Query Model Framework Design for Conservation History and Endowments Database: A Case Study on the Digitization of the Sumedang Larang Kingdom’s History and Endowments in Indonesia
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Semantic Network History of Waqf Descent
3.2. Data Set Representation
- 30 people as managers.
- 346 cultivators of 94,343 hectares of rice fields spread across 8 locations.
- 540 land tenant population on 34.05 hectares spread across 13 locations.
- 230 heritage goods in the form of jewelry, weapons, tools, and buildings.
3.3. Designing a Web-Based Framework for the Digitalization of History and the Waqf of the KSL
3.4. Data Organization and Governance
3.5. Potential Conflict
- 5.
- The YNWPS management started cultivating and living on the waqf land.
- 6.
- Nadzir Waqf takes over as the YNWPS manager.
- 7.
- The foreman changes to the position of cultivator.
- 8.
- Cultivator is derived from caretaker.
- Movable property if: damaged, altered, replaced, or lost.
- Immovable property if: land area changes; tenants or cultivators change; and land use is not in accordance with the agreement.
4. Results
4.1. Mitigation Workflow Query Platform DAQMP
4.2. Model Query Mitigation for the Conflict Manager
4.3. Moving Goods: DAQMP Mitigation
4.4. Non-Moving Goods: DAQMP Mitigation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References and Note
- Silsilah, B.S.; Ulun, M.P.G.; Profil Yayasan Pangeran Sumedang. pp. 1–26. Available online: https://sumedangtandang.com/direktori/detail/yayasan-pangeran-sumedang-yps.htm, (accessed on 28 November 2023).
- Thwaites, H.; Santano, D.; Esmaeili, H.; See, Z.S. A Malaysian Cultural Heritage Digital Compendium. Digit. Appl. Archaeol. Cult. Herit. 2019, 15, e00116. [Google Scholar] [CrossRef]
- Tripalupi, R.I.; Yulianti, L.; Naafisah, D.D. Optimization of Financial Technology as an Opportunity for Development of Islamic Microfinance Institutions. Int. J. Artif. Intell. Res. 2021, 6. [Google Scholar] [CrossRef]
- Shang, Z.; Zhang, L. The Sustainable Digitalization in the Manufacturing Industry: A Bibliometric Analysis and Research Trend. Mob. Inf. Syst. 2022, 2022, 1451705. [Google Scholar] [CrossRef]
- Sakao, T.; Nordholm, A.K. Requirements for a Product Lifecycle Management System Using Internet of Things and Big Data Analytics for Product-as-a-Service. Front. Sustain. 2021, 2, 735550. [Google Scholar] [CrossRef]
- Misbah, H.; Johari, F.; Mat Nor, F.; Haron, H.; Shahwan, S.; Shafii, Z. Sustainable Development, Regional Planning, and Information Management as an Evolving Theme in Waqf Research: A Bibliometric Analysis. Sustainability 2022, 14, 14126. [Google Scholar] [CrossRef]
- Paschalidou, E.; Fafet, C.; Milios, L. A Strong Sustainability Framework for Digital Preservation of Cultural Heritage: Introducing the Eco-Sufficiency Perspective. Heritage 2022, 5, 1066–1088. [Google Scholar] [CrossRef]
- Poehler, E.E. Digital Technologies and the Transformation of Archaeological Labor. Heritage 2023, 6, 3985–3997. [Google Scholar] [CrossRef]
- Mudička, Š. Digital Heritage, the Possibilities of Information Visualisation through Extended Reality Tools. Heritage 2023, 6, 112–131. [Google Scholar] [CrossRef]
- Cui, T.; Kumar, P.; Orr, S.A. Connecting Characteristics of Social Media Activities of a Heritage Organisation to Audience Engagement. Digit. Appl. Archaeol. Cult. Herit. 2023, 28, e00253. [Google Scholar] [CrossRef]
- Dadgar, M.; Vithayathil, J.; Osiri, J.K. Social Media Usage and Cultural Dimensions: An Empirical Investigation. Proc. Annu. Hawaii Int. Conf. Syst. Sci. 2017, 2017, 2243–2252. [Google Scholar] [CrossRef]
- Guo, Q.; Lu, J.; Zhang, C.; Sun, C.; Yuan, S. Multi-Model Data Query Languages and Processing Paradigms. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual Event, Ireland, 19–23 October 2020; pp. 3505–3506. [Google Scholar] [CrossRef]
- Joseph, N.; Mathew, P.; George, P.G. Modeling and Querying NOSQL Databases. In Proceedings of the International Conference on Interllectual Property Rights, Idukki, India, 20 February 2021; pp. 95–100. [Google Scholar]
