [CrossRef]
- Bonelli, N.; Poggi, G.; Chelazzi, D.; Giorgi, R.; Baglioni, P. Poly(vinyl alcohol)/poly(vinyl pyrrolidone) Hydrogels for the Cleaning of Art. J. Colloid Interface Sci. 2019, 536, 339–348. [Google Scholar] [CrossRef]
- Sansonetti, A.; Bertasa, M.; Canevali, C.; Rabbolini, A.; Anzani, M.; Scalarone, D. A Review in Using Agar Gels for Cleaning Art Surfaces. J. Cult. Herit. 2020, 44, 285–296. [Google Scholar] [CrossRef]
- Casoli, A.; Di Diego, Z.; Isca, C. Cleaning painted surfaces: Evaluation of leaching phenomenon induced by solvents applied for the removal of gel residues. Environ. Sci. Pollut. Res. 2014, 21, 13252–13263. [Google Scholar] [CrossRef] [PubMed]
- Macchia, A.; Zaratti, C.; Ciogli, D.; Rivici, G.; Pilati, S.; Sbiri, N.; de Caro, T.; Navarra, M.A. Developing Innovative Apolar Gels Based on Cellulose Derivatives for Cleaning Metal Artworks. Gels 2024, 10, 747. [Google Scholar] [CrossRef]
- Casoli, A.; Cremonesi, P.; Isca, C.; Groppetti, R.; Pini, S.; Senin, N. Evaluation of the effect of cleaning on the morphological properties of ancient paper surface. Cellulose 2013, 20, 2027–2043. [Google Scholar] [CrossRef]
- Khandekar, N. A survey of the conservation literature relating to the development of aqueous gel cleaning on painted and varnished surfaces. Stud. Conserv. 2000, 45, 10–20. [Google Scholar] [CrossRef]
- Burnstock, A.; Wolbers, R. Cleaning Painted Surfaces: Aqueous Methods. Stud. Conserv. 2001, 46, 221. [Google Scholar] [CrossRef]
- Iannuccelli, S.; Sotgiu, S. Wet treatments of works of art on paper with rigid gellan gels. Book Pap. Group Annu. 2010, 29, 25–39. [Google Scholar]
- Mazzuca, C.; Micheli, L.; Carbone, M.; Basoli, F.; Cervelli, E.; Iannuccelli, S.; Sotgiu, S.; Palleschi, A. Gellan hydrogel as a powerful tool in paper cleaning process: A detailed study. J. Colloid Interface Sci. 2014, 416, 205–211. [Google Scholar] [CrossRef]
- Mazzuca, C.; Micheli, L.; Lettieri, R.; Cervelli, E.; Coviello, T.; Cencetti, C.; Sotgiu, S.; Iannuccelli, S.; Palleschi, G.; Palleschi, A. How to tune a paper cleaning process by means of modified gellan hydrogels. Microchem. J. 2016, 126, 359–367. [Google Scholar] [CrossRef]
- Di Vito, M.; Bellardi, M.G.; Colaizzi, P.; Ruggiero, D.; Mazzuca, C.; Micheli, L.; Sotgiu, S.; Iannuccelli, S.; Michelozzi, M.; Mondello, F.; et al. Hydrolates and gellan: An eco-innovative synergy for safe cleaning of paper artworks. Stud. Conserv. 2018, 63, 13–23. [Google Scholar] [CrossRef]
- Cremonesi, P. Surface cleaning? Yes, freshly grated Agar gel, please. Stud. Conserv. 2016, 61, 362–367. [Google Scholar] [CrossRef]
- Hughes, A.; Sullivan, M. Targeted cleaning of works on paper: Rigid polysaccharide gels and conductivity in aqueous solutions. Book Pap. Group Annu. 2016, 25, 30–41. [Google Scholar]
- Isca, C.; Lopez, L.F.; Marco, D.J.Y.; Casoli, A. An evaluation of changes induced by wet cleaning treatments in the mechanical properties of paper artworks. Cellulose 2015, 22, 3047–3062. [Google Scholar] [CrossRef]
- Salim, E.; Abdel-Hamied, M.; Salim, S.; Gamal, S.; Mohamed, S.; Galal, F.E.-Z.; Tarek, F.; Hassan, R.R.A.; Ali, H.M.; Salem, M.Z.M. Reduction of Borax/Agar-Based Gel Residues Used to Neutralize Acidity of a Historical Manuscript with Use of Different Paper Barriers: Artificial Ageing Results. BioResources 2020, 15, 6576–6599. [Google Scholar] [CrossRef]
