Echoes of the Past: Unveiling the Kharga Oasis’ Cultural Heritage and Climate Vulnerability through Millennia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Literature Review
2.3. Paleoclimate Derived Data
3. Results and Discussion
3.1. Paleoclimate Characteristics of the Kharga Oasis
3.2. Evidence on Paleoclimatic Variability as Derived from Prehistoric Rock Art
3.3. Drivers of Paleoclimatic Variability
3.4. Impacts of Paleoclimate Changes on Ancient Civilization
3.5. Study Limitations and Future Outlook
4. Conclusions and Future Works
- In accordance with several cultural and civilizational shifts that have been impacted by alterations in the climate, the civilization that previously flourished in the Kharga Oasis was significantly influenced by paleoclimatic variations.
- The analysis of rock art artifacts and the scrutiny of paleoclimate records have yielded significant revelations about historical events. Through the examination of representations depicted in rock art, a noteworthy occurrence of migration that transpired circa 6000 BP is evidenced. In this era, human migration occurred from the Kharga Oasis towards more reliable water sources in the Nile Valley, motivated by the consequences of paleoclimatic variations.
- The decline in paleoclimatic conditions during the 7th millennium BP led to the migration of pastoral communities from the Kharga Oasis to the floodplain of the River Nile and its environs. The phenomenon of migration resulted in the development of distinct regional identities and cultural formations. The interaction between the Kharga Oasis and the Nile Valley enabled significant communication and commerce, as nomadic pastoral societies adjusted to the arid and unpredictable environment.
- The Kharga Oasis’ geographical location has played a pivotal role in comprehending its vulnerability to paleoclimatic variations. The process of aridification in the area has been reinforced by the morphological extension of concentrated monsoon precipitation zones, signifying a shift of the ITCZ front towards the south.
- The analysis of rock art illustrations indicates that the aforementioned migration was a result of the intensification of monsoon precipitation. The African monsoon underwent a sudden intensification during the early Holocene epoch, which was instigated by the escalation of temperatures and the decrease in ice mass in the high latitudes of the Northern Hemisphere.
- The prehistoric petroglyphs discovered in the Kharga Oasis have yielded significant findings regarding the region’s climate change progression. Specifically, the animal and landscape depictions depicted in the inscriptions and images have provided valuable insights into the environmental and climatic conditions present during the time period in question.
- The observable erosion rates in the historical temples and fortresses of the Kharga Oasis provide evidence of the impact of climatic changes. Changes in environmental variables, including temperature, wind, and precipitation, have been associated with an increase in erosion, underscoring the significant cultural heritage present in this area.
- This study underscores the importance of rock art and petroglyphs as valuable sources of historical information, enabling the investigation of paleoclimatic patterns and their interplay with the physical terrain. Through a meticulous analysis of these artistic manifestations in the Kharga Oasis, a more profound comprehension of the climatic variations and related ecological transformations can be attained.
- This study offered valuable insights into the persistent ecological changes and their impacts on ancient communities in the dry western area of Egypt. The significance of interdisciplinary methodologies is underscored, which involves the integration of geomorphological inquiries and examination.
