Moisture as a Driver of Long-Term Threats to Timber Heritage—Part II: Risks Imposed on Structures at Local Sites
Abstract
:1. Introduction
Approach
2. Methods
2.1. Heritage Sites
2.2. Datasets and Data Processing
2.2.1. Modelled Heritage Climate Pressures
- Relative humidity range: Annual range in mean monthly relative humidity (%), where the annual range (ΔRHa) is RHmax − RHmin, and RHmax is the RH of the month with the highest mean RH in a given year and RHmin is the minimum mean monthly RH in the same year.
- Relative humidity seasonality: Month with the highest and lowest mean RH.
- Time of wetness: Number of days per year RH > 80% and temperature > 0 ℃.
- Wind-driven rain: Number of days per year when rain is > 4 mm, mean wind speed is >2 m s−1 and temperature > 0 ℃.
- Salt transitions: Number of cycles per year where the mean daily RH crossed below 75.5%, to account for sodium chloride crystallisation.
2.2.2. Observational Data
2.2.3. Heritage Documentation
2.2.4. Site Scale Material Damage
2.3. Statistics
2.4. Compiling Site Information
3. Results
3.1. Medieval Barns and Biological Risk
3.1.1. Scheffer Index
3.1.2. Optimum Climate Conditions for Individual Organisms
3.2. Rural Timber Buildings and Humidity Threats
3.2.1. Multiple Threats
3.2.2. Maintenance Strategies
3.3. Board Houses and Wind-Driven Rain Risk
3.3.1. Climate and Climate Pressures
3.3.2. Conservation Challenges
3.4. Built Heritage of the Wet Tropics and Time of Wetness
3.4.1. Amazonia
3.4.2. Congo
3.4.3. Sarawak
4. Discussion
4.1. Data
4.2. Damage
4.3. Action
4.4. Effective Modelling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sabbioni, C.; Brimblecombe, P.; Cassar, M. The Atlas Ofclimate Change Impact on European Cultural Heritage. In Scientific Analysis and Management Strategies; Anthem Press: London, UK, 2010. [Google Scholar]
- Howard, A.J.; Hancox, E.; Hanson, J.; Jackson, R. Protecting the Historic Environment from Inland Flooding in the UK: Some Thoughts on Current Approaches to Asset Management in the Light of Planning Policy, Changing Catchment Hydrology and Climate Change. Hist. Environ. Policy Pract. 2017, 8, 125–142. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.; Hughes, J.J. Climate Change Impacts on Cultural Heritage: A Literature Review. WIREs Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Lankester, P. Long-Term Changes in Climate and Insect Damage in Historic Houses. Stud. Conserv. 2013, 58, 13–22. [Google Scholar] [CrossRef]
- Grossi, C.M.; Brimblecombe, P.; Menéndez, B.; Benavente, D.; Harris, I.; Déqué, M. Climatology of Salt Transitions and Implications for Stone Weathering. Sci. Total Environ. 2011, 409, 2577–2585. [Google Scholar] [CrossRef]
- Oguchi, C.T.; Yu, S. A Review of Theoretical Salt Weathering Studies for Stone Heritage. Prog. Earth Planet Sci. 2021, 8, 1–23. [Google Scholar] [CrossRef]
- Richards, J.; Brimblecombe, P. Moisture as a Driver of Long-Term Threats to Timber Heritage. Part I: Changing Heritage Climatology. Heritage 2022, 5, 1929–1946. [Google Scholar] [CrossRef]
- Brimblecombe, P. Refining Climate Change Threats to Heritage. J. Inst. Conserv. 2014, 37, 85–93. [Google Scholar] [CrossRef]
- Brimblecombe, P. Heritage Climatology. In Climate Change and Cultural Heritage; Lefevre, R.-A., Sabbioni, C., Eds.; Edipuglia: Bari, Italy, 2010; pp. 57–64. [Google Scholar]
- Orr, S.A.; Richards, J.; Fatorić, S. Climate Change and Cultural Heritage: A Systematic Literature Review (2016–2020). Hist. Environ. Policy Pract. 2021, 12, 434–477. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Strlič, M.; Thickett, D.; Taylor, J.; Cassar, M. Damage Functions in Heritage Science. Stud. Conserv. 2013, 58, 80–87. [Google Scholar] [CrossRef]
- Choidis, P.; Kraniotis, D.; Lehtonen, I.; Hellum, B. A Modelling Approach for the Assessment of Climate Change Impact on the Fungal Colonization of Historic Timber Structures. Forests 2021, 12, 819. [Google Scholar] [CrossRef]
- Richards, J.; Brimblecombe, P. The Transfer of Heritage Modelling from Research to Practice. Herit. Sci. 2022, 10, 1–10. [Google Scholar] [CrossRef]
- Cassar, M. Climate Change and the Historic Environment; Centre for Sustainable Heritage, University College London: London, UK, 2005; Available online: https://discovery.ucl.ac.uk/id/eprint/2082/1/2082.pdf (accessed on 21 August 2022).