- Fasani, G.; Gino, S.; Sguazzi, G. Incidental Findings in Forensic Investigations: A Narrative Review. Forensic Sci. 2023, 3, 345–356. [Google Scholar] [CrossRef]
- Sudrajat, R.; Nurani, B.; Setiawan, A. Literature Review on the Information System for Digitization of Royal History and Waqf. Int. J. Data Netw. Sci. 2023, 7, 1839–1848. [Google Scholar] [CrossRef]
- Raghavendra, T.S.; Mohan, K.G. Web Mining and Minimization Framework Design on Sentimental Analysis for Social Tweets Using Machine Learning. Procedia Comput. Sci. 2019, 152, 230–235. [Google Scholar] [CrossRef]
- Pankowski, T. Modeling and Querying Data in an Ontology-Based Data Access System. Procedia Comput. Sci. 2021, 192, 497–506. [Google Scholar] [CrossRef]
- Kansa, E.; Kansa, S.W. Digital Data and Data Literacy in Archaeology Now and in the New Decade. Adv. Archaeol. Pract. 2021, 9, 81–85. [Google Scholar] [CrossRef]
- Vital, R.; Sylaiou, S. Digital Survey: How It Can Change the Way We Perceive and Understand Heritage Sites. Digit. Appl. Archaeol. Cult. Herit. 2022, 24, e00212. [Google Scholar] [CrossRef]
- Bouamama, S. Migration from a Relational Database to NoSQL. Int. J. Knowl.-Based Organ. 2018, 8, 63–80. [Google Scholar] [CrossRef]
- Hambarde, K.; Proença, H. Information Retrieval: Recent Advances and Beyond. IEEE Access 2023, 11, 76581–76604. [Google Scholar] [CrossRef]
- Zhao, Y. Digital Protection of Cultural Heritage Based on Web Technology. Math. Probl. Eng. 2022, 2022, 3196063. [Google Scholar] [CrossRef]
- Casterella, G.I.; Vijayasarathy, L. An Experimental Investigation of Complexity in Database Query Formulation Tasks. J. Inf. Syst. Educ. 2013, 24, 211–221. [Google Scholar]
- Ruggieri, F. Security in Digital Data Preservation. Digit. Evid. Electron. Signat. Law Rev. 2014, 11, 100–106. [Google Scholar] [CrossRef]
- Kraleva, R.; Kralev, V.; Sinyagina, N.; Koprinkova-Hristova, P.; Bocheva, N. Design and Analysis of a Relational Database for Behavioral Experiments Data Processing. Int. J. Online Eng. 2018, 14, 117–132. [Google Scholar] [CrossRef]
- Nilsen, P. Making Sense of Implementation Theories, Models and Frameworks. Implement. Sci. 2015, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Khankhoje, D.; Namdev, U.; Bhadane, C.; Dongre, D. Insights into NoSQL Databases Using Financial Data: A Comparative Analysis. Procedia Comput. Sci. 2022, 215, 8–23. [Google Scholar] [CrossRef]
- Aftab, Z.; Iqbal, W.; Almustafa, K.M.; Bukhari, F.; Abdullah, M. Automatic NoSQL to Relational Database Transformation with Dynamic Schema Mapping. Sci. Program. 2020, 2020, 8813350. [Google Scholar] [CrossRef]
- Karmacharya, A.; Wefers, S. Ontology-Based Structuring of Spectral and Spatial Recording Strategies for Cultural Heritage Assets: Background, State of Affairs, and Future Perspectives. In Digital Techniques for Documenting and Preserving Cultural Heritage; Arc Humanities Press: Kalamazoo, MI, USA; Bradford, UK, 2018; pp. 159–174. [Google Scholar]
- Yasin, V.; Zarlis, M.; Sitompul, O.S.; Sihombing, P. Hierarchy of Grid Partition (HGP) Integrating Data in Software Engineering and Databases. IOP Conf. Ser. Mater. Sci. Eng. 2020, 846, 012024. [Google Scholar] [CrossRef]
- Pankowski, T. Rewriting and Executing Faceted Queries over Ontology-Enhanced Databases. Procedia Comput. Sci. 2017, 112, 137–146. [Google Scholar] [CrossRef]
- De Masi, F.; Larosa, F.; Porrini, D.; Mysiak, J. Cultural Heritage and Disasters Risk: A Machine-Human Coupled Analysis. Int. J. Disaster Risk Reduct. 2021, 59, 102251. [Google Scholar] [CrossRef]
- Carrier, B.; Spafford, E.H. Getting Physical with the Investigative Process. Int. J. Digit. Evid. Fall 2003, 2, 1–20. [Google Scholar]
- Hermawan, D.; Sofian, M.; Kuswara, K. Improving The Function of The Prabu Geusan Ulun Museum in Sumedang Regency as A Tourist Attraction for Historical and Cultural Education. Panggung 2017, 27, 319–333. [Google Scholar] [CrossRef]
- Prabu, M.; Ulun, G. PROFILE. pp. 1–25.