- The present study provided novel perspectives on paleoclimate variability in the Kharga Oasis during the mid-Holocene epoch. It underscores the importance of rock art records, including portrayals of prehistoric fauna and topography, in the investigation of paleoclimate change.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuper, R.; Kröpelin, S. Climate-Controlled Holocene Occupation in the Sahara: Motor of Africa’s Evolution. Science 2006, 313, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Honoré, E. Peintures rupestres et cultures pastorales dans le Sahara égyptien. In Les Images: Regards sur les Sociétés; Nicolas, T., Salavert, A., Leduc, C., Eds.; Éditions de la Sorbonne: Paris, France, 2011; pp. 17–53. [Google Scholar] [CrossRef]
- Kleindienst, M.R. On the Nile Corridor and the Out-of-Africa Model. Curr. Anthropol. 2000, 41, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Kleindienst, M.R. Oasis Papers 8: Pleistocene Research in the Western Desert of Egypt; Parr, B.E., Ed.; Oxbow Books: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- Ikram, S. A Desert Zoo: An Exploration of Meaning and Reality of Animals in the Rock Art of Kharga Oasis; Heinrich-Barth-Institut: Koln, Germany, 2009. [Google Scholar]
- Kroeper, K.; Chłodnicki, M.; Kobusiewicz, M. Krzyżaniak Lech & Muzeum Archeologiczne w Poznaniu. In Archaeology of Early Northeastern Africa: In Memory of Lech Krzyżaniak; Poznań Archaeological Museum: Poznań, Poland, 2006. [Google Scholar]
- Colin, F.; Quiles, A.; Schuster, M.; Schwartz, D.; Duvette, C.; Marchand, S.; El Dorry, M.-A.; Van Heesch, J. The End of the “Green Oasis”: Chronological Bayesian Modeling of Human and Environmental Dynamics in the Bahariya Area (Egyptian Sahara) from Pharaonic Third Intermediate Period to Medieval Times. Radiocarbon 2020, 62, 25–49. [Google Scholar] [CrossRef]
- McDonald, M.M.A. Increased Sedentism in the Central Oases of the Egyptian Western Desert in the Early to Mid-Holocene: Evidence from the Peripheries. Afr. Archaeol. Rev. 2009, 26, 3–43. [Google Scholar] [CrossRef]
- Nicoll, K. Recent Environmental Change and Prehistoric Human Activity in Egypt and Northern Sudan. Quat. Sci. Rev. 2004, 23, 561–580. [Google Scholar] [CrossRef]
- Mahfouz, K.H.; Metwally, A.A. Maastrichtian-Paleocene Successions at Kharga-Dakhla Stretch, Western Desert, Egypt: Paleoenvironmental and Basin Evolution Interpretations. J. Afr. Earth Sci. 2020, 162, 103731. [Google Scholar] [CrossRef]
- Zaki, A.S.; King, G.E.; Haghipour, N.; Giegengack, R.; Watkins, S.E.; Gupta, S.; Schuster, M.; Khairy, H.; Ahmed, S.; El-Wakil, M.; et al. Did Increased Flooding during the African Humid Period Force Migration of Modern Humans from the Nile Valley? Quat. Sci. Rev. 2021, 272, 107200. [Google Scholar] [CrossRef]
- Byrne, M.P.; Pendergrass, A.G.; Rapp, A.D.; Wodzicki, K.R. Response of the Intertropical Convergence Zone to Climate Change: Location, Width, and Strength. Curr. Clim. Change Rep. 2018, 4, 355–370. [Google Scholar] [CrossRef]
- Coussin, V.; Penaud, A.; Combourieu-Nebout, N.; Peyron, O.; Sicre, M.-A.; Tisnérat-Laborde, N.; Cattaneo, A.; Babonneau, N. Land-Sea Linkages on the Algerian Margin over the Last 14 Kyrs BP: Climate Variability at Orbital to Centennial Timescales. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2023, 621, 111562. [Google Scholar] [CrossRef]
- Jafari, M.; Lashkari, H. Study of the Relationship between the Intertropical Convergence Zone Expansion and the Precipitation in the Southern Half of Iran. J. Atmos. Sol.-Terr. Phys. 2020, 210, 105439. [Google Scholar] [CrossRef]
- Kröpelin, S. Evidence from Early to Mid-Holocene Playas in the Gilf Kebir (Southwest Egypt). In Palaeoecology of Africa and the Surrounding Islands; A.A. Balkema: Rotterdam, The Netherlands, 1987. [Google Scholar]