- Brimblecombe, P.; Grossi, C.M.; Harris, I. The Effect of Long-Term Trends in Dampness on Historic Buildings. Weather 2006, 61, 278–281. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Hayashi, M.; Futagami, Y. Mapping Climate Change, Natural Hazards and Tokyo’s Built Heritage. Atmosphere 2020, 11, 680. [Google Scholar] [CrossRef]
- Sardella, A.; Palazzi, E.; von Hardenberg, J.; del Grande, C.; de Nuntiis, P.D.; Sabbioni, C.; Bonazza, A. Risk Mapping for the Sustainable Protection of Cultural Heritage in Extreme Changing Environments. Atmosphere 2020, 11, 700. [Google Scholar] [CrossRef]
- Currie, A.; Sterelny, K. In Defence of Story-Telling. Stud. Hist. Philos. Sci. Part A 2017, 62, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Corless, V. The Role of Narrative in Science. Available online: https://www.advancedsciencenews.com/the-role-of-narrative-in-science/ (accessed on 10 August 2022).
- Nerlich, B.; Koteyko, N.; Brown, B. Theory and Language of Climate Change Communication. WIREs Clim. Chang. 2010, 1, 97–110. [Google Scholar] [CrossRef]
- Pearce, W.; Brown, B.; Nerlich, B.; Koteyko, N. Communicating Climate Change: Conduits, Content, and Consensus. WIREs Clim. Chang. 2015, 6, 613–626. [Google Scholar] [CrossRef]
- Hulme, M. Why We Disagree about Climate Change: Understanding Controversy, Inaction and Opportunity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Matless, D. Climate Change Stories and the Anthroposcenic. Nat. Clim. Chang. 2016, 6, 118–119. [Google Scholar] [CrossRef] [Green Version]
- Wise, M.N. On the Narrative Form of Simulations. Stud. Hist. Philos. Sci. Part A 2017, 62, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Brimblecombe, P. Climate Myths. In Climate Change and Cultural Heritage; Lefevre, R.-A., Sabbioni, C., Eds.; Edipuglia: Bari, Italy, 2010; pp. 207–209. [Google Scholar]
- Scheffer, T.C. A Climate Index for Estimating Potential for Decay in Wood Structures above Ground. For. Prod. J. 1971, 21, 25–31. [Google Scholar]
- Lisø, K.R.; Hygen, H.O.; Kvande, T.; Thue, J.V. Decay Potential in Wood Structures Using Climate Data. Build. Res. Inf. 2007, 34, 546–551. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Seasonality and Climate Change: A Review of Observed Evidence in the United States; 2021. Available online: https://www.epa.gov/system/files/documents/2021-12/30339_epa_report_climate_change_and_seasonality_v12_release_508.pdf (accessed on 10 August 2022).
- Angel, J.; Swanston, C.; Boustead, B.M.; Conlon, K.C.; Hall, K.R.; Jorns, J.L.; Kunkel, K.E.; Lemos, M.C.; Lofgren, B.; Ontl, T.A.; et al. Midwest. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II (Report); Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018; pp. 872–940. [Google Scholar]
- Tourism National Trust. National Trust How Climate Change Will Affect the Future of UK. Available online: https://www.nationaltrust.org.uk/features/how-climate-change-will-affect-the-future-of-uk-tourism (accessed on 17 August 2022).
- Todd, B. Reconstructing Long-Term Records of UK Drought and Analysis of Variability: 1697–2013. Ph.D. Thesis, University of Liverpool, Liverpool, UK, 2014. [Google Scholar]
- Parker, D.E.; Legg, T.P.; Folland, C.K. A New Daily Central England Temperature Series, 1772–1991. Int. J. Climatol. 1992, 12, 317–342. [Google Scholar] [CrossRef]
- Met Office. MIDAS Open: UK Daily Weather Observation Data, V202107; NERC EDS Centre for Environmental Data Analysis: Didcot, UK, 2021. [Google Scholar] [CrossRef]
- Met Office. MIDAS Open: UK Hourly Rainfall Data, V202107; NERC EDS Centre for Environmental Data Analysis: Didcot, UK, 2021. [Google Scholar] [CrossRef]
- Met Office. MIDAS Open: UK Daily Temperature Data, V202107; NERC EDS Centre for Environmental Data Analysis: Didcot, UK, 2021. [Google Scholar] [CrossRef]
- Brown, P.J.; Degaetano, A.T. Trends in U.S. Surface Humidity, 1930–2010. J. Appl. Meteorol. Climatol. 2013, 52, 147–163. [Google Scholar] [CrossRef]
- Feng, Z.; Leung, L.R.; Hagos, S.; Houze, R.A.; Burleyson, C.D.; Balaguru, K. More Frequent Intense and Long-Lived Storms Dominate the Springtime Trend in Central US Rainfall. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sierra Leone Meteorological Agency. Sierra Leone Meteorological Agency. Available online: https://slmet.gov.sl/ (accessed on 17 August 2022).