- Putusan, D.; Agung, M.; Indonesia, R.; Keadilan, D.; Ketuhanan, B.; Maha, Y. Putusan PT Bandung Nomor 57/PDT/2021/PT BDG Tanggal 25 Februari 2021—Pembanding/Penggugat: Ketua Yayasan Pangeran Sumedang Terbanding/Tergugat: Ketua Yayasan Nadzhir Wakaf Pangeran Sumedang. 2021. Available online: https://putusan3.mahkamahagung.go.id/direktori/putusan/zaeb77289ae25fbe9eb5313231363234.html (accessed on 28 November 2023).
- Sevilla, J.; Samper, J.J.; Fernández, M.; León, A. Ontology and Software Tools for the Formalization of the Visualisation of Cultural Heritage Knowledge Graphs. Heritage 2023, 6, 4722–4736. [Google Scholar] [CrossRef]
- Segovia, M.; Garcia-Alfaro, J. Design, Modeling and Implementation of Digital Twins. Sensors 2022, 22, 5396. [Google Scholar] [CrossRef] [PubMed]
- Undang-Undang No.41 Tahun 2004 Tentang Wakaf|Badan Wakaf Indonesia|BWI.Go.Id. Available online: https://www.bwi.go.id/3629/2007/09/17/undang-undang-no-41-tahun-2004-tentang-wakaf/ (accessed on 2 September 2023).
- Lin, P.; Li, Y.; Luo, W.; Zhou, X.; Zeng, Y.; Li, K.; Li, K. Personalized Query Techniques in Graphs: A Survey. Inf. Sci. 2022, 607, 961–1000. [Google Scholar] [CrossRef]
- Iizumi, T.; Sakai, T. The Global Dataset of Historical Yields for Major Crops 1981–2016. Sci. Data 2020, 7, 97. [Google Scholar] [CrossRef]
- Olabode, S.O.; Bakare, A.A.; Olateju, O.I. An Assessment of the Reliability of Secondary Data in Management Science Research. LASU J. Employ. Relat. Hum. Resour. Manag. 2018, 1, 182–194. [Google Scholar] [CrossRef]
- Lebdaoui, I.; El Hajji, S.; Orhanou, G. Managing Big Data Integrity. In Proceedings of the 2016 International Conference on Engineering & MIS (ICEMIS), Agadir, Morocco, 22–24 September 2016. [Google Scholar] [CrossRef]
- Cai, L.; Zhu, Y. The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Sci. J. 2015, 14, 2. [Google Scholar] [CrossRef]
- Fang, X. Research on the Development Path of Cultural Heritage Information Visualization from the Perspective of Digital Humanities. Mob. Inf. Syst. 2022, 2022, 2652920. [Google Scholar] [CrossRef]
- Wang, R.Z.; Guven, E.; Duva, J.L.; Kramer, M. Data Set Representation and Tagging for Automating Data Cataloging. Johns Hopkins APL Tech. Dig. (Appl. Phys. Lab.) 2022, 36, 250–258. [Google Scholar]
- Sudrajat, R.; Ruchjana, B.; Abdullah, A.; Budiarto, R. Web-Based Information System Framework for the Digitization of Historical Databases and Endowments. Int. J. Data Netw. Sci. 2024, 8, 319–328. [Google Scholar] [CrossRef]
- Keet, C.M. An Introduction to Ontology Engineering; IOS Press: Johannesburg, South Africa, 2018. [Google Scholar]
- Gunung Puyuh Nangorak—Google Maps. Available online: https://www.google.co.id/maps/@-6.8729659,107.919896,3a,77.1y,19.08h,83.97t/data=!3m6!1e1!3m4!1si1kOZEyk_RZakZZOaav6MA!2e0!7i16384!8i8192?entry=ttu (accessed on 26 November 2023).