- Roldán-Gómez, P.J.; González-Rouco, J.F.; Melo-Aguilar, C.; Smerdon, J.E. The Role of Internal Variability in ITCZ Changes Over the Last Millennium. Geophys. Res. Lett. 2022, 49, e2021GL096487. [Google Scholar] [CrossRef]
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and Dynamics of the Intertropical Convergence Zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Arz, H.W.; Pätzold, J.; Müller, P.J.; Moammar, M.O. Influence of Northern Hemisphere Climate and Global Sea Level Rise on the Restricted Red Sea Marine Environment during Termination I: Red Sea Conditions During Termination I. Paleoceanography 2003, 18, 1–13. [Google Scholar] [CrossRef]
- Neugebauer, I.; Dinies, M.; Plessen, B.; Dräger, N.; Brauer, A.; Brückner, H.; Frenzel, P.; Gleixner, G.; Hoelzmann, P.; Krahn, K.J.; et al. The Unexpectedly Short Holocene Humid Period in Northern Arabia. Commun. Earth Environ. 2022, 3, 47. [Google Scholar] [CrossRef]
- Dinies, M.; Plessen, B.; Neef, R.; Kürschner, H. When the dessert was green: Grassland expansion during the early Holocene in northwestern Arabia. Quat. Int. 2015, 382, 293–302. [Google Scholar] [CrossRef]
- Abotalib, A.Z.; Sultan, M.; Jimenez, G.; Crossey, L.; Karlstrom, K.; Forman, S.; Krishnamurthy, R.V.; Elkadiri, R.; Polyak, V. Complexity of Saharan Paleoclimate Reconstruction and Implications for Modern Human Migration. Earth Planet. Sci. Lett. 2019, 508, 74–84. [Google Scholar] [CrossRef]
- Hossam, I. The Climate and Its Impacts on Egyptian Civilized Heritage: Ei-Nadura Temple in El- Kharga Oasis, Western Desert of Egypt as a Case Study. Present. Environ. Sustain. Dev. 2015, 9, 5–32. [Google Scholar] [CrossRef]
- Ismael, H. Weathering Forms and Damage Categories of Some Egyptian Archeological Sites Based on Field Measurement. A Study in Applied Climate. Ann. Spiru Haret Univ. Econ. Ser. 2019, 20, 131–157. [Google Scholar]
- deMenocal, P.B. Cultural Responses to Climate Change During the Late Holocene. Science 2001, 292, 667–673. [Google Scholar] [CrossRef]
- Riemer, H. Prehistoric Rock Art Research in the Western Desert of Egypt. Archéo-Nil 2009, 19, 31–46. [Google Scholar] [CrossRef]
- Hoffmann, D.L.; Rogerson, M.; Spötl, C.; Luetscher, M.; Vance, D.; Osborne, A.H.; Fello, N.M.; Moseley, G.E. Timing and Causes of North African Wet Phases during the Last Glacial Period and Implications for Modern Human Migration. Sci. Rep. 2016, 6, 36367. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, D.L.; Angelucci, D.E.; Villaverde, V.; Zapata, J.; Zilhão, J. Symbolic Use of Marine Shells and Mineral Pigments by Iberian Neandertals 115,000 Years Ago. Sci. Adv. 2018, 4, eaar5255. [Google Scholar] [CrossRef] [PubMed]
- Bagnall, R.S.; Tallet, G. (Eds.) The Great Oasis of Egypt: The Kharga and Dakhla Oases in Antiquity, 1st ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Bubenzer, O.; Hilgers, A.; Riemer, H. Luminescence Dating and Archaeology of Holocene Fluvio-Lacustrine Sediments of Abu Tartur, Eastern Sahara. Quat. Geochronol. 2007, 2, 314–321. [Google Scholar] [CrossRef]
- Kröpelin, S.; Verschuren, D.; Lézine, A.-M.; Eggermont, H.; Cocquyt, C.; Francus, P.; Cazet, J.-P.; Fagot, M.; Rumes, B.; Russell, J.M.; et al. Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years. Science 2008, 320, 765–768. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (Ipcc). Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar] [CrossRef]
- Ismael, H. Climate Effects on Archaeological Buildings Forming the Roman Temples: Dush Temple in El- Kharga Oasis, Western Desert of Egypt as a Case Study. J. Geogr. Earth Sci. 2015, 3, 67–82. [Google Scholar] [CrossRef]