- Capello, C.; Fischer, U.; Hungerbühler, K. What Is a Green Solvent? A Comprehensive Framework for the Environmental Assessment of Solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Jimenez-Gonzalez, C. Life Cycle Considerations of Solvents. Curr. Opin. Green Sustain. Chem. 2019, 18, 66–71. [Google Scholar] [CrossRef]
- Hong, S.U.; Wang, Y.; Soh, L.S.; Yong, W.F. Are Green Solvents Truly Green? Integrating Life Cycle Assessment and Techno-Economic Analysis for Sustainable Membrane Fabrication. Green Chem. 2023, 25, 4501–4512. [Google Scholar] [CrossRef]
- Paolino, B.; Prestileo, F.; Carnazza, P.; Sacco, F.; Strozzi, A.; Congeduti, A.; Macchia, A. Life Cycle Impact Assessment (LCIA) of Materials in Painting Conservation: A Pilot Protocol for Evaluating Environmental Impact in Cultural Heritage. Heritage 2025, 8, 212. [Google Scholar] [CrossRef]
- Elnaggar, A. Nine Principles of Green Heritage Science: Life Cycle Assessment as a Tool Enabling Green Transformation. Herit. Sci. 2024, 12, 7. [Google Scholar] [CrossRef]
- Ormsby, B.; Bartoletti, A.; van den Berg, K.J.; Stavroudis, C. Cleaning and Conservation: Recent Successes and Challenges. Herit. Sci. 2024, 12, 10. [Google Scholar] [CrossRef]
- Settembre Blundo, D.; Ferrari, A.M.; Fernández del Hoyo, A.; Riccardi, M.P.; García Muiña, F.E. Improving Sustainable Cultural Heritage Restoration Work through Life Cycle Assessment-Based Model. J. Cult. Herit. 2018, 32, 221–231. [Google Scholar] [CrossRef]
- Haghbakhsh, R.; Raeissi, S.; Craveiro, R. Editorial for Special Issue: “Recent Advances in Green Solvents”. Molecules 2023, 28, 5983. [Google Scholar] [CrossRef]
- Finkbeiner, M.; Inaba, A.; Tan, R.; Christiansen, K.; Klüppel, H.-J. The New International Standards for Life Cycle Assessment: ISO 14040 and ISO 14044. Int. J. Life Cycle Assess. 2006, 11, 80–85. [Google Scholar] [CrossRef]
- Finkbeiner, M. The International Standards as the Constitution of Life Cycle Assessment: The ISO 14040 Series and Its Offspring. In Background and Future Prospects in Life Cycle Assessment; LCIA Compend; Klöpffer, W., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 85–102. [Google Scholar] [CrossRef]
- Mansour, F.R.; Bedair, A. Green Environmental Assessment and Rating for Solvents (GEARS) as an Innovative Tool for Solvent Selection. Sustain. Chem. Pharm. 2025, 47, 102157. [Google Scholar] [CrossRef]
- Nowak, P.M. What does it mean that “something is green”? The fundamentals of a Unified Greenness Theory. Green Chem. 2023, 25, 4625–4640. [Google Scholar] [CrossRef]
- Herrero, C.C.; Laso, J.; Cristóbal, J.; Fullana-i-Palmer, P.; Albertí, J.; Fullana, M.; Herrero, Á.; Margallo, M.; Aldaco, R. Tourism under a Life Cycle Thinking Approach: A Review of Perspectives and New Challenges for the Tourism Sector in the Last Decades. Sci. Total Environ. 2022, 845, 157261. [Google Scholar] [CrossRef] [PubMed]
- Foster, G. Circular Economy Strategies for Adaptive Reuse of Cultural Heritage Buildings to Reduce Environmental Impacts. Resour. Conserv. Recycl. 2020, 152, 104507. [Google Scholar] [CrossRef]
- Demiröz, M.; Åberg, H.E.; de Luca, C. Shaping the Relation between Heritage and Tourism: Taxonomies of Sustainable Cultural Tourism for Local Development. Herit. Soc 2025, 1–21. [Google Scholar] [CrossRef]
