Characterization of Bloom Iron Smelting Site Remains in Pržanj, Slovenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Composition Analysis
2.2. X-ray Powder Diffraction (XRD)
2.3. Metallographic Analyses
2.4. Scanning Electron Microscopy with Energy-Dispersive Spectroscopy (EDS) and Electron Backscatter Diffraction (EBSD)
3. Results and Discussion
3.1. Furnace Remains
3.2. Ore
3.3. Slag Remains
3.4. Ferrous Products
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hrovatin, I.M.; Turk, P. Pržanj Pri Ljubljani: Naselbinska Jama 17. In Srednji Vek: Arheološke Raziskave Med Jadranskim Morjem in Panonsko Nižino = Mittelalter: Archäologische Forschungen Zwischen der Adria und der Pannonischen Tiefebene; Narodni Muzej Slovenije: Ljubljana, Slovenia, 2008; pp. 145–151. [Google Scholar]
- Pavlovič, D.; Menart, E.; Burja, J.; Šetina, B.; Šmit, Ž.; Toškan, B.; Tolar, T.; Svetličič, V.; Hudournik, P.; Verbič, T.; et al. Pržanj Pri Ljubljani; Zavod za varstvo kulturne dediščine Slovenije: Ljubljana, Slovenia, 2023; ISBN 9789617169485. [Google Scholar]
- Benvenuti, M.; Orlando, A.; Borrini, D.; Chiarantini, L.; Costagliola, P.; Mazzotta, C.; Rimondi, V. Experimental Smelting of Iron Ores from Elba Island (Tuscany, Italy): Results and Implications for the Reconstruction of Ancient Metallurgical Processes and Iron Provenance. J. Archaeol. Sci. 2016, 70, 1–14. [Google Scholar] [CrossRef]
- Thiele, Á.; Török, B. A Possible Medieval Recycling Technique—Smelting Iron Using Hammerscale. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1246, 012008. [Google Scholar] [CrossRef]
- Kostova, B.; Paneva, D.; Cherkezova-Zheleva, Z.; Mihaylova, K.; Dumanov, B. Ancient Metallurgical Iron Slags—Chemical, Powder X-ray Diffraction and Mössbauer Spectroscopic Study. Crystals 2023, 13, 888. [Google Scholar] [CrossRef]
- Ackerman, K.J.; Killick, D.J.; Herbert, E.W.; Kriger, C. A Study of Iron Smelting at Lopanzo, Equateur Province, Zaire. J. Archaeol. Sci. 1999, 26, 1135–1143. [Google Scholar] [CrossRef]
- Ľubomír, M. Beginnings of Iron Smelting in the Central Carpathians Region. Metalurgija 2006, 12, 173–184. [Google Scholar]
- Merico, P.; Faccoli, M.; La Corte, D.; Cornacchia, G. Archaeometallurgical Characterization of Two Lombard Early Medieval Bloomery Slags from Ponte Di Val Gabbia I Site (Northern Italy). Metals 2023, 13, 984. [Google Scholar] [CrossRef]
- Joosten, I. Technology of Early Historical Iron Production in the Netherlands. PhD. Thesis, Vrije Universiteit Amsterdam, Institute for Geo- and Bioarchaeology, Amsterdam, The Netherlands, 2004. [Google Scholar]
- Zavyalov, V.I. Modelling of Bloomery Processes in a Medieval Russian Furnace. Archeol. Rozhl. 2018, 70, 450–456. [Google Scholar] [CrossRef]
- Verdeş, B.; Chira, I.; Virgolici, M.; Moise, V. Thermal Stability of Fayalite System Formation at the Interface between Steel and Mould. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2012, 74, 257–268. [Google Scholar]
- Turk, P.; Svetličič, V.; Pavlovič, D.; Petru, S.; Šemrov, A.; Tolar, T.; Toškan, B.; Verbič, T.; Nicolaou, D.; Ogorelec, A.; et al. Dragomelj; Zavod za varstvo kulturne dediščine Slovenije: Ljubljana, Slovenia, 2022; ISBN 9789617169430. [Google Scholar]
- Graulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—An Open-Access Collection of Crystal Structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef]
- Thiele, Á. Smelting Experiments in the Early Medieval Fajszi-Type Bloomery and the Metallurgy of Iron Bloom. Period. Polytech. Mech. Eng. 2010, 54, 99. [Google Scholar] [CrossRef]
- Stilborg, O. The Study of Clay-Built Bloomery Furnace Shafts in Sweden—Ceramological Analyses of an Important Part of Iron Production through 1500 Years. J. Archaeol. Sci. Rep. 2023, 47, 103808. [Google Scholar] [CrossRef]