- Bunbury, J.; Ikram, S.; Roughley, C. Holocene Large Lake Development and Desiccation: Changing Habitats in the Kharga Basin of the Egyptian Sahara. Geoarchaeology 2020, 35, 467–486. [Google Scholar] [CrossRef]
- Riemer, H.; Kröpelin, S.; Zboray, A. Climate, Styles and Archaeology: An Integral Approach towards an Absolute Chronology of the Rock Art in the Libyan Desert (Eastern Sahara). Antiquity 2017, 91, 7–23. [Google Scholar] [CrossRef]
- Wanner, H.; Beer, J.; Bütikofer, J.; Crowley, T.J.; Cubasch, U.; Flückiger, J.; Goosse, H.; Grosjean, M.; Joos, F.; Kaplan, J.O.; et al. Mid- to Late Holocene Climate Change: An Overview. Quat. Sci. Rev. 2008, 27, 1791–1828. [Google Scholar] [CrossRef]
- Gasse, F.; Chalié, F.; Vincens, A.; Williams, M.A.J.; Williamson, D. Climatic Patterns in Equatorial and Southern Africa from 30,000 to 10,000 Years Ago Reconstructed from Terrestrial and near-Shore Proxy Data. Quat. Sci. Rev. 2008, 27, 2316–2340. [Google Scholar] [CrossRef]
- Hosam, I.; Kamh, G.M.E. Quantification of Salt Weathering at Hot Deserts and Evaluation of Reconstruction Rock, Hibis Temple, Kharga Oasis, Western Desert, Egypt. J. Arid. Land. Stud. 2016, 26, 143–152. [Google Scholar] [CrossRef]
- Ismael, H.; Abdel Moatamed, M.; Abbas, W. Environmental and Climatic Hazards and Their Impacts on the Cultural Heritage of El-Kharga oasis, Western Desert, Egypt. Egypt. J. Archaeol. Restor. Stud. 2020, 10, 135–152. [Google Scholar] [CrossRef]
- Polkowski, P.L. Egyptian Rock Art. In Encyclopedia of Global Archaeology; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–19. [Google Scholar] [CrossRef]
- Ikram, S. The North Kharga Oasis Darb Ain Amur Survey (NKODAAS): Surveying the Tracks between the Two Oases. In The Great Oasis of Egypt; Bagnall, R.S., Tallet, G., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 135–151. [Google Scholar] [CrossRef]
- Gallinaro, M. Saharan Rock Art: Local Dynamics and Wider Perspectives. Arts 2013, 2, 350–382. [Google Scholar] [CrossRef]
- Dachy, T.; Briois, F.; Marchand, S.; Minotti, M.; Lesur, J.; Wuttmann, M. Living in an Egyptian Oasis: Reconstruction of the Holocene Archaeological Sequence in Kharga. Afr. Archaeol. Rev. 2018, 35, 531–566. [Google Scholar] [CrossRef]
- Daly, C. A Cultural Heritage Management Methodology for Assessing the Vulnerabilities of Archaeological Sites to Predicted Climate Change Focuing on Ireland’s Two World Heritage Sites; Technological University Dublin: Dublin, Ireland, 2014. [Google Scholar] [CrossRef]
- Zboray, A. A revision of the identified prehistoric rock art styles of the central Libyan Desert (Eastern Sahara) and their relative chronology. In The Signs of Which Times? Chronological and Palaeoenvironmental Issues in the Rock Art of Northern Africa: Signs Which Times; Huyge, D., Van Noten, F., Swinne, D., Eds.; Royal Academy for Overseas Sciences: Brussels, Belgium, 2012; pp. 217–255. [Google Scholar]
- Andreae, M.O.; Al-Amri, A.; Andreae, C.M.; Guagnin, M.; Jochum, K.P.; Stoll, B.; Weis, U. Archaeometric Studies on the Petroglyphs and Rock Varnish at Kilwa and Sakaka, Northern Saudi Arabia. Arab. Archaeol. Epigr. 2020, 31, 219–244. [Google Scholar] [CrossRef]
- Parker, A.G.; Goudie, A.S.; Stokes, S.; White, K.; Hodson, M.J.; Manning, M.; Kennet, D. A Record of Holocene Climate Change from Lake Geochemical Analyses in Southeastern Arabia. Quat. Res. 2006, 66, 465–476. [Google Scholar] [CrossRef]
- Doumet-Serhal, C.; Gimatzidis, S.; Weninger, B.; Von Rüden, C.; Kopetzky, K. An Interdisciplinary Approach to Iron Age Mediterranean Chronology through Combined Archaeological and 14C-Radiometric Evidence from Sidon, Lebanon. PLoS ONE 2023, 18, e0274979. [Google Scholar] [CrossRef] [PubMed]
- Francis, J.E.; Loendorf, L.L.; Dorn, R.I. AMS Radiocarbon and Cation-Ratio Dating of Rock Art in the Bighorn Basin of Wyoming and Montana. Am. Antiq. 1993, 58, 711–737. [Google Scholar] [CrossRef]