- Galluccio, C.; Giambona, F. Cultural Heritage and Economic Development: Measuring Sustainability over Time. Socio-Econ. Plan. Sci. 2024, 95, 101998. [Google Scholar] [CrossRef]
- Berti, L.; Arfelli, F.; Villa, F.; Cappitelli, F.; Gulotta, D.; Ciacci, L.; Bernardi, E.; Vassura, I.; Passarini, F.; Napoli, S.; et al. LCA as a Complementary Tool for the Evaluation of Biocolonization Management: The Case of Palazzo Rocca Costaguta. Heritage 2024, 7, 6871–6890. [Google Scholar] [CrossRef]
- Menegaldo, M.; Livieri, A.; Isigonis, P.; Pizzol, L.; Tyrolt, A.; Zabeo, A.; Semenzin, E.; Marcomini, A. Environmental and Economic Sustainability in Cultural Heritage Preventive Conservation: LCA and LCC of Innovative Nanotechnology-Based Products. Clean. Environ. Syst. 2023, 9, 100124. [Google Scholar] [CrossRef]
- Winterton, N. The Green Solvent: A Critical Perspective. Clean Technol. Environ. Policy 2021, 23, 2499–2522. [Google Scholar] [CrossRef]
- Aboagye, E.A.; Chea, J.D.; Yenkie, K.M. Systems Level Roadmap for Solvent Recovery and Reuse in Industries. iScience 2021, 24, 103114. [Google Scholar] [CrossRef] [PubMed]
- Hessel, V.; Tran, N.N.; Asrami, M.R.; Tran, Q.D.; Long, N.V.D.; Escribà-Gelonch, M.; Tejada, J.O.; Linke, S.; Sundmacher, K. Sustainability of green solvents—Review and perspective. Green Chem. 2022, 24, 410–437. [Google Scholar] [CrossRef]
- Chea, J.D.; Christon, A.; Pierce, V.; Reilly, J.H.; Russ, M.; Savelski, M.; Slater, C.S.; Yenkie, K.M. Framework for Solvent Recovery, Reuse, and Recycling in Industries. In Computer Aided Chemical Engineering; Garcia Muñoz, S., Laird, C.D., Realff, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 47, pp. 199–204. [Google Scholar] [CrossRef]
- Fleitmann, L.; Kleinekorte, J.; Leonhard, K.; Bardow, A. COSMO-susCAMPD: Sustainable Solvents from Combining Computer-Aided Molecular and Process Design with Predictive Life Cycle Assessment. Chem. Eng. Sci. 2021, 245, 116863. [Google Scholar] [CrossRef]
- Güneş, Ç.E.; Şengül, H. Cradle-to-Gate Life Cycle Assessment of a Liquid Pharmaceutical Product through Analysis of Chemical Production Pathways. Clean Technol. Environ. Policy 2022, 24, 1741–1755. [Google Scholar] [CrossRef]
- Jiménez-González, C.; Curzons, A.D.; Constable, D.J.C.; Cunningham, V.L. Cradle-to-Gate Life Cycle Inventory and Assessment of Pharmaceutical Compounds. Int. J. Life Cycle Assess. 2004, 9, 114–121. [Google Scholar] [CrossRef]
- Baglioni, P.; Berti, D.; Bonini, M.; Carretti, E.; Dei, L.; Fratini, E.; Giorgi, R. Micelle, Microemulsions, and Gels for the Conservation of Cultural Heritage. Adv. Colloid Interface Sci. 2014, 205, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Carretti, E.; Giorgi, R.; Berti, D.; Baglioni, P. Oil-in-Water Nanocontainers as Low Environmental Impact Cleaning Tools for Works of Art: Two Case Studies. Langmuir 2007, 23, 6396–6403. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Wang, J.; Ding, J.; Zhao, X.; Dong, W.; Lu, Z.; Li, X. Preparing a Microemulsion-Loaded Hydrogel for Cleaning Wall Paintings and Coins. Herit. Sci. 2024, 12, 149. [Google Scholar] [CrossRef]
- Mazzuca, C.; Severini, L.; Domenici, F.; Toumia, Y.; Mazzotta, F.; Micheli, L.; Titubante, M.; Di Napoli, B.; Paradossi, G.; Palleschi, A. Polyvinyl Alcohol-Based Hydrogels as New Tunable Materials for Application in the Cultural Heritage Field. Colloids Surf. B Biointerfaces 2020, 188, 110777. [Google Scholar] [CrossRef]
