Comprehensive Overview and New Research on Carbonate Rocks of the Sé Velha Cathedral in Coimbra, Portugal
Abstract
:1. Introduction
1.1. The Old Cathedral of Coimbra Sé Velha and Porta Especiosa: A Case Study
1.2. Overview of Background Research
1.2.1. Overview of Methods and Samples Collected
1.2.2. Debate over Geological Origin
- -
- Bajocian age—Ançã limestone;
- -
- Lias age (is Rhaetianto Toarcian in age)—dolostone and calcitic dolostone (beds of Coimbra) and limestone to dolostone (beds of S. Miguel);
- -
- Toarcian domerian medium—marls and marly limestone of Pedrulha;
- -
- Carixian domerian superior—marls and marly limestone of Eiras.
1.2.3. Material Mapping of the North Wall (Including the Porta Especiosa Portal)
1.3. Chemical and Mineralogical Analysis Background
2. New Research Results—Materials and Methods
2.1. Stone Materials
2.2. Methods
3. Results
3.1. Morphological and Colourimetric Analysis
3.2. Mineralogical Analysis
3.3. Chemical Analysis
3.4. SEM/EDS Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winkler, E.; Hudec, P.P.; Harvey, R.D.; Baxter, J.W.; Fraser, G.S.; Smith, C.B.; Norman, G.E.; Renninger, F.A.; Nichols, F.P., Jr.; Ozol, M.A.; et al. Decay and Preservation of Stone. Nature 1978, 115, 779. [Google Scholar] [CrossRef]
- Touloum, N.R.; Brara, A. Advanced decay of the Fontvieille porous limestone used in the construction of Pouillon’s housing estates in Algiers (Algeria). J. Archaeol. Sci. Rep. 2023, 47, 103804. [Google Scholar] [CrossRef]
- Cooke, R.U. Salt weathering in deserts. Proc. Geol. Assoc. 1981, 92, 1–16. [Google Scholar] [CrossRef]
- Bonazza, A. Sustainable heritage and climate change. In Routledge Handbook of Sustainable Heritage; Routledge: London, UK, 2022; pp. 263–271. [Google Scholar] [CrossRef]
- Winkler, E. Stone in Architecture: Properties, Durability, 3rd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Rosado, T.; Silva, M.; Galvão, A.; Mirão, J.; Candeias, A.; Caldeira, A.T. A first insight on the biodegradation of limestone: The case of the World Heritage Convent of Christ. Appl. Phys. A Mater. Sci. Process. 2016, 122, 1012. [Google Scholar] [CrossRef]
- Património Cultural-Instituto Público, “Igreja da Sé Velha”. Available online: https://servicos.dgpc.gov.pt/pesquisapatrimonioimovel/detalhes.php?code=70529 (accessed on 17 July 2024).
- University of Coimbra–Alta and Sofia. Available online: https://whc.unesco.org/en/list/1387/ (accessed on 3 October 2024).
- DGEMN. ‘A Sé Velha de Coimbra’, Boletim da Direção Geral dos Edifícios e Monumentos Nacionais, no 109; Ministério das Obras Públicas: Porto, Portugal, 1962.
- Gomes Coelho, A.; Delgado Rodrigues, J.; Ferreira Pinto, A.P. Conservação da Porta Especiosa: Caracterização da Degradação por Ensaios In Situ; NEC, Lisbon, Portugal, 2000.