- Adetunji, O.O.; Idowu, S.A.; Izang, A.A. Web-Based Information System (WBIS) Framework: Facilitating Interoperability within Business Ventures. Int. J. Comput. Appl. 2018, 180, 7–12. [Google Scholar]
- Yildiz, B.; Miksch, S. Motivating Ontology-Driven Information Extraction. Multimed. Inf. Extr. Digit. Herit. Preserv. 2011, 1–19. [Google Scholar] [CrossRef]
- Al-Fedaghi, S. Conceptual Data Modeling: Entity-Relationship Models as Thinging Machines. Int. J. Comput. Sci. Netw. Secur. 2021, 21, 247–260. [Google Scholar] [CrossRef]
- Algergawy, A.; Babalou, S.; Klan, F.; König-Ries, B. Ontology Modularization with OAPT. J. Data Semant. 2020, 9, 53–83. [Google Scholar] [CrossRef]
- Keet, C.M.; Keet, M. Dependencies between Ontology Design Parameters. Int. J. Metadata Semant. Ontol. 2010, 5, 265–284. [Google Scholar] [CrossRef]
- Bajracharya, J.R. Technology Integration Models and Frameworks in Teaching and Training. J. Train. Dev. 2021, 6, 3–11. [Google Scholar] [CrossRef]
- Zaagsma, G. Digital History and the Politics of Digitization. Digit. Scholarsh. Humanit. 2022, 38, 830–851. [Google Scholar] [CrossRef]
- Richards, J.; Brimblecombe, P. Tuning and Effectiveness in Heritage Models. Heritage 2023, 6, 5516–5523. [Google Scholar] [CrossRef]
- Abraham, R.; Schneider, J.; vom Brocke, J. Data Governance: A Conceptual Framework, Structured Review, and Research Agenda. Int. J. Inf. Manag. 2019, 49, 424–438. [Google Scholar] [CrossRef]
- Bronzino, J.D. Management and Supervision. In Management of Medical Technology; Elsevier: Amsterdam, The Netherlands, 1992; pp. 243–282. [Google Scholar] [CrossRef]
- Ari, I.; Koc, M. Towards Sustainable Financing Models: A Proof-of-Concept for a Waqf-Based Alternative Financing Model for Renewable Energy Investments. Borsa Istanbul Rev. 2021, 21, S46–S56. [Google Scholar] [CrossRef]
- Durrant, L.J.; Vadher, A.N.; Teller, J. Disaster Risk Management and Cultural Heritage: The Perceptions of European World Heritage Site Managers on Disaster Risk Management. Int. J. Disaster Risk Reduct. 2023, 89, 103625. [Google Scholar] [CrossRef]
- Alcala, R. Cultural Evolution: Protecting Digital Cultural Property in Armed Conflict. Int. Rev. Red Cross 2022, 104, 1083–1119. [Google Scholar] [CrossRef]
- Minguez Garcia, B. Integrating Culture in Post-Crisis Urban Recovery: Reflections on the Power of Cultural Heritage to Deal with Crisis. Int. J. Disaster Risk Reduct. 2021, 60, 102277. [Google Scholar] [CrossRef]
- Aftabi, P.; Bahramjerdi, S.F.N. Developing a Decision-Making Framework within the Management of Historical Cities: Towards Integrated Conservation and Development of the Roudaki Neighbourhood. Land Use Policy 2023, 129, 106653. [Google Scholar] [CrossRef]
- Münster, S.; Utescher, R.; Ulutas Aydogan, S. Digital Topics on Cultural Heritage Investigated: How Can Data-Driven and Data-Guided Methods Support to Identify Current Topics and Trends in Digital Heritage? Built Herit. 2021, 5, 25. [Google Scholar] [CrossRef]
- Hayrynen, M. Heritage Is Ours—Citizens Participating in Decision Making; Europa Nostra Finland: Helsinki, Finland, 2018; ISBN 9789529401802. [Google Scholar]
- Suleiman, H. Conflict over Waqf Property in Jerusalem: Disputed Jurisdictions between Civil and Shari’a Courts. Electron. J. Islam. Middle East. Law 2015, 3, 97–110. [Google Scholar]
- Autiosalo, J.; Siegel, J.; Tammi, K. Twinbase: Open-Source Server Software for the Digital Twin Web. IEEE Access 2021, 9, 140779–140798. [Google Scholar] [CrossRef]
- Janom, N.; Izham, M.Z.; Mansor, F.S.; Aris, S.R.S.; Bashah, N.S.K.; Arshad, N.H. Review on Success Factors of Waqf Information Management System in Malaysia. Indones. J. Electr. Eng. Comput. Sci. 2019, 16, 412. [Google Scholar] [CrossRef]