- Riedo, C.; Caldera, F.; Poli, T.; Chiantore, O. Poly(vinylalcohol)-Borate Hydrogels with Improved Features for the Cleaning of Cultural Heritage Surfaces. Herit. Sci. 2015, 3, 23. [Google Scholar] [CrossRef]
- Domingues, J.A.L.; Bonelli, N.; Giorgi, R.; Fratini, E.; Gorel, F.; Baglioni, P. Innovative Hydrogels Based on Semi-Interpenetrating p(HEMA)/PVP Networks for the Cleaning of Water-Sensitive Cultural Heritage Artifacts. Langmuir 2013, 29, 2746–2755. [Google Scholar] [CrossRef]
- Mastrangelo, R.; Chelazzi, D.; Baglioni, P. New Horizons on Advanced Nanoscale Materials for Cultural Heritage Conservation. Nanoscale Horiz. 2024, 9, 566–579. [Google Scholar] [CrossRef] [PubMed]
- Poggi, G.; Santan, H.D.; Smets, J.; Chelazzi, D.; Noferini, D.; Petruzzellis, M.L.; Buemi, L.P.; Fratini, E.; Baglioni, P. Nanostructured Bio-Based Castor Oil Organogels for the Cleaning of Artworks. J. Colloid Interface Sci. 2023, 638, 363–374. [Google Scholar] [CrossRef]
- Baglioni, P.; Bonelli, N.; Chelazzi, D.; Chevalier, A.; Dei, L.; Domingues, J.; Fratini, E.; Giorgi, R.; Martin, M. Organogel Formulations for the Cleaning of Easel Paintings. Appl. Phys. A 2015, 121, 857–868. [Google Scholar] [CrossRef]
- Morris, E.R.; Nishinari, K.; Rinaudo, M. Gelation of gellan—A review. Food Hydrocoll. 2012, 28, 373–411. [Google Scholar] [CrossRef]
- Gomes, D.; Batista-Silva, J.; Sousa, A.; Passarinha, L. Progress and opportunities in gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydr. Polym. 2023, 311, 120782. [Google Scholar] [CrossRef] [PubMed]
- Khaksar-Baghan, N.; Koochakzaei, A.; Hamzavi, Y. An Overview of Gel-Based Cleaning Approaches for Art Conservation. Herit. Sci. 2024, 12, 248. [Google Scholar] [CrossRef]
- Guilbot, J.; Kerverdo, S.; Milius, A.; Escola, R.; Pomrehn, F. Life Cycle Assessment of Surfactants: The Case of an Alkyl Polyglucoside Used as a Self Emulsifier in Cosmetics. Green Chem. 2013, 15, 3337–3354. [Google Scholar] [CrossRef]
- Cespi, D.; Passarini, F.; Mastragostino, G.; Vassura, I.; Larocca, S.; Iaconi, A.; Chieregato, A.; Dubois, J.-L.; Cavani, F. Glycerol as Feedstock in the Synthesis of Chemicals: A Life Cycle Analysis for Acrolein Production. Green Chem. 2015, 17, 343–355. [Google Scholar] [CrossRef]
- Schonhoff, A.; Ihling, N.; Schreiber, A.; Zapp, P. Environmental Impacts of Biosurfactant Production Based on Substrates from the Sugar Industry. ACS Sustain. Chem. Eng. 2022, 10, 9345–9358. [Google Scholar] [CrossRef]
- Bansod, Y.; Crabbe, B.; Forster, L.; Ghasemzadeh, K.; D’Agostino, C. Evaluating the Environmental Impact of Crude Glycerol Purification Derived from Biodiesel Production: A Comparative Life Cycle Assessment Study. J. Clean. Prod. 2024, 437, 140485. [Google Scholar] [CrossRef]
- Briem, A.-K.; Bippus, L.; Oraby, A.; Noll, P.; Zibek, S.; Albrecht, S. Environmental Impacts of Biosurfactants from a Life Cycle Perspective: A Systematic Literature Review. In Biosurfactants for the Biobased Economy; Advances in Biochemical Engineering/Biotechnology; Springer: Cham, Switzerland, 2022; Volume 181, pp. 235–269. [Google Scholar] [CrossRef]
