On the Identification of the a fresco or a secco Preparative Technique of Wall Paintings
Abstract
:1. Introduction
2. The Archaeological Site
3. Materials and Methods
4. Results and Discussion
4.1. Optical, Electron Microscopy, and Quantitative Chemical Analysis
4.2. Raman Micro-Spectroscopy
4.3. GC-MS: Analysis of Organic Binders
4.4. LC-MS/MS: Analysis of Proteinaceous Binders
4.5. Distinguishing Different Preparative Techniques of Wall Paintings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuní, J. What do we know of Roman wall painting technique? Potential confounding factors in ancient paint media analysis. Herit. Sci. 2016, 4, 44. [Google Scholar] [CrossRef]
- Angelini, I.; Asscher, Y.; Secco, M.; Parisatto, M.; Artioli, G. The pigments of the frigidarium in the Sarno Baths, Pompeii: Identification, stratigraphy and weathering. J. Cult. Herit. 2019, 40, 309–316. [Google Scholar] [CrossRef]
- Bergamonti, L.; Cirlini, M.; Graiff, C.; Lottici, P.P.; Palla, G.; Casoli, A. Characterization of Waxes in the Roman Wall Paintings of the Herculaneum Site (Italy). Appl. Sci. 2022, 12, 11264. [Google Scholar] [CrossRef]
- Cuní, J.; Cuní, P.; Eisen, B.; Savizky, R.; Bové, J. Characterization of the binding medium used in Roman encaustic paintings on wall and wood. Anal. Methods 2012, 4, 659. [Google Scholar] [CrossRef]
- Omarini, S. (Ed.) Encausto: Storia, Tecniche e Ricerche = Encaustic: History, Technique and Research; Nardini: Firenze, Italy, 2012; ISBN 978-88-404-4216-7. [Google Scholar]
- Dilaria, S.; Sbrolli, C.; Mosimann, F.S.; Favero, A.; Secco, M.; Santello, L.; Salvadori, M. Production technique and multi-analytical characterization of a paint-plastered ceiling from the Late Antique villa of Negrar (Verona, Italy). Archaeol. Anthr. Sci. 2024, 16, 74. [Google Scholar] [CrossRef]
- Brecoulaki, H.; Verri, G.; Kalaitzi, M.; Maniatis, Y.; Lilimpaki-Akamati, M. Investigating Colors and Techniques on the Wall Paintings of the ‘Tomb of the Philosophers’, an Early Hellenistic Macedonian Monumental Cist Tomb in Pella (Macedonia, Greece). Heritage 2023, 6, 5619–5647. [Google Scholar] [CrossRef]
- Conti, C.; Botteon, A.; Colombo, C.; Pinna, D.; Realini, M.; Matousek, P. Advances in Raman spectroscopy for the non-destructive subsurface analysis of artworks: Micro-SORS. J. Cult. Herit. 2020, 43, 319–328. [Google Scholar] [CrossRef]
- Carlomagno, I.; Drnec, J.; Scaparro, A.M.; Cicia, S.; Vlaic, S.; Felici, R.; Meneghini, C. Co-Ir interface alloying induced by thermal annealing. J. Appl. Phys. 2016, 120, 195302. [Google Scholar] [CrossRef]
- Mateos, L.D.; Esquivel, D.; Cosano, D.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Micro-Raman analysis of mortars and wallpaintings in the Roman villa of Fuente Alamo (Puente Genil, Spain) and identification of the application technique. Sens. Actuators A Phys. 2018, 281, 15–23. [Google Scholar] [CrossRef]
- Casoli, A. Research on the Organic Binders in Archaeological Wall Paintings. Appl. Sci. 2021, 11, 9179. [Google Scholar] [CrossRef]