- Vodyasov, E.V.; Amzarakov, P.B.; Sadykov, T.R.; Shirin, Y.V.; Zaitceva, O.V.; Leipe, C.; Tarasov, P.E. Nine Types of Iron Smelting Furnaces in Southern Siberia in the First Millennium AD: A Review of Archaeological and Chronological Data. Archaeol. Res. Asia 2023, 36, 100479. [Google Scholar] [CrossRef]
- Andrič, M.; Sabatier, P.; Rapuc, W.; Ogrinc, N.; Dolenec, M.; Arnaud, F.; von Grafenstein, U.; Šmuc, A. 6600 Years of Human and Climate Impacts on Lake-Catchment and Vegetation in the Julian Alps (Lake Bohinj, Slovenia). Quat. Sci. Rev. 2020, 227, 106043. [Google Scholar] [CrossRef]
- Pavlovič, D.; Burja, J. Pržan in Ljubljana—A Metallurgical Site with Tradition? In Secrets of Iron—From Raw Material to an Iron Object, Proceedings of the 7th International Conference of Mediaeval Archaeology of the Institute of Archaeology, Zagreb, Croatia, 10–11 September 2020; Sekelj Ivančan, T., Ed.; Institut za Arheologiju (Institute of Archaeology): Zagreb, Croatia, 2020; pp. 171–179. [Google Scholar]
- Biernacka, P.; De Clercq, W.; Dewaele, S.; Vanhaecke, F.; De Grave, J. Archaeometallurgical Research into the Ironworking Activities of the Medieval Harbour at Hoeke (Belgium). STAR Sci. Technol. Archaeol. Res. 2023, 9, 2257067. [Google Scholar] [CrossRef]
- Kramar, S.; Lux, J.; Pristacz, H. Mineralogical and Geochemical Characterization of Roman Slag from the Archaeological Site near Mošnje (Slovenia). Mater. Tehnol. 2015, 49, 343–348. [Google Scholar] [CrossRef]
- Kramar, S.; Tratnik, V.; Hrovatin, I.M.; Mladenović, A.; Pristacz, H.; Rogan Šmuc, N. Mineralogical and Chemical Characterization of Roman Slag from the Archaeological Site of Castra (Ajdovščina, Slovenia). Archaeometry 2015, 57, 704–719. [Google Scholar] [CrossRef]
- Bitay, E.; Kacsó, I.; Tănăselia, C.; Toloman, D.; Borodi, G.; Pánczél, S.-P.; Kisfaludi-Bak, Z.; Veress, E. Spectroscopic Characterization of Iron Slags from the Archaeological Sites of Brâncoveneşti, Călugăreni and Vătava Located on the Mureş County (Romania) Sector of the Roman Limes. Appl. Sci. 2020, 10, 5373. [Google Scholar] [CrossRef]
- Senn, M.; Gfeller, U.; Guénette-Beck, B.; Lienemann, P.; Ulrich, A. Tools to Qualify Experiments with Bloomery Furnaces. Archaeometry 2010, 52, 131–145. [Google Scholar] [CrossRef]
- Charlton, M.F.; Blakelock, E.; Martinón-Torres, M.; Young, T. Investigating the Production Provenance of Iron Artifacts with Multivariate Methods. J. Archaeol. Sci. 2012, 39, 2280–2293. [Google Scholar] [CrossRef]
- Li, Z.; Ma, G.-J.; Zou, J.-J.; Zheng, D.-L.; Zhang, X. Carbothermal Reduction of Fayalite: Thermodynamic and Non-Isothermal Kinetic Analysis. J. Min. Metall. Sect. B Metall. 2022, 58, 417–426. [Google Scholar] [CrossRef]
- Marrocchino, E.; Telloli, C.; Finotti, S.; Facchi, A.; Eftekhari, N.; De Vito, C. Microstructure, Chemistry and Mineralogy Approach for the Diagnostics of Metallic Finds of the Tomba Della Biga (Adria, Italy). Appl. Sci. 2022, 12, 11365. [Google Scholar] [CrossRef]
- Stepanov, I.S.; Artemyev, D.A.; Naumov, A.M.; Blinov, I.A.; Ankushev, M.N. Investigation of Ancient Iron and Copper Production Remains from Irtyash Lake (Middle Trans-Urals, Russia). J. Archaeol. Sci. Rep. 2021, 40, 103255. [Google Scholar] [CrossRef]
- de Caro, T. The Ancient Metallurgy in Sardinia (Italy) through a Study of Pyrometallurgical Materials Found in the Archaeological Sites of Tharros and Montevecchio (West Coast of Sardinia). J. Cult. Herit. 2017, 28, 65–74. [Google Scholar] [CrossRef]
- Morel, M.; Serneels, V. Interpreting the Chemical Variability of Iron Smelting Slag: A Case Study from Northeastern Madagascar. Minerals 2021, 11, 900. [Google Scholar] [CrossRef]