- Seitfudem, G.; Berger, M.; Schmied, H.M.; Boulay, A. The updated and improved method for water scarcity impact assessment in LCA, AWARE2.0. J. Ind. Ecol. 2025, 29, 891–907. [Google Scholar] [CrossRef]
- Zampori, L.; Pant, R. Recommendations for Life Cycle Impact Assessment in the European Context—Based on Existing Environmental Impact Assessment Models and Factors; Joint Research Centre (JRC) Report; EU: Brussels, Belgium, 2019. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). AR6 Synthesis Report: Climate Change 2023—Summary for Policymakers; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Mikosch, N.; Berger, M.; Finkbeiner, M. Addressing Water Quality in Water Footprinting: Current Status, Methods and Limitations. Int. J. Life Cycle Assess. 2021, 26, 157–174. [Google Scholar] [CrossRef]
- Pierrat, É.; Laurent, A.; Dorber, M.; Rygaard, M.; Verones, F.; Hauschild, M. Advancing Water Footprint Assessments: Combining the Impacts of Water Pollution and Scarcity. Sci. Total Environ. 2023, 870, 161910. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G.; Gautam, R. The Water Footprint of Cotton Consumption: An Assessment of the Impact of Worldwide Consumption of Cotton Products on the Water Resources in the Cotton Producing Countries. Ecol. Econ. 2006, 60, 186–203. [Google Scholar] [CrossRef]
- Vitale, G.S.; Iacuzzi, N.; Zingale, S.; Lombardo, S.; Tuttolomondo, T.; Guarnaccia, P. Environmental sustainability of cotton: A systematic literature review of life cycle assessments. J. Agric. Food Res. 2025, 22, 102069. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, J.; Yao, Y.; Peters, G.; Macdonald, B.; La Rosa, A.D.; Wang, Z.; Scherer, L. Environmental impacts of cotton and opportunities for improvement. Nat. Rev. Earth Environ. 2023, 4, 703–715. [Google Scholar] [CrossRef]
- Carretti, E.; Dei, L.; Weiss, R.G.; Baglioni, P. A new class of gels for the conservation of painted surfaces. J. Cult. Herit. 2008, 9, 386–393. [Google Scholar] [CrossRef]
| Green System | Formulation Composition | Replaces/Baseline | Application on/for | Reference | |
|---|---|---|---|---|---|
| Pure Solvents | |||||
| 1 | FAME | Methyl Oleate (100%) | White spirit | Cleaning, degreasing | [14] |
| 2 | Solketal | 2,2-Dimethyl-1,3-dioxolane-4-methanol (100%) | Acetone, Ethanol | Varnish removal | [10] |
| 3 | Methylal | Dimethoxymethane | Acetone | Varnish removal | [10] |
| 4 | Glycerol formal | C8H16O6 (100%) | MIBK | Paint dissolution | [10] |
| 5 | DES (ChCl: glycerol) | Choline chloride: glycerol (1:2 molar ratio) | Ethanol, Methanol | Controlled polarity | [22] |
| 6 | Bioethanol | Ethanol from wheat fermentation | Petrochemical ethanol | Polar solvent | [33] |
| Microemulsions | |||||
| 7 | APG microemulsion | 5 wt% APG/ 20 wt% palm kernel oil/ 75 wt% H2O | Tween 80, direct solvent | Hydrophobic removal | [68,69] |
| 8 | AGE/AGESS microemulsion | 0.52% AGE/ 0.12% AGESS/ 0.36% p-xylene/ 99.36% H2O | Triton X-100 | Wall paintings | [70] |
| Hydrogels | |||||
| 9 | PVA/PVP hydrogel | 9 wt% PVA/ 3 wt% PVP/ 0.6 wt% borax/ 87.4 wt% H2O | Cotton + acetone | Rough surfaces | [28,71,72] |
| 10 | p(HEMA)/PVP hydrogel (H58) | 16.8 wt% HEMA/ 25.1 wt% PVP/ 0.20 wt% MBA/ 57.9 wt% H2O | Direct solvent | Water-sensitive surfaces | [73] |
| 11 | Carbopol hydrogel | 1.64% Carbopol/ 16.4% Ethomeen/ 73.8% IPA/ 8.2% H2O | Cotton + solvent | Controlled release | [74] |
