Multi-Analytical Study of Lime-Based Mortars from the 16th-Century Venetian Fortress of Bergamo (Italy)
Abstract
1. Introduction
2. Case Study: The Venetian Fortress of Bergamo
3. Materials and Methods
- (i)
- Spot samples: A total of 43 fragments of mortar were collected at different positions on the cores, corresponding to different depths in the wall. These specimens were ground and analyzed individually by X-Ray diffraction.
- (ii)
- Bulk samples: From 3 cores (namely B, D, and H) larger mortar samples of approximately 250 g were extracted. Each bulk sample was prepared by mixing several specimens extracted from different positions in the cores and grinding them together into one large powder sample in order to average the composition across the core. On the bulk samples XRD analysis, chemical analyses (ICP-OES or EDS), and TG-DSC measurements were performed.
3.1. Chemical and Mineralogical Characterization
3.2. Petrographic Investigations
3.3. Thermogravimetric Measurements
4. Results and Discussion
- (i)
- A large average amount of phyllosilicate clays, such as muscovite and clinochlore, was found in the mortar (12–13 wt% cumulative; see the XRD patterns in Figure 7 and semi-quantitative analyses in Table S1). Muscovite is an aluminum-rich clay (KAl2(Si3Al)O10(OH)2), while clinochlore contains a large amount of magnesium in its structure ((Mg,Fe)5Al(Si3Al)O10(OH)8). According to Artioli et al. [31], and depending on the temperature of the reaction, reactive alumino-silicate aggregates such as Mg-containing phyllosilicates can react with lime during the high-temperature calcination of limestone, yielding mixed Ca-, Mg-, Si-, and Al-containing reactive compounds, which may undergo hydration and carbonatation reactions during the setting of the mortar. Arizzi and Parra-Fernández also suggest in Ref. [32] that the presence of carbonate-containing hydrocalumite (Ca4Al2O6(CO3)0.5(OH)·10.75H2O) and hydrotalcite-type (Mg6Al2(CO3)(OH)16·4H2O) compounds in the hardened mortar is an indication that the above mechanism occurred between lime and reactive compounds (clays in this case). As illustrated above, those compounds were detected in all but a few samples extracted from the walls.
- (ii)
- Calcium silicate hydrate (C-S-H) in both amorphous and crystalline forms (jennite, tobermorite and plombierite) is the main type of hydration product formed in hydraulic mortars [2,33]. C-S-H (and, to a lesser extent, calcium aluminate hydrate, C-A-H) is formed by a complex process which primarily involves the hydration of calcium silicates (aluminates) present in hydraulic limes, and as an alternative to the reaction of silica and alumina potentially present in the mixture (originating from clays) with calcium hydroxide in wet conditions. With the exception of core F, these crystalline C-S-H phases (namely plombierite and jennite) were identified in 31 and 4 samples, respectively (see Table S1).