- Manning, K.; Timpson, A. The Demographic Response to Holocene Climate Change in the Sahara. Quat. Sci. Rev. 2014, 101, 28–35. [Google Scholar] [CrossRef]
- McDonald, M.M.A. Early African Pastoralism: View from Dakhleh Oasis (South Central Egypt). J. Anthropol. Archaeol. 1998, 17, 124–142. [Google Scholar] [CrossRef]
- Katharina, N. Holocene Vegetation of the Eastern Sahara: Charcoal from Prehistoric Sites. Afr. Archaeol. Rev. 1989, 7, 97–116. [Google Scholar]
- Anhuf, D. Vegetation History and Climate Changes in Africa North and South of the Equator (10° S to 10° N) During the Last Glacial Maximum. In Southern Hemisphere Paleo- and Neoclimates; Smolka, P., Volkheimer, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Pachur, H.-J.; Hoelzmann, P. Late Quaternary Palæoecology and Palæoclimates of the Eastern Sahara. J. Afr. Earth Sci. 2000, 30, 929–939. [Google Scholar] [CrossRef]
- Linstädter, J.; Kröpelin, S. Wadi Bakht Revisited: Holocene Climate Change and Prehistoric Occupation in the Gilf Kebir Region of the Eastern Sahara, SW Egypt: Holocene Climate Change in the Gilf Kebir Region, Egypt. Geoarchaeology 2004, 19, 753–778. [Google Scholar] [CrossRef]
- Woodward, J.; Macklin, M.; Fielding, L.; Millar, I.; Spencer, N.; Welsby, D.; Williams, M. Shifting Sediment Sources in the World’s Longest River: A Strontium Isotope Record for the Holocene Nile. Quat. Sci. Rev. 2015, 130, 124–140. [Google Scholar] [CrossRef]
- Tafuri, M.A.; Bentley, R.A.; Manzi, G.; Di Lernia, S. Mobility and Kinship in the Prehistoric Sahara: Strontium Isotope Analysis of Holocene Human Skeletons from the Acacus Mts. (Southwestern Libya). J. Anthropol. Archaeol. 2006, 25, 390–402. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Haynes, C.V. Holocene Vegetation Zonation in the Eastern Sahara. Nature 1987, 330, 645–647. [Google Scholar] [CrossRef]
- Haynes, C.V.; Eyles, C.H.; Pavlish, L.A.; Ritchie, J.C.; Rybak, M. Holocene Palaeoecology of the Eastern Sahara; Selima Oasis. Quat. Sci. Rev. 1989, 8, 109–136. [Google Scholar] [CrossRef]
- Brookfield, M. The Desertification of the Egyptian Sahara during the Holocene (the Last 10,000 Years) and Its Influence on the Rise of Egyptian Civilization. In Landscapes and Societies; Martini, I.P., Chesworth, W., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2010; pp. 91–108. [Google Scholar] [CrossRef]
- Tilley, C. Hinking Through Images: Narrative, Rhythm, Embodiment and Landscape in the Nordic Bronze Age. Think. Through Images 2021, 1–232. [Google Scholar]
- Krzyżaniak, L.; Kobusiewicz, M.; Alexander, J. Muzeum Archeologiczne w Poznaniu. In Environmental Change and Human Culture in the Nile Basin and Northern Africa until the Second Millennium B.C.; Studies in African Archaeology; Poznań Archaeological Museum: Poznań, Poland, 1993. [Google Scholar]
- Mamalakis, A.; Randerson, J.T.; Yu, J.-Y.; Pritchard, M.S.; Magnusdottir, G.; Smyth, P.; Levine, P.A.; Yu, S.; Foufoula-Georgiou, E. Zonally Contrasting Shifts of the Tropical Rain Belt in Response to Climate Change. Nat. Clim. Chang. 2021, 11, 143–151. [Google Scholar] [CrossRef]
- Phillipps, R.; Holdaway, S.; Wendrich, W.; Cappers, R. Mid-Holocene Occupation of Egypt and Global Climatic Change. Quat. Int. 2012, 251, 64–76. [Google Scholar] [CrossRef]
- Brookes, I.A. Spatially Variable Sedimentary Responses to Orbitally Driven Pluvial Climate during Marine Oxygen Isotope Stage 5.1, Dakhla Oasis Region, Egypt. Quat. Res. 2010, 74, 252–264. [Google Scholar] [CrossRef]
- Zaky, Z.; Kaoru, K.; Frontalini, F.; Mohamed, I.A.; Khalifa, M.; Fukumoto, Y.; Gad, D.; Behling, H. Mid-to Late Holocene paleoclimatic changes and paleoenvironmental shifts inferred from pollen and diatom assemblages at Lake Hamra, Wadi El Natrun (Western Nile Delta, North Western Desert, Egypt). Quat. Int. 2020, 542, 109–120. [Google Scholar] [CrossRef]