| Organogels | |||||
| 12 | Castor oil organogel | 82 wt% castor oil/ 18 wt% HMDI gelator | Free solvent | Modern paintings | [75] |
| 13 | Alkyl-carbonate organogel | 7 wt% PEMA/ 3 wt% plasticizer/ 90 wt% DMC-DEC (1:1) | Direct solvent | Adhesive removal from paper | [76] |
| Conventional Baseline | |||||
| 1 | White spirit | 100% | --- | Baseline for FAME, organogels | --- |
| 2 | Acetone | 100% | --- | Baseline for methylal, Solketal, and gels | --- |
| 3 | MIBK | 100% | --- | Baseline for glycerol formal | --- |
| 4 | Ethanol (petrochemical) | 100% | --- | Baseline for bioethanol, DES | --- |
| 5 | Triton X-100 | Commercial formulation | --- | Baseline for AGE/AGESS | --- |
| Components | GWP (kg CO2 eq kg−1) | Source | Notes |
|---|---|---|---|
| Solvents | |||
| Acetone | 2.44 | Ecoinvent v3.8 GLO | Cumene oxidation |
| Methanol | 1.52 | Ecoinvent v3.8 RER | Natural gas reforming |
| Isopropanol (IPA) | 1.89 | Ecoinvent v3.8 RER | Propylene hydration |
| White spirit | 1.35 | Ecoinvent v3.8 GLO | Naphtha, low sulfur |
| MIBK | 1.82 | Ecoinvent v3.8 RER | Ketone, petroleum |
| Bioethanol | 0.65 | Process-only, no biogenic credit | Wheat fermentation EU |
| Ethanol (petrochemical) | 1.45 | Ecoinvent v3.8 RER | Ethylene hydration |
| FAME (methyl oleate) | 0.82 | [14] | Transesterification |
| DMC (dimethyl carbonate) | 2.15 | Ecoinvent v3.8 | Oxidative carbonylation |
| DEC (diethyl carbonate) | 2.32 | Ecoinvent v3.8 | Transesterification |
| Polymers | |||
| PVA (polyvinyl alcohol) | 3.45 | Ecoinvent v3.8 RER | Vinyl acetate hydrolysis |
| PVP (polyvinylpyrrolidone) | 3.10 | [28] | Process polymer benchmark |
| HEMA (hydroxyethyl methacrylate) | 2.70 | [28] | Methacrylate monomer |
| Carbopol (polyacrylic acid) | 3.25 | Ecoinvent v3.8 | Neutralized form |
| PEMA (polyethyl methacrylate) | 3.80 | Proxy, methacrylate family | Similar to PMMA |
| Surfactants and crosslinkers | |||
| APG C8–C10 | 2.70 | [26] | Industrial LCIA data |
| Rhamnolipids | 3.50 | [26] | Lab-scale fermentation |
| Ethomeen C12 | 3.50 | Ecoinvent proxy | Cocoamine analog |
| MBA (bisacrylamide) | 2.60 | Ecoinvent v3.8 | Crosslinker |
| Borax | 0.95 | Ecoinvent v3.8 | Mineral extraction |
| Bio-based materials | |||
| Glycerol (bio) | 0.90 | [10] | Biodiesel co-product |
| Choline chloride | 4.00 | Ecoinvent proxy | Quaternary ammonium |
| Castor oil | 1.20 | Ecoinvent v3.8 | Ricinus cultivation |
| Palm kernel oil | 1.20 | Ecoinvent v3.8 | RPKO, certified |
| Application materials | |||
| Cotton fiber (swabs) | 5.20 | Ecoinvent v3.8 GLO | Includes irrigation, pesticides |
| System | Composition | GWP100 (kg CO2 eq kg−1) |
|---|---|---|
| Green Alternatives | ||
| AGE/AGESS microemulsion | 0.52% AGE/0.12% AGESS/0.36% p-xylene/99% H2O | 0.15 |
| Carbopol hydrogel | 1.64% Carbopol/16.4% Ethomeen/73.8% IPA/8.2% H2O | 0.40 |
| DES | ChCl:glycerol 1:2 molar | 0.45 |
| APG microemulsion | 5% APG/20% PKO/75% H2O) | 0.47 |
| Bioethanol | Fermentation, process-only | 0.65 |
| PVA/PVP hydrogel | 9% PVA/3% PVP/0.6% borax/87.4% H2O | 0.68 |
| Castor organogel | 82% castor oil/18% HMDI gelator | 0.80 |
| FAME | Methyl oleate, 100% | 0.82 |
| Glycerol formal | 100% | 1.25 |
| Methylal | 100% | 1.29 |
| Alkyl-carbonate organogel | 7% PEMA/3% plasticizer/90% DMC-DEC | 1.45 |