- Smoluch, M.; Sobczyk, J.; Szewczyk, I.; Karaszkiewicz, P.; Silberring, J. Mass spectrometry in art conservation—With focus on paintings. Mass. Spectrom. Rev. 2023, 42, 1625–1646. [Google Scholar] [CrossRef]
- Vinciguerra, R.; De Chiaro, A.; Pucci, P.; Marino, G.; Birolo, L. Proteomic strategies for cultural heritage: From bones to paintings. Microchem. J. 2016, 126, 341–348. [Google Scholar] [CrossRef]
- Andreotti, A.; Bonaduce, I.; Colombini, M.P.; Gautier, G.; Modugno, F.; Ribechini, E. Combined GC/MS Analytical Procedure for the Characterization of Glycerolipid, Waxy, Resinous, and Proteinaceous Materials in a Unique Paint Microsample. Anal. Chem. 2006, 78, 4490–4500. [Google Scholar] [CrossRef] [PubMed]
- Pagano, M.; Tomeo, A. Capua—La Seconda Roma: Nuovi Studi e Ricerche; Soprintendenza ABAP Caserta/Benevento: Caserta, Italy, 2021; ISBN 978-88-943027-9-0. [Google Scholar]
- Gelzo, M.; Grimaldi, M.; Vergara, A.; Severino, V.; Chambery, A.; Dello Russo, A.; Piccioli, C.; Corso, G.; Arcari, P. Comparison of binder compositions in Pompeian wall painting styles from Insula Occidentalis. Chem. Cent. J. 2014, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Corso, A.D.; Pignataro, L.; Belvisi, L.; Gennari, C. Innovative Linker Strategies for Tumor-Targeted Drug Conjugates. Chem.—A Eur. J. 2019, 25, 14740–14757. [Google Scholar] [CrossRef] [PubMed]
- Prisco, G. Su Alcune Particolarità Tecniche delle Officine Addette alla Decorazione della Domus Vettiorum. In Nuove Ricerche Archeologiche a Pompei ed Ercolano; Atti del Convegno Internazionale: Roma, Italy, 2002; pp. 355–366. [Google Scholar]
- Vergara, A.; Vitagliano, L.; Merlino, A.; Sica, F.; Marino, K.; Verde, C.; di Prisco, G.; Mazzarella, L. An Order-Disorder Transition Plays a Role in Switching Off the Root Effect in Fish Hemoglobins. J. Biol. Chem. 2010, 285, 32568–32575. [Google Scholar] [CrossRef]
- Nesse, W.D. Introduction to Mineralogy, 2nd ed.; Oxford University Press: New York, NY, USA, 2012; ISBN 978-0-19-982738-1. [Google Scholar]
- Dana, J.D. Manual of Mineralogy: After James D. Dana, 20th ed.; Klein, C., Hurlbut, C.S., Eds.; Wiley: New York, NY, USA, 1985; ISBN 978-0-471-80580-9. [Google Scholar]
- Pouchou, J.-L.; Pichoir, F. Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP.” In Electron Probe Quantitation; Heinrich, K.F.J., Newbury, D.E., Eds.; Springer: Boston, MA, USA, 1991; pp. 31–75. ISBN 978-1-4899-2619-7. [Google Scholar] [CrossRef]
- Anthony, J.W. (Ed.) Handbook of Mineralogy; Mineral Data Pub: Tucson, AZ, USA, 1990; ISBN 978-0-9622097-0-3. [Google Scholar]
- Melchiorre, C.; Dello Ioio, L.; Ntasi, G.; Birolo, L.; Trojsi, G.; Cennamo, P.; Barone Lumaga, M.R.; Fatigati, G.; Amoresano, A.; Carpentieri, A. A multi disciplinary assessment to investigate a XXII dynasty wooden coffin. Int. J. Conserv. Sci. 2020, 11, 25–38. [Google Scholar]
- Boccalon, E.; Rosi, F.; Vagnini, M.; Romani, A. Multitechnique approach for unveiling the technological evolution in building materials during the Roman Imperial Age: The Atrium Vestae in Rome. Eur. Phys. J. Plus 2019, 134, 528. [Google Scholar] [CrossRef]