- Rémazeilles, C.; Zuluaga, M.C.; Portillo-Blanco, H.; Conforto, E.; Oudriss, A.; Ortega, L.À.; Alonso-Olazabal, A.; Cepeda-Ocampo, J.J. Contribution of EBSD for the Microstructural Study of Archaeological Iron Alloy Artefacts from the Archaeological Site of Loiola (Biscay, Northern Spain). Heritage 2024, 7, 3179–3193. [Google Scholar] [CrossRef]
- Heimann, R.B.; Kreher, U.; Spazier, I.; Wetzel, G. Mineralogical And Chemical Investigations Of Bloomery Slags From Prehistoric (8th Century Bc to 4th Century Ad) Iron Production Sites In Upper And Lower Lusatia, Germany. Archaeometry 2001, 43, 227–252. [Google Scholar] [CrossRef]
- Stepanov, I.S.; Sauder, L.; Keen, J.; Workman, V.; Eliyahu-Behar, A. By the Hand of the Smelter: Tracing the Impact of Decision-Making in Bloomery Iron Smelting. Archaeol. Anthropol. Sci. 2022, 14, 80. [Google Scholar] [CrossRef]
- Zhang, M.; Shao, J.; Zhu, Y.; Zhao, H.; Song, J.; Ma, J. Iron Production in the Ancient Xianyang City of the Qin State: A Perspective on Iron Smelting Slags. J. Archaeol. Sci. Rep. 2023, 47, 103806. [Google Scholar] [CrossRef]
- Verhoeven, J.D.; Zowada, T. Comparison of Two Swords of Antiquity: The Japanese Sword and the Muslim Crucible Damascus Sword. Metallogr. Microstruct. Anal. 2023, 12, 934–943. [Google Scholar] [CrossRef]
- Disser, A.; Bauvais, S.; Dillmann, P. Transformations of the Chemical Signature of Slag Inclusions throughout Experimental Refining and First Shaping of Bloomery Iron: New Methodological Developments. J. Archaeol. Sci. Rep. 2020, 34, 102653. [Google Scholar] [CrossRef]
- Setién, J.; Cisneros, M. Archeometrical Study of Metallic Remains from “La Ulaña” Archeological Site. Metallogr. Microstruct. Anal. 2023, 12, 327–348. [Google Scholar] [CrossRef]
- Bauvais, S.; Berranger, M.; Boukezzoula, M.; Leroy, S.; Disser, A.; Vega, E.; Aubert, M.; Dillmann, P.; Fluzin, P. ‘Guard the Good Deposit’: Technology, Provenance and Dating of Bipyramidal Iron Semi-Products of the Durrenentzen Deposit (Haut-Rhin, France). Archaeometry 2018, 60, 290–307. [Google Scholar] [CrossRef]
- Tylecote, R.F. A History of Metallurgy; Maney: London, UK, 1976; pp. 171–176. [Google Scholar]
Ba | Mn | Ti | Ca | K | Al | P | Si | Fe | Bal. | |
---|---|---|---|---|---|---|---|---|---|---|
furnace | 0.03 | 0.06 | 0.62 | 0.12 | 1.9 | 7.6 | 0.10 | 22.1 | 7.2 | 59.9 |
As | Mn | Cr | Ca | K | %Al | Si | Fe | Bal | |
---|---|---|---|---|---|---|---|---|---|
ore | 0.33 | 0.06 | 0.10 | 0.17 | 0.14 | 0.38 | 0.64 | 35.42 | 33.6 |
Wuestite | Fayalite | Hercynite | Quartz | Lime | |
---|---|---|---|---|---|
Slag 1 | 21 | 66 | 11 | 2 | |
Slag 2 | 25 | 57 | 12 | 6 | |
Slag 3 | 25 | 57 | 12 | 6 | |
Slag 4 | 39 | 34 | 25 | 1 | |
Slag 5 | 34 | 33 | 29 | 1 | 3 |
Slag 6 | 32 | 63 | 12 | 3 | |
Slag 7 | 32 | 49 | 7 | 8 | 4 |
Ba | Mn | Cr | Ti | Ca | K | Al | P | Si | Fe | Bal | |
---|---|---|---|---|---|---|---|---|---|---|---|
bloom | 0.04 | 0.10 | 0.11 | 0.23 | 0.58 | 0.85 | 4.5 | 0.17 | 7.8 | 48.98 | 34.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burja, J.; Šetina Batič, B.; Pavlovič, D. Characterization of Bloom Iron Smelting Site Remains in Pržanj, Slovenia. Heritage 2024, 7, 3919-3931. https://doi.org/10.3390/heritage7080185
Burja J, Šetina Batič B, Pavlovič D. Characterization of Bloom Iron Smelting Site Remains in Pržanj, Slovenia. Heritage. 2024; 7(8):3919-3931. https://doi.org/10.3390/heritage7080185
Chicago/Turabian StyleBurja, Jaka, Barbara Šetina Batič, and Daša Pavlovič. 2024. "Characterization of Bloom Iron Smelting Site Remains in Pržanj, Slovenia" Heritage 7, no. 8: 3919-3931. https://doi.org/10.3390/heritage7080185
APA StyleBurja, J., Šetina Batič, B., & Pavlovič, D. (2024). Characterization of Bloom Iron Smelting Site Remains in Pržanj, Slovenia. Heritage, 7(8), 3919-3931. https://doi.org/10.3390/heritage7080185