| p(HEMA)/PVP hydrogel | 16.8% HEMA/25.1% PVP/0.20% MBA/57.9% H2O | 1.50 |
| Solketal | 100% | 1.75 |
| Conventional Baselines | ||
| White spirit | 100% | 1.35 |
| Triton X-100 | commercial | 1.35 |
| Ethanol petrochemical | 100% | 1.45 |
| MIBK | 100% | 1.82 |
| Acetone | 100% | 2.44 |
| Gel System | Polymers/ Surfactants | Solvents/Co-Solvents | Water | Processing | Transport | Total |
|---|---|---|---|---|---|---|
| (% w/w/CF/Impact kg CO2 eq) | (%/CF/Impact) | (%) | (kWh kg−1/Impact) | (Impact) | ||
| AGE/AGESS | 0.52% AGE (2.80/0.015) 0.12% AGESS (3.20/0.004) 0.36% p-xylene (1.95/0.007) | — | 99% | Negligible | 0.003 | 0.029 Normalized: 0.15 |
| Carbopol | 1.64% Carbopol (3.25/0.053) 16.4% Ethomeen (3.50/0.574) | 73.8% IPA (1.89/1.395) | 8.2% | 0.05/0.015 | 0.014 | 2.051 Reported: 0.40 |
| PVA/PVP | 9% PVA (3.45/0.311) 3% PVP (3.10/0.093) 0.6% borax (0.95/0.006) | — | 87.4% | 0.8/0.236 | 0.031 | 0.678 |
| p(HEMA)/PVP | 16.8% HEMA (2.70/0.454) 25.1% PVP (3.10/0.778) 0.20% MBA (2.60/0.005) | — | 57.9% | 2.0/0.590 | 0.020 | 1.847 Reported: 1.50 |
| APG microemulsion | 5% APG (2.70/0.135) 20% PKO (1.20/0.240) | — | 75% | 0.3/0.089 | 0.005 | 0.469 Reported: 0.47 |
| Castor organogel | 82% Castor (1.20/0.984) 18% HMDI gelator (4.80/0.864) | — | — | 0.3/0.089 | 0.014 | 1.951 Normalized: 0.80 |
| Alkyl carbonate | 7% PEMA (3.80/0.266) 3% plasticizer (2.80/0.084) | 90% DMC-DEC 1:1 (2.235/1.012) | — | 0.1/0.030 | 0.018 | 1.410 Reported: 1.45 |
| Green Systems | Comparison | GWP Ratio | Δ (%) |
|---|---|---|---|
| AGE/AGESS microemulsion | Triton X-100 | 0.11 | −89% |
| PVA/PVP gel | Acetone | 0.28 | −72% |
| Carbopol gel | Ethanol (petro) | 0.28 | −72% |
| DES | Ethanol (petro) | 0.31 | −69% |
| Bioethanol | Ethanol (petro) | 0.45 | −55% |
| Methylal | Acetone | 0.53 | −47% |
| Castor organogel | White spirit | 0.59 | −41% |
| FAME | White spirit | 0.61 | −39% |
| p(HEMA)/PVP gel | Acetone | 0.61 | −39% |
| Glycerol formal | MIBK | 0.69 | −31% |
| Alkyl-carbonate gel | White spirit | 1.07 | +7% |
| Solketal | White spirit | 1.30 | +30% |
| System | Density (g mL−1) | Mass (g) | GWP (kg CO2 eq/100 mL) |
|---|---|---|---|
| AGE/AGESS microemulsion | 1.00 | 100 | 0.015 |
| Carbopol hydrogel | 0.99 | 99 | 0.040 |
| APG microemulsion | 1.00 | 100 | 0.047 |
| PVA/PVP hydrogel | 1.02 | 102 | 0.069 |
| FAME | 0.88 | 88 | 0.072 |
| White spirit | 0.79 | 79 | 0.107 |
| Solketal | 1.06 | 106 | 0.186 |
| Acetone | 0.79 | 79 | 0.193 |
| System | GWP | CTUe | CTUh-carc | CTUh-Non-carc | AWARE (m3) | Haz. Waste (kg) |
|---|---|---|---|---|---|---|
| Green solvents | ||||||
| FAME | 0.82 | 212.9 | 4.25 × 10−9 | 1.35 × 10−7 | 1.01 | 2.58 × 10−5 |
| Solketal | 1.75 | 92.1 | 2.00 × 10−9 | 1.11 × 10−7 | 3.06 | 3.60 × 10−5 |
| Methylal | 1.29 | 11.3 | 3.56 × 10−10 | 5.82 × 10−9 | 0.17 | 3.10 × 10−5 |
| Glycerol formal | 1.25 | 122.3 | 2.45 × 10−9 | 1.45 × 10−7 | 3.23 | 4.80 × 10−5 |
| DES | 0.45 | 66.8 | 1.27 × 10−9 | 7.86 × 10−8 | 1.76 | 2.50 × 10−5 |
| Bioethanol | 0.65 | 36.6 | 3.58 × 10−10 | 4.41 × 10−8 | 0.11 | 7.00 × 10−6 |
| Gel systems | ||||||
| AGE/AGESS | 0.15 | 8.2 | 4.5 × 10−10 | 3.2 × 10−8 | 0.35 | 6.5 × 10−6 |
| Carbopol | 0.40 | 12.5 | 5.8 × 10−10 | 3.8 × 10−8 | 0.42 | 1.2 × 10−5 |
| PVA/PVP | 0.68 | 18.6 | 7.2 × 10−10 | 5.4 × 10−8 | 0.58 | 1.6 × 10−5 |