- Fleming, J.R. The Great Warming: Climate Change and the Rise and Fall of Civilizations. Phys. Today 2009, 62, 52–53. [Google Scholar] [CrossRef]
- Blench, R.; MacDonald, K. The Origins and Development of African Livestock; Routledge: Abingdon, UK, 2006. [Google Scholar] [CrossRef]
- Bradley, R.S.; Diaz, H.F. Late Quaternary Abrupt Climate Change in the Tropics and Sub-Tropics: The Continental Signal of Tropical Hydroclimatic Events (THEs). Rev. Geophys. 2021, 59, e2020RG000732. [Google Scholar] [CrossRef]
- Macholdt, D.S.; Jochum, K.P.; Al-Amri, A.; Andreae, M.O. Rock Varnish on Petroglyphs from the Hima Region, Southwestern Saudi Arabia: Chemical Composition, Growth Rates, and Tentative Ages. Holocene 2019, 29, 1377–1395. [Google Scholar] [CrossRef]
- Macklin, M.G.; Lewin, J. The Rivers of Civilization. Quat. Sci. Rev. 2015, 114, 228–244. [Google Scholar] [CrossRef]
- Holmes, J.; Hoelzmann, P. The Late Pleistocene-Holocene African Humid Period as Evident in Lakes; Oxford University Press: Oxford, UK, 2017; Volume 1. [Google Scholar] [CrossRef]
- Hassan, F.A.; Hamdan, M.A.; Flower, R.J.; Shallaly, N.A.; Ebrahem, E. Holocene Alluvial History and Archaeological Significance of the Nile Floodplain in the Saqqara-Memphis Region, Egypt. Quat. Sci. Rev. 2017, 176, 51–70. [Google Scholar] [CrossRef]
- Hamdan, M.A.; Hassan, F.A.; Flower, R.J.; Leroy, S.A.G.; Shallaly, N.A.; Flynn, A. Source of Nile Sediments in the Floodplain at Saqqara Inferred from Mineralogical, Geochemical, and Pollen Data, and Their Palaeoclimatic and Geoarchaeological Significance. Quat. Int. 2019, 501, 272–288. [Google Scholar] [CrossRef]
- Candelora, D.; Ben-Marzouk, N.; Cooney, K.M. Ancient Egyptian Society: Challenging Assumptions, Exploring Approaches, 1st ed.; Routledge: London, UK, 2022. [Google Scholar] [CrossRef]
- Sanz, J.O.; Docampo, M.D.L.L.G.; Rodríguez, S.M.; Sanmartín, M.T.R.; Cameselle, G.M. A Simple Methodology for Recording Petroglyphs Using Low-Cost Digital Image Correlation Photogrammetry and Consumer-Grade Digital Cameras. J. Archaeol. Sci. 2010, 37, 3158–3169. [Google Scholar] [CrossRef]
- Zhang, J.; Kang, K.; Liu, D.; Yuan, Y.; Yanli, E. Vis4Heritage: Visual Analytics Approach on Grotto Wall Painting Degradations. IEEE Trans. Visual. Comput. Graph. 2013, 19, 1982–1991. [Google Scholar] [CrossRef] [PubMed]
- Deufemia, V.; Indelli Pisano, V.; Paolino, L.; De Roberto, P. A Visual Analytics System for Supporting Rock Art Knowledge Discovery. In Computational Science and Its Applications—ICCSA 2014; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 8584, pp. 466–480. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismael, H.; Abbas, W.; Ghaly, H.; El Kenawy, A.M. Echoes of the Past: Unveiling the Kharga Oasis’ Cultural Heritage and Climate Vulnerability through Millennia. Heritage 2023, 6, 6397-6421. https://doi.org/10.3390/heritage6090335
Ismael H, Abbas W, Ghaly H, El Kenawy AM. Echoes of the Past: Unveiling the Kharga Oasis’ Cultural Heritage and Climate Vulnerability through Millennia. Heritage. 2023; 6(9):6397-6421. https://doi.org/10.3390/heritage6090335
Chicago/Turabian StyleIsmael, Hossam, Waleed Abbas, Heba Ghaly, and Ahmed M. El Kenawy. 2023. "Echoes of the Past: Unveiling the Kharga Oasis’ Cultural Heritage and Climate Vulnerability through Millennia" Heritage 6, no. 9: 6397-6421. https://doi.org/10.3390/heritage6090335
APA StyleIsmael, H., Abbas, W., Ghaly, H., & El Kenawy, A. M. (2023). Echoes of the Past: Unveiling the Kharga Oasis’ Cultural Heritage and Climate Vulnerability through Millennia. Heritage, 6(9), 6397-6421. https://doi.org/10.3390/heritage6090335