- World Meteorological Organization. WMO Climate Normals. Available online: https://www.ncei.noaa.gov/products/wmo-climate-normals (accessed on 17 August 2022).
- Climatic Research Unit (University of East Anglia). High-Resolution Gridded Datasets. Available online: https://crudata.uea.ac.uk/cru/data/hrg/ (accessed on 17 August 2022).
- World Bank Group. Climate Change Knowledge Portal. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on 17 August 2022).
- Weeks, K.D.; Look, D.W. Exterior Paint Problems on Historic Woodwork. Preserv. Briefs 1982, 10, 1–12. [Google Scholar]
- Sullivan, A.; Leeke, J. Preserving Historic Wood Porches. Preserv. Briefs 2006, 45, 1–20. [Google Scholar]
- Park, S.C. Holding the Line: Controlling Unwanted Moisture in Historic Buildings. Preserv. Briefs 1996, 39, 1–16. [Google Scholar]
- Park, S.C. The Repair and Replacement of Historic Wooden Shingle Roofs. Preserv. Briefs 1989, 19, 1–12. [Google Scholar]
- Basu, P.; Sam, M.A. Review of the Monuments and Relics Act and Recommendations for New Heritage Legislation for Sierra Leone, Consultation Report; The Ministry of Tourism and Cultural Affairs and Monuments and Relics Commission, Government of Sierra Leone: Freetown, Sierra Leone, 2016. [Google Scholar]
- English Heritage. Harmondsworth Barn. Available online: https://www.english-heritage.org.uk/visit/places/harmondsworth-barn/ (accessed on 17 August 2022).
- American Gothic. House Center American Gothic House Center. Available online: https://americangothichouse.org/ (accessed on 17 August 2022).
- Sierra Leone National Tourist Board. Historical and Heritage Sites. Available online: https://ntb.gov.sl/historical-and-heritage-sites/# (accessed on 17 August 2022).
- English Heritage. Practical Building Conservation. Timber; Routledge: Abingdon, UK, 2012. [Google Scholar]
- Historic England. The Great Barn, Harmondsworth. Available online: https://historicengland.org.uk/listing/the-list/list-entry/1194332?section=official-list-entry (accessed on 17 August 2022).
- Society for the Protection of Ancient Buildings. Harmondsworth Barn. Who Will Save the ‘Cathedral of Middlesex’? Available online: https://web.archive.org/web/20120214143758/http://www.spab.org.uk/cornerstone-magazine/news/harmondsworth-barn/ (accessed on 17 August 2022).
- Brimblecombe, P. Air Pollution and Architecture: Past, Present and Future. J. Archit. Conserv. 2000, 6, 30–46. [Google Scholar] [CrossRef]
- Andrews, D.P.; Bedford, J.; Bryan, P.G. A Comparison of Laser Scanning and Structure from Motion as Applied to the Great Barn at Harmondsworth, UK. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-5/W2, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Frankson, R.; Kunkel, K.E.; Champion, S.M.; Runkle, J. Iowa State Climate Summary 2022; NOAA Technical Report NESDIS 150-IA; NOAA/NESDIS: Silver Spring, MD, USA, 2022. [Google Scholar]
- Feehan, J. Train Depot Move on Track. Available online: https://www.toledoblade.com/frontpage/2005/06/23/Train-depot-move-on-track.html (accessed on 10 August 2022).
- Pope, M.K.; Sievert, A.K.; Sievert, S.L. From Pioneer to Tourist: Public Archaeology at Spring Mill State Park. Int. J. Hist. Archaeol. 2011, 15, 206–221. [Google Scholar] [CrossRef]
- The Prairie School Traveler. The Prairie School Traveler. Available online: https://www.prairieschooltraveler.com/html/wi/jumpriver/jumpriver.html (accessed on 10 August 2022).