| APG | 0.47 | 68.4 | 2.3 × 10−9 | 8.1 × 10−7 | 0.82 | 2.1 × 10−5 |
| Baselines | ||||||
| White spirit | 1.35 | 3.6 | 4.28 × 10−11 | 1.93 × 10−9 | 0.019 | 4.60 × 10−5 |
| Acetone | 2.44 | 2.2 | 2.33 × 10−10 | 4.95 × 10−9 | 1.34 | 1.91 × 10−7 |
| MIBK | 1.82 | 15.1 | 4.80 × 10−10 | 1.20 × 10−8 | 1.06 | 1.82 × 10−5 |
| Ethanol (petro) | 1.45 | 250.0 | 7.82 × 10−9 | 2.24 × 10−7 | 6.34 | 2.27 × 10−5 |
| Triton X-100 | 1.35 | 85.0 | 2.50 × 10−9 | 8.50 × 10−8 | 0.85 | 3.20 × 10−5 |
| Material | This Study | Paolino Normalized | Absolute dev. | Relative dev. (%) |
|---|---|---|---|---|
| White spirit | 1.35 | 0.53–0.54 | +0.81–0.82 | +150% |
| Bioethanol | 0.65 (process) | −1.53 (biogenic) | +2.18 | +335% * |
| Cotton fiber | 5.20 | 6.82 | −1.62 | −24% |
| Green Solvent | GWP | vs. WS 1.35 | vs. WS 0.54 | Reversal |
|---|---|---|---|---|
| FAME | 0.82 | 0.61 (−39%) | 1.52 (+52%) | Yes |
| Castor organogel | 0.80 | 0.59 (−41%) | 1.48 (+48%) | Yes |
| Alkyl carbonate | 1.45 | 1.07 (+7%) | 2.69 (+169%) | No |
| Solketal | 1.75 | 1.30 (+30%) | 3.24 (+224%) | No |
| Methylal | 1.29 | vs. Acetone 0.53 | 0.53 | Stable |
| DES | 0.45 | vs. EtOH 0.31 | 0.31 | Stable |
| System | Total Mass (kg) | Solvent Delivered (kg) | GWP | CTUe | AWARE (m3) |
|---|---|---|---|---|---|
| Conventional (Paolino) | |||||
| Cotton swabs | 0.50 | — | 3.41 | 193.2 | 326.8 |
| White spirit (absorbed) | 0.48 | 0.48 | 0.26 | 14.2 | 0.04 |
| Bioethanol (absorbed) | 0.32 | 0.32 | −0.49 | 79.6 | 2.03 |
| Total | 1.30 | 0.80 | 3.18 | 287.0 | 328.9 |
| Gel alternatives | |||||
| Carbopol gel | 0.50 | 0.369 | 0.20 | 4.0–10.0 | 0.10–0.25 |
| PVA/PVP gel | 0.50 | 0 | 0.34 | 6.0–15.0 | 0.20–0.40 |
| Reduction (%) | −62% | −54 to −100% | −87 to −94% | −95 to −99% | −99.8 to −99.9% |
| System | Base GWP (kg CO2 eq) | Cotton for Rinsing (kg CO2 eq) | Solvent for Rinsing (kg CO2 eq) | Total Revised GWP | Δ vs. Base (%) |
|---|---|---|---|---|---|
| Carbopol gel (soft) | 0.20 | 0.78 | 0.08 | 1.06 | +430% |
| PVA/PVP gel (rigid) | 0.34 | 0 | 0 | 0.34 | 0% |
| Agar gel (rigid) | ~0.25 * | 0 | 0 | ~0.25 | 0% |
| Conventional (cotton + solvent) | 3.18 | — | — | 3.18 | baseline |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macchia, A.; Paolino, B.; Zaratti, C.; Prestileo, F.; Sacco, F.; La Russa, M.F.; Ruffolo, S.A. A Comprehensive Protocol for the Life Cycle Assessment of Green Systems for Painting Cleaning. Heritage 2025, 8, 544. https://doi.org/10.3390/heritage8120544
Macchia A, Paolino B, Zaratti C, Prestileo F, Sacco F, La Russa MF, Ruffolo SA. A Comprehensive Protocol for the Life Cycle Assessment of Green Systems for Painting Cleaning. Heritage. 2025; 8(12):544. https://doi.org/10.3390/heritage8120544
Chicago/Turabian StyleMacchia, Andrea, Benedetta Paolino, Camilla Zaratti, Fernanda Prestileo, Federica Sacco, Mauro Francesco La Russa, and Silvestro Antonio Ruffolo. 2025. "A Comprehensive Protocol for the Life Cycle Assessment of Green Systems for Painting Cleaning" Heritage 8, no. 12: 544. https://doi.org/10.3390/heritage8120544
APA StyleMacchia, A., Paolino, B., Zaratti, C., Prestileo, F., Sacco, F., La Russa, M. F., & Ruffolo, S. A. (2025). A Comprehensive Protocol for the Life Cycle Assessment of Green Systems for Painting Cleaning. Heritage, 8(12), 544. https://doi.org/10.3390/heritage8120544