- (iii)
- A third clue comes from the presence of significant amounts of aragonite, which is a metastable polymorph of calcium carbonate, identified in some of the samples. It was detected in 48 samples in a 5wt% average amount (Table S1). Also, another metastable polymorph of calcium carbonate, vaterite, was found in a large concentration (22% in mass) in a lump belonging to core H (spot sample H-36b, Table S1). It is reported that the formation of metastable CaCO3 polymorphs like aragonite and vaterite is indeed commonly favored by the presence of hydration products (C-S-H), and thus they are easily found when a hydraulic reaction has occurred [34,35,36].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bokan Bosiljkov, V.; Padovnik, A.; Turk, T. (Eds.) Conservation and Restoration of Historic Mortars and Masonry Structures: HMC 2022; RILEM Bookseries; Springer Nature: Cham, Switzerland, 2023; Volume 42, ISBN 978-3-031-31471-1. [Google Scholar]
- Arizzi, A.; Cultrone, G. Mortars and Plasters—How to Characterise Hydraulic Mortars. Archaeol. Anthropol. Sci. 2021, 13, 144. [Google Scholar] [CrossRef]
- Dilaria, S.; Secco, M.; Rubinich, M.; Bonetto, J.; Miriello, D.; Barca, D.; Artioli, G. High-performing Mortar-based Materials from the Late Imperial Baths of Aquileia: An Outstanding Example of Roman Building Tradition in Northern Italy. Geoarchaeology 2022, 37, 637–657. [Google Scholar] [CrossRef]
- Dilaria, S.; Secco, M.; Bonetto, J.; Ricci, G.; Artioli, G. Making Ancient Mortars Hydraulic. How to Parametrize Type and Crystallinity of Reaction Products in Different Recipes. In Historic Mortars International Conference; RILEM Bookseries; Springer: Berlin/Heidelberg, Germany, 2023; Volume 42, pp. 36–52. [Google Scholar]
- Artioli, G.; Secco, M.; Addis, A.; Bellotto, M. 5. Role of Hydrotalcite-Type Layered Double Hydroxides in Delayed Pozzolanic Reactions and Their Bearing on Mortar Dating. In Cementitious Materials; Pöllmann, H., Ed.; De Gruyter: Berlin, Germany, 2017; pp. 147–158. ISBN 978-3-11-047372-8. [Google Scholar]
- Bertolini, L.; Carsana, M.; Gastaldi, M.; Lollini, F.; Redaelli, E. Binder Characterisation of Mortars Used at Different Ages in the San Lorenzo Church in Milan. Mater. Charact. 2013, 80, 9–20. [Google Scholar] [CrossRef]
- Rizzo, G.; Buccione, R.; Curcio, R.; Gargiulo, B.; Sogliani, F. Multi-Analytical Characterization and Provenance Assessment on the Mortars of Satrianum (Italy). Rend. Della Soc. Geol. Ital. 2023, 60, 152–161. [Google Scholar] [CrossRef]
- Milanesio, E.; Storta, E.; Gambino, F.; Appolonia, L.; Borghi, A.; Glarey, A. Petrographic Characterization of Historic Mortar as a Tool in Archaeologic Study: Examples from Two Medieval Castles of Aosta Valley, Northwestern Italy. J. Archaeol. Sci. Rep. 2022, 46, 103719. [Google Scholar] [CrossRef]
- Vasco, G.; Serra, A.; Buccolieri, G.; Manno, D.; Calcagnile, L.; Quarta, G.; Buccolieri, A. Mortar Characterization and Radiocarbon Dating as Support for the Restoration Work of the Abbey of Santa Maria Di Cerrate (Lecce, South Italy). Heritage 2022, 5, 4161–4173. [Google Scholar] [CrossRef]
- Sitzia, F. The San Saturnino Basilica (Cagliari, Italy): An Up-Close Investigation about the Archaeological Stratigraphy of Mortars from the Roman to the Middle Ages. Heritage 2021, 4, 1836–1853. [Google Scholar] [CrossRef]
- Secco, M.; Previato, C.; Addis, A.; Zago, G.; Kamsteeg, A.; Dilaria, S.; Canovaro, C.; Artioli, G.; Bonetto, J. Mineralogical Clustering of the Structural Mortars from the Sarno Baths, Pompeii: A Tool to Interpret Construction Techniques and Relative Chronologies. J. Cult. Herit. 2019, 40, 265–273. [Google Scholar] [CrossRef]