- Birolo, L.; Rossi, M.; Alberico, M.; De Riso, N.; Ntasi, G.; Tomeo, A.; Vergara, A. Inorganic, organic and biochemical characterization of wall paintings from a Roman domus. In Proceedings of the 2022 IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Calabria, Italy, 19–21 October 2022; IMEKO: Rome, Italy, 2023; pp. 55–59. [Google Scholar]
- Zezza, U. La Petrografia Micoscopica; La Goliardica Pavese: Pavia, Italy, 1976; ISBN 978-88-7830-088-0. [Google Scholar]
- Peccerillo, A.; Perugini, D. Introduzione alla Petrografia Ottica; Morlacchi: Perugia, Italy, 2003; ISBN 978-88-88778-27-3. [Google Scholar]
- Gunasekaran, S.; Anbalagan, G.; Pandi, S. Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc. 2006, 37, 892–899. [Google Scholar] [CrossRef]
- Mahmoud, H.H.M. Investigations by Raman microscopy, ESEM and FTIR-ATR of wall paintings from Qasr el-Ghuieta temple, Kharga Oasis, Egypt. Herit. Sci. 2014, 2, 18. [Google Scholar] [CrossRef]
- Baraldi, P.; Baraldi, C.; Curina, R.; Tassi, L.; Zannini, P. A micro-Raman archaeometric approach to Roman wall paintings. Vib. Spectrosc. 2007, 43, 420–426. [Google Scholar] [CrossRef]
- Clark, R.J.; Gibbs, P.J. Non-Destructive In Situ Study of Ancient Egyptian Faience by Microscopy. J. Raman. Spectr. 1997, 28, 99–103. [Google Scholar] [CrossRef]
- Smith, D.K. Opal, cristobalite, and tridymite: Noncrystallinity versus crystallinity, nomenclature of the silica minerals and bibliography. Powder Diffr. 1998, 13, 2–19. [Google Scholar] [CrossRef]
- de Faria, D.L.A.; Venâncio Silva, S.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Tomasini, E.P.; Halac, E.B.; Reinoso, M.; Di Liscia, E.J.; Maier, M.S. Micro-Raman spectroscopy of carbon-based black pigments. J. Raman Spectrosc. 2012, 43, 1671–1675. [Google Scholar] [CrossRef]
- Lalla, E.A.; Lopez-Reyes, G.; Sansano, A.; Sanz-Arranz, A.; Martínez-Frías, J.; Medina, J.; Rull-Pérez, F. Raman-IR vibrational and XRD characterization of ancient and modern mineralogy from volcanic eruption in Tenerife Island: Implication for Mars. Geosci. Front. 2016, 7, 673–681. [Google Scholar] [CrossRef]
- Das, S.; Hendry, M.J. Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem. Geol. 2011, 290, 101–108. [Google Scholar] [CrossRef]
- Bedarida, F.; Flamini, F.; Pedamonte, G.M. Hematite to goethite surface weathering. Scanning Electron Microsc. 1971, 58, 7–8. [Google Scholar]
- Bell, I.M.; Clark, R.J.H.; Gibbs, P.J. Raman spectroscopic library of natural and synthetic pigments (pre- ≈ 1850 AD). Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 1997, 53, 2159–2179. [Google Scholar] [CrossRef]
- Jehlička, J.; Edwards, H.G.M.; Osterrothová, K.; Novotná, J.; Nedbalová, L.; Kopecký, J.; Němec, I.; Oren, A. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: Implications for astrobiology. Phil. Trans. R. Soc. A. 2014, 372, 20140199. [Google Scholar] [CrossRef]