- Aires de Barros, L.A.; Ferreira Pinto, A.P. Relatório de Caracterização da Pedra da Porta Especiosa Report; IST: Lisbon, Portugal, 1985. [Google Scholar]
- Aires Barbosa, L.; Dionísio, M.A. Relatório Preliminar Sobre a Litologia e as Patologias da Porta Especiosa—Sé Velha Coimbra e Proposta de Salvaguarda; IST: Lisbon, Portugal, 1998. [Google Scholar]
- Marques, F.; Lopes, C.S. Levantamento do estado de degradação global da Porta Especiosa; IPPAR: Lisbon, Portugal, 1999. [Google Scholar]
- Delgado Rodrigues, J.; Ferreira Pinto, A.P. Conservação da Porta Especiosa. Caracterização por Ensaios In Situ; LNEC: Lisbon, Portugal, 2000. [Google Scholar]
- Freitas Tavares, A. Caracterização da pedra da Porta Especiosa; Museu Nacional Machado de Castro: Coimbra, Portugal, 1989. [Google Scholar]
- Quinta Ferreira, M.; Soares, A.F.; Delgado Rodrigues, J.; Monteiro, B. Carbonate rocks from Sé Velha Cathedral. In Proceedings of the 7th International Congress on Deterioration Conservation of Stones, Lisbon, Portugal, 15–18 June 1992. [Google Scholar]
- Henriques, F.; Delgado Rodrigues, J.; Aires de Barros, L.; Craveiro, L. Conservação e Restauro de Coberturas, Fachadas e 2afase Porta Especiosa; LNEC: Lisbon, Portugal, 2002. [Google Scholar]
- Bonomo, A.E.; Minervino Amodio, A.; Prosser, G.; Sileo, M.; Rizzo, G. Evaluation of soft limestone degradation in the Sassi UNESCO site (Matera, Southern Italy): Loss of material measurement and classification. J. Cult. Herit. 2020, 42, 191–201. [Google Scholar] [CrossRef]
- Colston, B.J.; Watt, D.S.; Munro, H.L. Environmentally-induced stone decay: The cumulative effects of crystallization-hydration cycles on a Lincolnshire oopelsparite limestone. J. Cult. Herit. 2001, 2, 297–307. [Google Scholar] [CrossRef]
- Hashim, M.S.; Kaczmarek, S.E. A review of the nature and origin of limestone microporosity. Mar. Pet. Geol. 2019, 107, 527–554. [Google Scholar] [CrossRef]
- Dilaria, S.; Bonetto, J.; Germinario, L.; Previato, C.; Girotto, C.; Mazzoli, C. The stone artifacts of the National Archaeological Museum of Adria (Rovigo, Italy): A noteworthy example of heterogeneity. Archaeol. Anthropol. Sci. 2024, 16, 14. [Google Scholar] [CrossRef]
- Castro, E.; do Rosario, M.; Delgado Rodrigues, J. Conservação de Pedras e Edifícios de Interesse Histórico ou Artístico, 6o Report, Estudo do Calcário dum Retábulo da Sé Velha de Coimbra e de Calcários de Pedreira da 635 Região; LNEC: Lisboa, Portugal, 1975. [Google Scholar]
- Varas-Muriel, M.J.; Pérez-Monserrat, E.M.; Vázquez-Calvo, C.; Fort, R. Effect of conservation treatments on heritage stone. Characterisation of decay processes in a case study. Constr Build Mater 2015, 95, 611–622. [Google Scholar] [CrossRef]
- Ding, Y.; Salvador, C.S.C.; Caldeira, A.T.; Angelini, E.; Schiavon, N. Biodegradation and Microbial Contamination of Limestone Surfaces: An Experimental Study from Batalha Monastery, Portugal. Corros. Mater. Degrad. 2021, 2, 31–45. [Google Scholar] [CrossRef]
- Šiler, P.; Kolářová, I.; Bednárek, J.; Janča, M.; Musil, P.; Opravil, T. The possibilities of analysis of limestone chemical composition. IOP Conf. Ser. Mater. Sci. Eng. 2018, 379, 012033. [Google Scholar] [CrossRef]
- Villarraga, C.J.; Gasc-Barbier, M.; Vaunat, J.; Darrozes, J. The effect of thermal cycles on limestone mechanical degradation. Int. J. Rock Mech. Mining Sci. 2018, 109, 115–123. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Mesquita, N.; Trovão, J.; Soares, F.; Tiago, I.; Coelho, C.; de Carvalho, H.P.; Gil, F.; Catarino, L.; Piñar, G.; et al. Limestone biodeterioration: A review on the Portuguese cultural heritage scenario. J. Cult. Herit. 2019, 36, 275–285. [Google Scholar] [CrossRef]