- Dilaria, S.; Previato, C.; Secco, M.; Busana, M.S.; Bonetto, J.; Cappellato, J.; Ricci, G.; Artioli, G.; Tan, P. Phasing the History of Ancient Buildings through PCA on Mortars’ Mineralogical Profiles: The Example of the Sarno Baths (Pompeii). Archaeometry 2022, 64, 866–882. [Google Scholar] [CrossRef]
- Piovesan, R.; Dalconi, M.C.; Maritan, L.; Mazzoli, C. X-Ray Powder Diffraction Clustering and Quantitative Phase Analysis on Historic Mortars. Eur. J. Mineral. 2013, 25, 165–175. [Google Scholar] [CrossRef]
- Secco, M.; Asscher, Y.; Ricci, G.; Tamburini, S.; Preto, N.; Sharvit, J.; Artioli, G. Cementation Processes of Roman Pozzolanic Binders from Caesarea Maritima (Israel). Constr. Build. Mater. 2022, 355, 129128. [Google Scholar] [CrossRef]
- Fumagalli, A. Fortificazioni Venete a Bergamo. In Le Mura di Bergamo; Azienda Autonoma di Turismo: Bergamo, Italy, 1977; pp. 3–30. [Google Scholar]
- Foppolo, V. La Costruzione Delle Mura Venete. In Le Mura di Bergamo; Azienda Autonoma di Turismo: Bergamo, Italy, 1977; pp. 31–62. [Google Scholar]
- Capellini, P. Le Mura Dopo Il Dominio Veneto. In Le Mura di Bergamo; Azienda Autonoma di Turismo: Bergamo, Italy, 1977; pp. 325–348. [Google Scholar]
- UNESCO. World Heritage Committee Nominations to the World Heritage List 2017; UNESCO: Paris, France, 2017. [Google Scholar]
- Mirabella Roberti, G.; Nannei, V.M.; Azzola, P.; Cardaci, A. Preserving the Venetian Fortress of Bergamo: Quick Photogrammetric Survey for Conservation Planning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 873–879. [Google Scholar] [CrossRef]
- Nannei, V.M.; Azzola, P.; Mirabella Roberti, G. From Survey to Analysis of the Damage Mechanisms in Stone Walls: Diagnostic Investigations on a Bastion of the Venetian Fortress in Bergamo. In Proceedings of the 9th Rehabend Congress, Granada, Spain, 13–16 September 2022; pp. 971–980. [Google Scholar]
- Paris, V.; Gobbin, F.; Nannei, V.M.; Resmini, M.; Mirabella Roberti, G. Distinct Element Method Analyses for Damage Assessment: The Northern Spur of Valverde Bulwark in the Venetian Fortress of Bergamo. Int. J. Archit. Herit. 2025, 19, 687–701. [Google Scholar] [CrossRef]
- Mirabella Roberti, G.; Gallina, D.; Nannei, V.M. La Costruzione Delle Mura Di Bergamo: Indagini Conoscitive Su Tecniche e Materiali. In Oltre lo Sguardo. Beyond the Gaze. La Città Stratificata. The Layered City; Insights; AISU International: Torino, Italy, 2025; Volume 3. [Google Scholar]
- Marsetti, D. Indagine Geognostica Geologica. In Il baluardo di Valverde: Una Ferita da Ricucire Nella Fortezza Veneziana di Bergamo; Comune di Bergamo: Bergamo, Italy, 2020; p. 176. [Google Scholar]
- Hubbard, C.R.; Snyder, R.L. RIR—Measurement and Use in Quantitative XRD. Powder Diffr. 1988, 3, 74–77. [Google Scholar] [CrossRef]
- Bruni, S.; Cariati, F.; Fermo, P.; Pozzi, A.; Toniolo, L. Characterization of Ancient Magnesian Mortars Coming from Northern Italy. Thermochim. Acta 1998, 321, 161–165. [Google Scholar] [CrossRef]
- Bini, A.; Bersezio, R.; Tucci, G.; Scardia, G.; Rigamonti, I.; Rossi, R.; Ferliga, C.; Carnati, S.; Kovacs, M.; Cislaghi, L.; et al. Carta Geologica d’Italia alla scala 1:50000 Foglio 098: Bergamo. ISPRA, CARG 2012, Italy. Available online: https://www.isprambiente.gov.it/Media/carg/98_BERGAMO/Foglio.html (accessed on 9 July 2025).
- Jadoul, F.; Forcella, F.; Bini, A.; Ferliga, C. Carta Geologica Della Provincia Di Bergamo; Provincia di Bergamo: Bergamo, Italy, 2000.