- Azemard, C.; Menager, M.; Vieillescazes, C. Analysis of diterpenic compounds by GC-MS/MS: Contribution to the identification of main conifer resins. Anal. Bioanal. Chem. 2016, 408, 6599–6612. [Google Scholar] [CrossRef] [PubMed]
- Beltran, V.; Salvadó, N.; Butí, S.; Pradell, T. Ageing of resin from Pinus species assessed by infrared spectroscopy. Anal. Bioanal. Chem. 2016, 408, 4073–4082. [Google Scholar] [CrossRef] [PubMed]
- Kaklamanos, G.; Theodoridis, G.; Dabalis, T. Determination of anabolic steroids in bovine urine by liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2009, 877, 2330–2336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yue, J.-M. Hasubanan Type Alkaloids from Stephania longa. J. Nat. Prod. 2005, 68, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Ranchana, P.; Ganga, M. Investigation of Volatile Compounds from the Concrete of Jasminum auriculatum Flowers. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 1525–1531. [Google Scholar] [CrossRef]
- Blaško, J.; Kubinec, R.; Husová, B.; Přikryl, P.; Pacáková, V.; Štulík, K.; Hradilová, J. Gas chromatography/mass spectrometry of oils and oil binders in paintings. J. Sep. Sci. 2008, 31, 1067–1073. [Google Scholar] [CrossRef]
- Piovesan, R.; Siddall, R.; Mazzoli, C.; Nodari, L. The Temple of Venus (Pompeii): A study of the pigments and painting techniques. J. Archaeol. Sci. 2011, 38, 2633–2643. [Google Scholar] [CrossRef]
Pictorial Layer Colors | Sample | Mineral Amounts | Mineral Composition | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TiO2 | Fe2O3 | PbO | MnO | Hg | S | H2O | Tot | |||||||||||||||
Bright Red | 151 | 90% Cin | - | - | - | - | 86.40 (65) | 12.62 (70) | - | 99.02 | ||||||||||||
10% Hem | 0.49 (32) | 97.93 (78) | - | 0.27 (51) | - | - | - | 98.69 | ||||||||||||||
151C | 90% Cin | - | - | - | - | 84.19 (52) | 14.09 (88) | - | 98.28 | |||||||||||||
10% Hem | 1.08 (74) | 98.56 (29) | - | 0.25 (62) | - | - | - | 99.89 | ||||||||||||||
Ochre yellow | 151 | 5% Pb rich-Gth | - | 58.48 (56) | 33.66 (62) | - | - | - | 7.94 | 100.00 | ||||||||||||
95% Pb-Gth | - | 87.19 (2.1) | 3.41 (2.5) | - | - | - | 9.40 | 100.00 | ||||||||||||||
151C | 100% Pb-Gth | - | 86.35 (55) | 3.38 (12) | 0.23 (10) | - | - | 10.03 | 100.00 | |||||||||||||
Reddish/brown | 151 | 20% Hem | 1.12 (10) | 96.93 (46) | - | 0.80 (12) | - | - | 98.85 | |||||||||||||
80% Gth | 0.29 (6) | 88.97 (24) | - | 0.15 (12) | - | - | 10.59 | 100.00 | ||||||||||||||
151C | 10% Hem | 0.81 (10) | 98.33 (56) | - | 0.52 (16) | - | - | 99.66 | ||||||||||||||
90% Gth | 0.38 (22) | 89.91 (70) | - | - | - | 9.72 | 100.00 | |||||||||||||||
151B | 10% Hem | 0.51 (21) | 97.83 (77) | 0.45 (10) | - | - | - | 98.79 | ||||||||||||||
90% Gth | 2.78 (10) | 86.94 (86) | 1.46 (30) | - | - | - | 8.82 | 100.00 | ||||||||||||||
Pictorial Layer Color | Sample | Mineral Amounts | Mineral Composition | |||||||||||||||||||
SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO | MnO | MgO | CaO | CuO | K2O | H2O | Tot | |||||||||||
Green | 151 | Glt 47% | 46.94 (92) | 5.87 (21) | 23.48 (30) | 3.45 (16) | 0.63 (32) | 6.90 (20) | 12.54 | 100.00 | ||||||||||||