- IPPAR. Concurso Público Internacional–Igreja Sé Velha, Coimbra–Conservação e Restauro das Coberturas, Fachadas e 2afase da Porta Especiosa; IPPAR: Lisboa, Portugal, 2005. [Google Scholar]
- Mamillan, M. Pathologie et Restauration des Constructions en Pierre; Faculté D’Architecture de l’Université de Rome: Rome, Italy, 1972. [Google Scholar]
- Galhano, C.; Rocha, F.; Gomes, C. Geostatistical analysis of the influence of textural, mineralogical and geochemical parameters on the geotechnical behaviour of the ‘Argilas de Aveiro’ Formation (Portugal). Clay Miner 1999, 34, 109–116. [Google Scholar] [CrossRef]
- Oliveira, A.; Rocha, F.; Rodrigues, A.; Jouanneau, J.; Dias, A.; Weber, O.; Gomes, C. Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Prog. Oceanogr. 2002, 52, 233–247. [Google Scholar] [CrossRef]
- Urosevic, M.; Pardo, E.M.S.; Agudo, E.R.; Fernández, C.C. Evaluación de las propiedades físicas de dos rocas carbonáticas usadas como material de construcción actual e histórico en Andalucía Oriental, España. Mater. Construcción 2011, 61, 465–2746. [Google Scholar] [CrossRef]
- Occhipinti, R.; Stroscio, A.; Belfiore, C.M.; Barone, G.; Mazzoleni, P. Chemical and colorimetric analysis for the characterization of degradation forms and surface colour modification of building stone materials. Constr. Build. Mater. 2021, 302, 124356. [Google Scholar] [CrossRef]
- Cai, W.K.; Liu, J.H.; Zhou, C.H.; Keeling, J.; Glasmacher, U.A. Structure, genesis and resources efficiency of dolomite: New insights and remaining enigmas. Chem. Geol. 2021, 573, 120191. [Google Scholar] [CrossRef]
- Maričić, A.; Starčević, K.; Barudžija, U. Physical and mechanical properties of dolomites related to sedimentary and diagenetic features—Case study of the upper triassic dolomites from the medvednica and samobor mts., NW Croatia. Rud. Geol. Naftni Zbornik 2018, 33, 33–44. [Google Scholar] [CrossRef]
Quarries/Region | Identified Stone | Possible Use in Sé Velha Cathedral | Reference |
---|---|---|---|
Beds of Coimbra and hill of Cathedral | Dolostone and calcitic dolostone (with 75–98% dolomite) | Cathedral and cloister | [16] |
Ançã region (10 km northwest of Coimbra), Cantanhede | Ançã limestone, milky white rocks with a very pure appearance, oolitic limestone | Porta Especiosa portal Altarpiece of Baptistery Chapel | [11,21,22] |
Santo António da Pedreira (250 m south of the cathedral | White-to-grey limestone, greyish limestone, slightly marly, yellowish to white | Porta Especiosa portal | [16] |
Outcrop in the south of Coimbra | White créme and greyish limestone with a residual silicate fraction similar to Cantanhede but not Ançã limestone | Porta Especiosa portal | [12,14] |
D’El Rei quarry in Portunhos (Ançã region) | Dolomitic limestone | Cathedral | [21] |
Santa Clara quarry in Coimbra | Dolomitic limestone | Altarpiece of the Baptistery Chapel | [22] |
Ançã, Portunhos, Pena, Outil | Marlstone (probable Lower Jurassic) and Ançã limestone (with 97% calcium carbonate) | Lower part of the Porta Especiosa portal | [17] |
Dolostone to Calcitic Dolostone | White Yellow Ançã Limestone | Marly Ançã Limestone | |
---|---|---|---|
Porosity % | 8.5–24.2 | 23.2–29.0 | 11.3–11.4 |
Dry Unit weight (KN/m3) | 21.13–23.97 | 18.87–19.52 | 23.51–23.53 |