- Heath, H.; MacDermott, Á.; Akinbi, A. Forensic Analysis of Ephemeral Messaging Applications: Disappearing Messages or Evidential Data? Forensic Sci. Int. Digit. Investig. 2023, 46, 301585. [Google Scholar] [CrossRef]
- Bairagi, S.; Custodio, M.C.; Durand-Morat, A.; Demont, M. Preserving Cultural Heritage through the Valorization of Cordillera Heirloom Rice in the Philippines. Agric. Human Values 2021, 38, 257–270. [Google Scholar] [CrossRef]
- Mochamad, R.; Tubagus, N.; Yanti, K.L.; Sarip, I.; Budaya, P.A. Fungsi Tradisi Ngumbah Pusaka Prabu Geusan Ulun Sumedang Larang. J. Budaya Etn. 2021, 4, 3–22. [Google Scholar]
- Tyagi, A.K.; Sreenath, N. Cyber Physical Systems: Analyses, Challenges and Possible Solutions. Internet Things Cyber-Phys. Syst. 2021, 1, 22–33. [Google Scholar] [CrossRef]
- Ur Rahman, A.; Muzammal, M.; David, G.; Ribeiro, C. Database Preservation: The DBPreserve Approach. Int. J. Adv. Comput. Sci. Appl. 2015, 6, 255–266. [Google Scholar] [CrossRef]
- Zhang, W.E.; Sheng, Q.Z.; Qin, Y.; Taylor, K.; Yao, L. Learning-Based SPARQL Query Performance Modeling and Prediction. World Wide Web 2018, 21, 1015–1035. [Google Scholar] [CrossRef]
- Cerviño, M.L.; Fern, A.; Ant, A.; Abad, P.V. Lost Heritage—Architectural Replacement of an Atrium and a Courtyard of the Roman Houses of Armea (Allariz, Ourense). Heritage 2022, 5, 409–430. [Google Scholar] [CrossRef]
- Viscaino-Quito, A.; Serpa-Andrade, L. Synchronization Procedure for Data Collection in Offline-Online Sessions. In Proceedings of the 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022), New York, NY, USA, 24–28 July 2022; Volume 28. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 1–21. [Google Scholar] [CrossRef]
- Georgiou, A.; Li, J.; Hardie, R.A.; Wabe, N.; Horvath, A.R.; Post, J.J.; Eigenstetter, A.; Lindeman, R.; Lam, Q.; Badrick, T.; et al. Diagnostic Informatics—The Role of Digital Health in Diagnostic Stewardship and the Achievement of Excellence, Safety, and Value. Front. Digit. Health 2021, 3, 659652. [Google Scholar] [CrossRef]
- Yaacoub, J.P.A.; Salman, O.; Noura, H.N.; Kaaniche, N.; Chehab, A.; Malli, M. Cyber-Physical Systems Security: Limitations, Issues and Future Trends. Microprocess. Microsyst. 2020, 77, 103201. [Google Scholar] [CrossRef]
No. | Variable and Data | Data Source | Description |
---|---|---|---|
1 | Genealogy of the Sumedang Larang Royal Palace | YNWPS | Historical Manuscripts and Genealogies of Waqf |
2 | Nadzir Waqf | YNWPS | Biodata of the Nadzir Waqf |
3 | Manager YNWPS | YNWPS | Biodata of the Manager YNWPS |
4 | The Foreman | YNWPS | Biodata of the Foreman |
5 | Person in Charge of Historic Buildings | YNWPS | Biodata of the Person in Charge of Historic Buildings |
6 | Land/Ricefield | YNWPS | Data of the Land/Ricefield |
7 | Heritage/Museum | YNWPS | Data of the Heritage/Museum |
8 | Historic Buildings | YNWPS | Data of the Historic Building |
9 | Grave/Site | YNWPS | Data of the Grave/Site |
10 | Cultivators | YNWPS | Data of the Cultivators |
11 | Tenants of Waqf Land | YNWPS | Data Tenants of Waqf Land |
12 | Responsible Museum | YNWPS | Biodata of the Person in Charge of the Museum |
13 | Responsible Person | YNWPS | Biodata of the Person in Charge of the Grave/Situs |
Entity | Nz | Py | Fm | Cl | MG | NM | WL | PM | St | Ct | CR |
---|---|---|---|---|---|---|---|---|---|---|---|
Nz | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Py | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
Fm | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Cl | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