Cuv 35% | 63.67 (70) | 15.04 (35) | 21.30 (21) | 100.01 | ||||||||||||||||||
Gth 3% | 0.73 (45) | 87.67 (50) | 0.34 (35) | 1.10 (12) | 10.16 | 100.00 | ||||||||||||||||
Hem 4% | 100.24 (15) | 100.24 | ||||||||||||||||||||
Uspl 2% | 19.82 (25) | 2.75 (90) | 9.56 (51) | 65.44 (81) | 0.97 (12) | 1.14 (54) | 99.70 |
(a) | ||||||
Sample | RT (min) | Name | ||||
151A | 6132 | Cholest-5-en-19-al,3ß-hydroxy-,cyclic ethylene mercaptal, acetate | ||||
17.77 | 10,18-bisnorabieta-8,11,13-triene | |||||
22.12 | Diglycidyl bisphenol A | |||||
23,225 | Hexestrol, di-TMS | |||||
151B | 6383 | Cholest-5-en-19-al,3ß-hydroxy-,cyclic ethylene mercaptal, acetate | ||||
10,434 | Dianhydro-2-deoxy-ß-d-ribo-hexopyranose | |||||
13,563 | 2-Methyl-7-hydroxy-8-allyl-isoflavone | |||||
14,097 | 3-Heptadecenal | |||||
21,473 | Oxalic acid, hexadecyl isohexylester | |||||
17.77 | 10,18-bisnorabieta-8,11,13-triene | |||||
22.12 | Diglycidyl bisphenol A | |||||
151C | 17.04 | Stephaboline | ||||
17.77 | 10,18-bisnorabieta-8,11,13-triene | |||||
22.12 | Diglycidyl bisphenol A | |||||
187 | 17.77 | 10,18-bisnorabieta-8,11,13-triene | ||||
22.12 | Diglycidyl bisphenol A | |||||
21,284 | 1-Dodecanol, 3,7,11-trimethyl- | |||||
21,356 | 7-Hexadecenal, (Z)- | |||||
21,452 | Octadecane, 1-(ethenyloxy)- | |||||
21,555 | 1-Dodecanol, 3,7,11-trimethyl- | |||||
21,808 | 7-Hexadecenal, (Z)- | |||||
22,253 | 1-Dodecanol, 3,7,11-trimethyl- | |||||
(b) | ||||||
RT (min) | Name | C:N * | 151A | 151B | 151C | 187 |
12.88 | Myristic acid | C14:0 | 1.60% | 1.93% | 9.25% | |
14.71 | Pentadecanoic acid | C15:0 | 3.44% | 3.45% | ||
16.25 | Palmitic acid | C16:0 | 35.73% | 28.17% | 26.25% | 45.52% |
17.52 | Margaric acid | C17:0 | 4.57% | 4.63% | ||
18.36 | 16-octadecenoic acid | C18:1 | 43.30% | 49.80% | 10.90% | |
18.63 | Stearic acid | C18:0 | 14.80% | 12.03% | 62.85% | 41.78% |
Palmitic/Stearic | C16:0/C18:0 | 2.41 | 2.34 | 0.42 | 1.09 |
(a) | |||
Protein Name (Uniprot Entry) | Sequence Coverage % | m/z | Peptide |
Collagen alpha-1(I) chain (P02453) | 7 | 314,677 | R,GLPGER,G |
322,673 | R,GLPGER,G + Hydroxylation (P) | ||
392,223 | R,GAAGLPGPK,G + Hydroxylation (P) | ||
426,218 | R,GFSGLDGAK,G | ||
449,756 | R,GVVGLPGQR,G + Hydroxylation (P) | ||
450,251 | R,GVVGLPGQR,G + Deamidated (NQ); Hydroxylation (P) | ||
553,286 | R,GVQGPPGPAGPR,G + Hydroxylation (P) | ||
553,779 | R,GVQGPPGPAGPR,G + Deamidated (NQ); Hydroxylation (P) | ||
589,776 | R,GQAGVMGFPGPK,G + Oxidation (M); Deamidated (NQ); Hydroxylation (K) | ||
781,888 | K,DGLNGLPGPIGPPGPR,G + Deamidated (NQ); 3 Hydroxylation (P) | ||
941,451 | K,GDTGAKGEPGPAGVQGPPGPAGEEGKRGAR,G + Deamidated (NQ); 4 Hydroxylation (P) | ||
Collagen alpha-2(I) chain (P02465) | 5% | 314,677 | R,GLPGER,G |
322,673 | R,GLPGER,G + Hydroxylation (P) | ||
379,696 | R,GLPGADGR,A + Hydroxylation (P) | ||
393,220 | R,GATGPAGVR,G | ||
420,739 | R,GVVGPQGAR,G | ||
421,234 | R,GVVGPQGAR,G + Deamidated (NQ) | ||
434,735 | R,VGAPGPAGAR,G + Hydroxylation (P) | ||