Grain Unit Weight (KN/m3) | 26.61–28.03 | 25.88–26.62 | 26.52–26.54 |
Classification | % Dolomite | CaO | MgO | Fe2O3 | Na2O | K2O | Al2O3 |
---|---|---|---|---|---|---|---|
Dolostone | >90 | 29.11–30.70 | 19.87–21.50 | 0.99–2.11 | 0.01 | 0.06 | 0.89 |
Calcitic dolostone | 50–90 | 23.42–31.43 | 16.42–19.55 | 0.83–3.77 | 0.01–0.94 | 0.06–1.42 | 0.89–3.35 |
Dolomitic limestone | 10–50 | 39.06–43.32 | 8.02–8.90 | 0.94–1.47 | - | - | - |
Limestone: | |||||||
White and yellowish | <10 | 53.09–55.48 | 0.32–0.60 | 0.05–0.20 | 0.00–0.02 | 0.00–0.05 | 0.50–0.70 |
Grey | 54.71–54.98 | 0.47–0.60 | 0.28–0.49 | 0.01–0.03 | 0.07–0.09 | 0.66–0.93 | |
Marly | 49.79 | 0.91 | 0.83 | 0.01 | 0.11 | 1.33 | |
Regional quarries: | SiO2 | CaO | MgO | FeO3 | SO3 | CO2 (read heat loss) | Al2O3 |
CA1—limestone | 2.29 | 53.90 | 0.60 | 0.07 | 0.0 | 42.55 | 0.70 |
CA2—limestone | 1.80 | 54.33 | 0.60 | 0.05 | 0.0 | 42.77 | 0.50 |
CA3—limestone | 1.76 | 54.33 | 0.40 | 0.08 | 0.0 | 42.81 | 0.55 |
CC4—calcitic dolostone | 2.06 | 29.35 | 19.30 | 0.85 | remains | 45.46 | 3.35 |
Sample Location | Infrared Spectroscopy | X.R.D | Thermo-Differential Analysis AID | Microscopy |
---|---|---|---|---|
Sample 1 Grey limestone slabs from the right threshold 2 metres from the staircase landing | Calcite, clay product. In addition to the above, there is an area with dark spots showing traces of sulphates. Phosphates confirmed via chemical tests. | Calcite Quartz (low content) | Calcite | Fine-grained limestone with quartz clasts scattered throughout the matrix. |
Sample 2 Gray crusts collected from the recess at the base of a bas relief on the right side of the portico | Calcite and a great deal of gypsum-type sulphate. Traces of nitrates. Phosphates confirmed via chemical tests. | Calcite Gypsum | Calcite Gypsum | -- |
Sample 3 Yellowish crusts on the right doorframe | Calcite and a great deal of gypsum-type sulphate. It contains nitrates and clay products and phosphates confirmed by chemical tests. | Calcite Gypsum | Calcite Gypsum | Fine-grained limestone with a profusion of quartz granules and a rich matrix of isotropic clay-type products. |
Specimen Descriptions | Abbreviation |
---|---|
Collapsed stone close to the entrance of the Porta Especiosa | PES |
Collapsed stone on the floor of the Porta Especiosa | PEch |
Collapsed stone on the floor of the Porta Especiosa (another one) | PE1 |
Stone on the inside of the façade wall on the right-hand side | PEt |
Colonnaded stone from the Porta Especiosa (on the guardrail) | PER |
Collapsed stone on the sill of the Porta Especiosa guard (left side) | PEE |
Stone from the colonnade base of the Porta Especiosa (on the balcony guard) | PEC |
Stone section of the inner face of the main façade, left side | PLE |
Stone in the passageway adjacent to the main façade (close to the floor) | PPch |
Collapsed stone next to the third section on the right-hand side | P3P |
Sample | L* | a* | b* |
---|---|---|---|
PEE | 62.6 ± 1.6 | 1.0 ± 0.3 | 13.7 ± 0.8 |
PEt | 60.8 ± 5.0 | 0.2 ± 0.2 | 8.0 ± 1.8 |
PPch | 70.7 ± 3.2 | 2.5 ± 0.9 | 24.7 ± 2.2 |
PEch | 84.5± 1.0 | 0.1 ± 0.09 | 7.8 ± 0.4 |
PEC | 67.7 ± 0.8 | 1.0 ± 0.2 | 12.6 ± 2.6 |
PER | 64.8 ± 8.0 | 1.0 ± 0.6 | 11.6 ± 2.2 |
PE1 | 65.9 ± 1.5 | 2.9 ± 0.2 | 19.4 ± 0.5 |
PLE | 73.6 ± 6.4 | 2.6 ± 1.5 | 19.8 ± 5.2 |
P3P | 60.6 ± 3.2 | 0.4± 0.3 | 6.6 ± 3.5 |
PES | 76.8 ± 0.3 | 0.4 ± 0.2 | 8.4 ± 0.6 |
Samples | Mineralogical Peaks Identified | Categorization |
---|---|---|