MG | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
NM | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
WL | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PM | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
St | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Ct | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
CR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | Unexpected conflict | 1 | Light conflict |
0 | No conflict | 0 | Small conflicts can occur |
0 | Expected conflict | 1 | Heavy conflict |
Entity | Initial |
---|---|
Nadzir Waqf | =Nz |
YNWPS Manager | =Py |
Cultivator | =Cl |
Caretaker | =Ct |
Waqf Land Tenants | =Wl |
Foreman | =Fm |
/* Create a simulated table to check the synchronization of the nadzir data with the manager data */ |
create table Nz(Nz_Code varchar (6), Name varchar (25), Outer_Job varchar (25), Position_nadzir varchar (25), Address varchar (40), Id_Card numeric (16), sk varchar(30), Information varchar(50), primary key (Nz_Code)); |
create table Py(Py_Code varchar (6), Name varchar (25), Id_Card numeric (16), Ttl date (default), Position varchar (40), Address varchar (30), primary key (Py_Code), foreign key (Nz_Code), reference Nz); |
/* Command to run a join query */ |
SELECT Nz.name FROM Nz INNER JOIN py ON Nz.Id_Card = Py.Id_Card; |
/* Algorithm to Check Nadzir Waqf Data Synchronization: Simple Nested Loop Join */ |
for each record Nz.name ɛ Nz do for each record py ɛ Py do if (nzi == pyj)= true then print “finding” add (nzi, pyj) to result else then print “clear” |
Movig Good Item | Initial |
---|---|
Moving Goods | =SMG, |
Specification Moving Goods Non-Jewelry | =Spec_MGNJ |
Check for Moving Goods Non-Jewelry | =C_MGNJ |
Check Result Moving Goods Non-Jewelry | =C_R_MGNJ |
Specification Moving Goods Jewelry | =Spec_MGJ |
Check for Moving Goods Jewelry | =C_MGJ |
Check Result Moving Goods Jewelry | =C_R_MGJ |
Recommendation Moving Goods | =Rec_MG, |
/* Create a simulated table to check the synchronization of digital data with physical data for non-Jewelry legacy */ |
create table Spec_MGNJ(KD_Goods varchar (6), Category varchar (25), item_name varchar (25), Shape varchar (25), Material varchar (25), Gold_rust numeric (3), Skeleton varchar (16), Holding varchar(30), Long numeric(3), Heavy varchar(20), Motive varchar (25), primary key (KD_Goods)); |
create table C_MGNJ(KD_Goods varchar (6), Category varchar (25), item_name varchar (25), Shape varchar (25), Material varchar (25), Gold_rust numeric (3), Skeleton varchar (16), Holding varchar(30), Long numeric(3), Heavy varchar(20), Motive varchar (25), Verification_date date(default), inspection_ officer varchar (25), primary key (KD_Goods), reference Spec_MGNJ); |
/* Command to run a join query */ |
SELECT * FROM Spec_MGNJ LEFT JOIN C_MGNJ ON Spec_MGNJ.Spec != C_MGNJ. Check; |
/* Nested loop joining algorithm using C_MGNJ, a simple test for Spec_MGNJ synchronization */ |
for each record items_name ɛ Spec_MGNJ do for each record items_name ɛ C_MGNJ do if (Spec_MGNJ.Speci != C_MGNJ. Checkj) = true then print “finding” add (items_namei, items_namej) to result else then print “clear” |
/* Create a simulation table to check the synchronization of digital data with physical data for moving jewelry items */ |
create table Spec_MGJ (KD_Goods varchar(6), Category varchar(25), item_name varchar (25), Material varchar(25), Gold_rust numeric(3), Accessories varchar(16), Number_of_earrings numeric(4), Heavy_earrings numeric(4), Number_of_flowers numeric(4), Weight_of_flowers numeric(4), Total_weight varchar (25), primary key (KD_Goods)); |