- Bini, A.; Bersezio, R.; Tucci, G.; Scardia, G.; Rigamonti, I.; Rossi, R.; Ferliga, C.; Carnati, S.; Kovacs, M.; Cislaghi, L.; et al. Carta Geologica d’Italia alla scala 1:50000 Foglio 097: Vimercate. ISPRA, CARG 2014, Italy. Available online: https://www.isprambiente.gov.it/Media/carg/97_VIMERCATE/Foglio.html (accessed on 9 July 2025).
- Bernoulli, D.; Bichsel, M.; Bolli, H.M.; Haring, M.O.; Hochuli, P.A.; Kleboth, P. The Missaglia Megabed, a Catastrophic Deposit in the Upper Cretaceous Bergamo Flysch, Northern Italy. Eclogae Geol. Helv. 1981, 74/2, 421–442. [Google Scholar] [CrossRef]
- Glanzer, M. La miniera di Astino, Bergamo, Italy, 2006. Available online: https://www.nottole.it/pubblicazioni/Nottografia_miniera_di_Astino.pdf (accessed on 9 September 2025).
- Artioli, G.; Secco, M.; Addis, A. The Vitruvian Legacy: Mortars and Binders before and after the Roman World. In The Contribution of Mineralogy to Cultural Heritage, EMU Notes in Mineralogy; Mineralogical Society of Great Britain and Ireland: Twickenham, UK, 2019; Volume 20, Chapter 4; pp. 151–202. [Google Scholar] [CrossRef]
- Arizzi, A.; Parra-Fernández, C. A Comprehensive Review of the Manufacturing Process and Properties of Natural Hydraulic Limes. Mater. Struct. Constr. 2025, 58, 152. [Google Scholar] [CrossRef]
- Bonaccorsi, E.; Merlino, S.; Kampf, A.R. The Crystal Structure of Tobermorite 14 Å (Plombierite), a C-S-H Phase. J. Am. Ceram. Soc. 2005, 88, 505–512. [Google Scholar] [CrossRef]
- Ricci, G.; Secco, M.; Marzaioli, F.; Terrasi, F.; Passariello, I.; Addis, A.; Lampugnani, P.; Artioli, G. The Cannero Castle (Italy): Development of Radiocarbon Dating Methodologies in the Framework of the Layered Double Hydroxide Mortars. Radiocarbon 2020, 62, 617–631. [Google Scholar] [CrossRef]
- Shivakumar, M.; Selvaraj, T. Characterization Study on the Influence of Limestone and Shell Lime as a Fine Aggregate Substitute: A Traditional Approach on Lime Plaster Restoration. Mater. Today Proc. 2021, 45, 6519–6526. [Google Scholar] [CrossRef]
- Jackson, M.D.; Mulcahy, S.R.; Chen, H.; Li, Y.; Li, Q.; Cappelletti, P.; Wenk, H.-R. Phillipsite and Al-Tobermorite Mineral Cements Produced through Low-Temperature Water-Rock Reactions in Roman Marine Concrete. Am. Mineral. 2017, 102, 1435–1450. [Google Scholar] [CrossRef]
- Mokhtar, M.; Inayat, A.; Ofili, J.; Schwieger, W. Thermal Decomposition, Gas Phase Hydration and Liquid Phase Reconstruction in the System Mg/Al Hydrotalcite/Mixed Oxide: A Comparative Study. Appl. Clay Sci. 2010, 50, 176–181. [Google Scholar] [CrossRef]
- Turner, R.C.; Hoffman, I.; Chen, D. Thermogravimetry of the Dehydration of Mg(OH)2. Can. J. Chem. 1963, 41, 243–251. [Google Scholar] [CrossRef]
- Moropoulou, A.; Bakolas, A.; Anagnostopoulou, S. Composite Materials in Ancient Structures. Cem. Concr. Compos. 2005, 27, 295–300. [Google Scholar] [CrossRef]