459,726 | R,AGVMGPAGSR,G + Oxidation (M) | ||
596,838 | R,IGQPGAVGPAGIR,G | ||
634,339 | R,GIPGPVGAAGATGAR,G + Hydroxylation (P) | ||
(b) | |||
Protein Name (Uniprot Entry) | Sequence Coverage % | m/z | Peptide |
Collagen alpha-1(I) chain (P02453) | 7% | 449,760 | R,GVVGLPGQR,G + Hydroxylation (P) |
450,254 | R,GVVGLPGQR,G + Deamidated (NQ); Hydroxylation (P) | ||
544,777 | R,GFPGADGVAGPK,G + Hydroxylation (P) | ||
553,788 | R,GVQGPPGPAGPR,G + Deamidated (NQ); Hydroxylation (P) | ||
589,783 | R,GQAGVMGFPGPK,G + Oxidation (M); Deamidated (NQ); Hydroxylation (K) | ||
629,800 | K,GLTGSPGSPGPDGK,T + 2 Hydroxylation (P) | ||
730,351 | R,GSAGPPGATGFPGAAGR,V + 2 Hydroxylation (P) | ||
781,900 | K,DGLNGLPGPIGPPGPR,G + Deamidated (NQ); 3 Hydroxylation (P) | ||
793,884 | K,GANGAPGIAGAPGFPGAR,G + Deamidated (NQ); 3 Hydroxylation (P) | ||
Collagen alpha-2(I) chain (P02465) | 4% | 367,185 | K,GPSGDPGKAGEK,G |
596,845 | R,IGQPGAVGPAGIR,G | ||
597,334 | R,IGQPGAVGPAGIR,G + Deamidated (NQ) | ||
601,296 | R,GEPGNIGFPGPK,G + Hydroxylation (P); Hydroxylation (K) | ||
604,844 | R,IGQPGAVGPAGIR,G + Hydroxylation (P) | ||
634,342 | R,GIPGPVGAAGATGAR,G + Hydroxylation (P) | ||
714,369 | R,GIPGEFGLPGPAGAR,G + 2 Hydroxylation (P) |
Sample | Color | Raman Micro-Spectroscopy | SEM-EDS | GC-MS | LC-MS |
---|---|---|---|---|---|
151A | White | Calcite | Calcite | / | / |
Yellow | Iron Hydroxide | Limonite | |||
Blue | Egyptian Blue | Cuprorivaite | Pinaceous resin + Animal fat | Collagen | |
Green | Green Earths | Glauconite | |||
Red | Cinnabar | Cinnabar | |||
151B | Red | Hemtite + Goethite + Carbon | Hematite + Goethite | Pinaceous resin + Animal fat | Collagen |
151C | Red | Hemtite + Goethite | Hematite + Goethite | Pinaceous resin + Vegetable fatty acids | / |
187 | Blue | Traces of carotenoids | / | Pinaceous resin + Vegetable fatty acids | / |
Green | |||||
63 | Blue | Traces of carotenoids | / | / | / |
Green | |||||
139 | Red | Hemtite + Goethite | / | / | |
146 | Blue | Egyptian Blue | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntasi, G.; Rossi, M.; Alberico, M.; Tomeo, A.; Birolo, L.; Vergara, A. On the Identification of the a fresco or a secco Preparative Technique of Wall Paintings. Heritage 2024, 7, 3902-3918. https://doi.org/10.3390/heritage7080184
Ntasi G, Rossi M, Alberico M, Tomeo A, Birolo L, Vergara A. On the Identification of the a fresco or a secco Preparative Technique of Wall Paintings. Heritage. 2024; 7(8):3902-3918. https://doi.org/10.3390/heritage7080184
Chicago/Turabian StyleNtasi, Georgia, Manuela Rossi, Miriam Alberico, Antonella Tomeo, Leila Birolo, and Alessandro Vergara. 2024. "On the Identification of the a fresco or a secco Preparative Technique of Wall Paintings" Heritage 7, no. 8: 3902-3918. https://doi.org/10.3390/heritage7080184
APA StyleNtasi, G., Rossi, M., Alberico, M., Tomeo, A., Birolo, L., & Vergara, A. (2024). On the Identification of the a fresco or a secco Preparative Technique of Wall Paintings. Heritage, 7(8), 3902-3918. https://doi.org/10.3390/heritage7080184