create table C_MGJ(KD_Goods varchar(6), Category varchar(25), item_name varchar(25), Material varchar(25), Gold_rust numeric(3), Accessories varchar(16), Number_of_earrings numeric(4), Heavy_earrings numeric(3), Number_of_flowers numeric(4), Weight_of_flowers numeric(4), Total_weight varchar(25), Verification_date date(default), Inspection_officcer varchar(25), primary key (KD_Goods), reference C_MGJ ); |
/* Command to run a join query */ |
SELECT * FROM Spec_MGJ LEFT JOIN C_MGJ ON Spec_MGJ. Spec != C_MGJ. Check; |
/* Nested loop joining algorithm using C_MGJ, a simple test for Spec_MGJ synchronization */ |
for each record items_name ɛ Spec_MGJ do for each record items_name ɛ C_MGJ do if (Spec_MGJ. Speci != C_MGJ. Checkj)= true then print “finding” add (items_namei, items_namej) to result else then print “clear” |
Non-Moving Good Item | Initial |
---|---|
Non-Moving Goods | =NMG |
Check Non-Moving Goods | =Check_NMG |
Check Result Non-Moving Goods | =C_R_NMG |
Recommendation | =Rec_NMG |
/* Create a simulated table to check the synchronization of Non-Moving Goods Data Potential Changed */ |
create table NMG (Location_code varchar(6), Category varchar(25), SPS_No varchar (25), Location varchar(30), Northern_boundary varchar(30), Southern_boundary varchar(30), Easthern_boundary varchar(30), Westhern_boundary varchar(30), Broad numeric(6), Name_of_tenant varchar(30), ID_Card numeric(16), Land_Functions varchar(25), primary key (Location_Code)); |
create table Check_NMG (Location_Code varchar(6), Category varchar(25), SPS_No varchar (25), Location varchar(30), Northern_boundary varchar(30), Southern_boundary varchar(30), Easthern_boundary varchar(30), Westhern_boundary varchar(30), Broad numeric(6), Name_of_tenant varchar(30), ID_Card numeric(16), Land_Functions varchar (25), Verification_Date date(default), Inspection_officer varchar(30), primary key (Location_Code), reference Check_NMG); |
/* Command to run a join query */ |
SELECT * FROM NMG LEFT JOIN Check_NMG ON NMG. Broad != Check_NMG. Broad; |
/* Nested loop joining algorithm using NMG, a simple test for Check_NMG synchronization */ |
for each record broad ɛ NMG do for each record broad ɛ Check_NMG do if (NMG.broadi != Check_NMG.broadj)= true then print “finding” add (locationi, locationj) to result else then print “clear” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudrajat, R.; Ruchjana, B.N.; Abdullah, A.S.; Budiarto, R. Query Model Framework Design for Conservation History and Endowments Database: A Case Study on the Digitization of the Sumedang Larang Kingdom’s History and Endowments in Indonesia. Heritage 2023, 6, 7508-7530. https://doi.org/10.3390/heritage6120394
Sudrajat R, Ruchjana BN, Abdullah AS, Budiarto R. Query Model Framework Design for Conservation History and Endowments Database: A Case Study on the Digitization of the Sumedang Larang Kingdom’s History and Endowments in Indonesia. Heritage. 2023; 6(12):7508-7530. https://doi.org/10.3390/heritage6120394
Chicago/Turabian StyleSudrajat, Raden, Budi Nurani Ruchjana, Atje Setiawan Abdullah, and Rahmat Budiarto. 2023. "Query Model Framework Design for Conservation History and Endowments Database: A Case Study on the Digitization of the Sumedang Larang Kingdom’s History and Endowments in Indonesia" Heritage 6, no. 12: 7508-7530. https://doi.org/10.3390/heritage6120394
APA StyleSudrajat, R., Ruchjana, B. N., Abdullah, A. S., & Budiarto, R. (2023). Query Model Framework Design for Conservation History and Endowments Database: A Case Study on the Digitization of the Sumedang Larang Kingdom’s History and Endowments in Indonesia. Heritage, 6(12), 7508-7530. https://doi.org/10.3390/heritage6120394