PEch | Calcite | Efflorescence on limestone |
Gypsum | ||
Nitre | ||
PES | Calcite | |
Nitre | ||
Coquimbite | ||
Rozenite | ||
Gypsum | ||
Huntite | ||
Vaterite | ||
Dolomite | ||
PE1 | Calcite | Dolomitic limestone |
Dolomite | ||
Quartz | ||
PLE | Calcite | |
Dolomite | ||
Quartz (trace amounts) | ||
PEt | Quartz | Marlstone |
Calcite | ||
Potassium feldspar | ||
Plagioclase | ||
Mica | ||
P3P | Quartz | |
Calcite | ||
Potassium feldspar | ||
Plagioclase | ||
Dolomite | ||
Mica | ||
PER | Calcite | Typical limestone |
Quartz | ||
Kaolinite (trace amounts) | ||
PEE | Calcite | |
Quartz | ||
PEC | Calcite | |
Quartz | ||
PPch | Dolomite | Dolostone/Magnesian limestone |
Calcite | ||
Quartz | ||
Potassium feldspar |
%Na2O | MgO | Al2O3 | SiO2 | P2O5 | SO3 | Cl | K2O | CaO | TiO2 | MnO | Fe2O3 | Sr | LOI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 0.030 | 0.395 | 0.241 | 2.488 | 0.019 | 0.059 | 0.030 | 0.257 | 54.330 | 0.019 | 0.001 | 0.135 | 0.046 | 41.950 |
A2 | 0.129 | 0.533 | 0.298 | 4.236 | 0.032 | 0.135 | 0.194 | 0.423 | 51.595 | 0.015 | 0.002 | 0.145 | 0.044 | 42.200 |
Elements (%) | PEE | PEt | PEch | PPch | PEC | PER | PE1 | PLE | P3P | PES |
---|---|---|---|---|---|---|---|---|---|---|
Cl | 0.25 | 0.86 | - | 0.53 | 0.05 | 0.20 | 0.61 | 0.09 | 1.00 | 0.17 |
Al | 0.28 | 1.03 | 0.33 | 0.32 | 0.26 | 0.27 | 0.28 | 0.27 | 0.97 | 0.26 |
Ca | 86.37 | 62.72 | 29.96 | 75.36 | 88.08 | 85.86 | 81.39 | 87.80 | 67.76 | 88.97 |
Cr | - | 0.04 | - | 0.04 | - | - | - | - | 0.04 | 0.05 |
Cu | - | 0.03 | 0.86 | 0.11 | 0.03 | - | - | - | 0.04 | 0.02 |
Fe | 3.45 | 6.58 | 2.36 | 9.26 | 2.13 | 2.37 | 6.22 | 2.96 | 6.67 | 2.17 |
K | 0.89 | 4.84 | 0.40 | 2.66 | 1.05 | 1.19 | 1.59 | 0.92 | 5.78 | 0.81 |
Mg | 0.10 | 0.24 | 0.23 | 1.88 | 0.23 | 0.09 | 0.81 | 0.51 | 0.30 | 0.09 |
Mn | 0.07 | 0.14 | - | 1.04 | 0.08 | 0.03 | 0.59 | 0.61 | 0.20 | 0.04 |
Ni | 0.05 | 0.04 | 0.45 | 0.03 | 0.03 | 0.02 | 0.04 | 0.02 | - | 0.02 |
O | 6.00 | 9.14 | 53.16 | 5.78 | 5.20 | 7.29 | 6.34 | 5.13 | 5.41 | 4.81 |
P | 0.30 | 0.47 | 3.77 | 0.30 | 0.25 | 0.21 | 0.24 | 0.20 | 0.38 | 0.22 |
S | 0.54 | 0.78 | 6.81 | 0.18 | 0.95 | 1.21 | 0.12 | 0.08 | 0.70 | 0.70 |
Si | 1.24 | 12.01 | 1.43 | 2.12 | 1.27 | 0.83 | 1.25 | 1.12 | 9.76 | 1.20 |
Sr | 0.16 | 0.10 | 0.06 | 0.04 | 0.14 | 0.17 | 0.10 | 0.02 | 0.12 | 0.14 |
Ti | 0.24 | 0.55 | - | 0.21 | 0.20 | 0.21 | 0.23 | 0.18 | 0.49 | 0.25 |
Zn | 0.03 | 0.08 | - | 0.01 | 0.01 | 0.02 | 0.06 | 0.05 | 0.10 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, A.; Rocha, F.; Fragata, A.; Costa, A.; Oliveira, M. Comprehensive Overview and New Research on Carbonate Rocks of the Sé Velha Cathedral in Coimbra, Portugal. Heritage 2024, 7, 5569-5592. https://doi.org/10.3390/heritage7100263
Tavares A, Rocha F, Fragata A, Costa A, Oliveira M. Comprehensive Overview and New Research on Carbonate Rocks of the Sé Velha Cathedral in Coimbra, Portugal. Heritage. 2024; 7(10):5569-5592. https://doi.org/10.3390/heritage7100263
Chicago/Turabian StyleTavares, Alice, Fernando Rocha, Ana Fragata, Aníbal Costa, and Matilde Oliveira. 2024. "Comprehensive Overview and New Research on Carbonate Rocks of the Sé Velha Cathedral in Coimbra, Portugal" Heritage 7, no. 10: 5569-5592. https://doi.org/10.3390/heritage7100263
APA StyleTavares, A., Rocha, F., Fragata, A., Costa, A., & Oliveira, M. (2024). Comprehensive Overview and New Research on Carbonate Rocks of the Sé Velha Cathedral in Coimbra, Portugal. Heritage, 7(10), 5569-5592. https://doi.org/10.3390/heritage7100263