- Bakolas, A.; Biscontin, G.; Moropoulou, A.; Zendri, E. Characterization of Structural Byzantine Mortars by Thermogravimetric Analysis. Thermochim. Acta 1998, 321, 151–160. [Google Scholar] [CrossRef]
- Gleize, P.J.P.; Motta, E.V.; Silva, D.A.; Roman, H.R. Characterization of Historical Mortars from Santa Catarina (Brazil). Cem. Concr. Compos. 2009, 31, 342–346. [Google Scholar] [CrossRef]
- Elsen, J.; Van Balen, K.; Mertens, G. Hydraulicity in Historic Lime Mortars: A Review. In Historic Mortars; Válek, J., Hughes, J.J., Groot, C.J.W.P., Eds.; RILEM Bookseries; Springer: Dordrecht, The Netherlands, 2012; Volume 7, pp. 125–139. ISBN 978-94-007-4634-3. [Google Scholar]
- Mariani, E. Leganti: Aerei e Idraulici; Casa Editrice Ambrosiana: Milan, Italy, 1976. [Google Scholar]
Core | Spot Samples (Number) | Depths (m) | Analytical Use | Bulk Samples (Number) | Analytical Use |
---|---|---|---|---|---|
A | 4 | 0.30, 0.90, 1.20, 1.40 | XRD | - | |
B | 5 | 0.65, 1.00, 1.20, 2.90, 3.65 | XRD | 1 | XRD, TG-DSC, ICP-OES. |
C | 3 | 0.50, 0.95, 1.20 | XRD | - | |
D | 6 | 1.10, 1.70, 1.70, 2.55, 3.20, 3.20 | XRD | 1 | XRD, TG-DSC, ICP-OES. |
E | 5 | 1.30, 1.50, 2.00, 2.50, 3.00 | XRD | - | |
F | 5 | 0.20, 0.95, 0.95, 0.95, 1.30 | XRD | - | |
G | 5 | 0.50, 1.00, 1.00, 1.50, 1.50 | XRD | - | |
H | 5 | 0.40, 1.20, 1.50, 1.60, 1.60 | XRD | 1 | XRD, TG-DSC, EDS. |
I | 5 | 0.50, 0.50, 1.05, 1.10, 1.50 | XRD | - | |
TOTAL | 43 | 3 |
Species | Concentration (mg × kg−1) | ||
---|---|---|---|
Core B * | Core D * | Core H # | |
Ca | 133,840 | 126,548 | 119,350 |
Mg | 11,031 | 20,848 | 14,033 |
Fe | 6180 | 6153 | 11,817 |
Al | 6314 | 5549 | 7267 |
K | 2887 | 1314 | 2850 |
Na | 347 | 263 | 1833 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelosato, R.; Natali-Sora, I.; Nannei, V.M.; Mirabella Roberti, G. Multi-Analytical Study of Lime-Based Mortars from the 16th-Century Venetian Fortress of Bergamo (Italy). Heritage 2025, 8, 400. https://doi.org/10.3390/heritage8100400
Pelosato R, Natali-Sora I, Nannei VM, Mirabella Roberti G. Multi-Analytical Study of Lime-Based Mortars from the 16th-Century Venetian Fortress of Bergamo (Italy). Heritage. 2025; 8(10):400. https://doi.org/10.3390/heritage8100400
Chicago/Turabian StylePelosato, Renato, Isabella Natali-Sora, Virna Maria Nannei, and Giulio Mirabella Roberti. 2025. "Multi-Analytical Study of Lime-Based Mortars from the 16th-Century Venetian Fortress of Bergamo (Italy)" Heritage 8, no. 10: 400. https://doi.org/10.3390/heritage8100400
APA StylePelosato, R., Natali-Sora, I., Nannei, V. M., & Mirabella Roberti, G. (2025). Multi-Analytical Study of Lime-Based Mortars from the 16th-Century Venetian Fortress of Bergamo (Italy). Heritage, 8(10), 400. https://doi.org/10.3390/heritage8100400