- Caba, S. “Gothic” House Being Refurbished. The Cedar Rapids Gazette, 20 June 1976. [Google Scholar]
- Wurtz, R.L. Constructing Identities in the West Branch Landscape: Herbert Hoover’s Life and Legacy as a Common Man, 1935–1992. Master’s Thesis, University of Northern Iowa, Cedar Falls, IA, USA, 2017. [Google Scholar]
- Lankester, P.; Brimblecombe, P. The Impact of Future Climate on Historic Interiors. Sci. Total Environ. 2012, 417–418, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Bratasz, Ł.; Harris, I.; Lasyk, Ł.; Łukomski, M.; Kozłowski, R. Future Climate-Induced Pressures on Painted Wood. J. Cult. Herit. 2012, 13, 365–370. [Google Scholar] [CrossRef]
- Jacobs, J.L.; Thakur, R. How Advances in Algae-Resistant Roofing Address the Growing Roof Algae Problem. In Proceeding of the Fourth International Symposium on Roofing technology, National Roofing Contractors Association, Gaithersburg, MD, USA, 17–19 September 1997; pp. 99–103. [Google Scholar]
- Berdahl, P.; Akbari, H.; Levinson, R.; Miller, W.A. Weathering of Roofing Materials—An Overview. Constr. Build. Mater. 2008, 22, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Morales, O.; Montero-Muñoz, J.L.; Baptista Neto, J.A.; Beech, I.B.; Sunner, J.; Gaylarde, C. Deterioration and Microbial Colonization of Cultural Heritage Stone Buildings in Polluted and Unpolluted Tropical and Subtropical Climates: A Meta-Analysis. Int. Biodeterior. Biodegrad. 2019, 143, 104734. [Google Scholar] [CrossRef]
- Buczkowski, G.; Bertelsmeier, C. Invasive Termites in a Changing Climate: A Global Perspective. Ecol. Evol. 2017, 7, 974–985. [Google Scholar] [CrossRef]
- Ludwikowski, J.J.; Peterson, E.W. Transport and Fate of Chloride from Road Salt within a Mixed Urban and Agricultural Watershed in Illinois (USA): Assessing the Influence of Chloride Application Rates. Hydrogeol. J. 2018, 26, 1123–1135. [Google Scholar] [CrossRef]
- Halda, B.J. Doors Number 1, 1989. Available online: https://www.nps.gov/tps/how-to-preserve/tech-notes/Tech-Notes-Doors01.pdf (accessed on 21 August 2022).
- Powerwash. Roof Cleaning Market Profitability. Available online: https://powerwash.com/spray-tips/roof-cleaning-market-profitability/ (accessed on 10 August 2022).
- Anderson Pest Solutions. Where Do Termites Live? Midwestern Termites. Available online: https://andersonpestsolutions.com/termites/identification/where-do-termites-live/ (accessed on 19 August 2022).
- Levinson, R.; Berdahl, P.; Asefaw Berhe, A.; Akbari, H. Effects of Soiling and Cleaning on the Reflectance and Solar Heat Gain of a Light-Colored Roofing Membrane. Atmos. Environ. 2005, 39, 7807–7824. [Google Scholar] [CrossRef]
- Thomas, C. Matching New Tiles to Old. Available online: http://www.roofconsult.co.uk/articles/tiling/tips6.htm (accessed on 10 August 2022).
- Busby, J.W.; Smith, T.G.; White, K.L.; Strange, S.M. Climate Change and Insecurity: Mapping Vulnerability in Africa. Int. Secur. 2013, 37, 132–172. [Google Scholar] [CrossRef]
- Busby, J.W.; Cook, K.H.; Vizy, E.K.; Smith, T.G.; Bekalo, M. Identifying Hot Spots of Security Vulnerability Associated with Climate Change in Africa. Clim. Chang. 2014, 124, 717–731. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Zhou, W. Projections of West African Summer Monsoon Rainfall Extremes from Two CORDEX Models. Clim. Dyn. 2019, 52, 2017–2028. [Google Scholar] [CrossRef]
- Dosio, A.; Turner, A.G.; Tamoffo, A.T.; Sylla, M.B.; Lennard, C.; Jones, R.G.; Terray, L.; Nikulin, G.; Hewitson, B. A Tale of Two Futures: Contrasting Scenarios of Future Precipitation for West Africa from an Ensemble of Regional Climate Models. Environ. Res. Lett. 2020, 15, 064007. [Google Scholar] [CrossRef]
- Macarthy, J.M. Integrating Climate Change Considerations in Planning for Urban Development in Sierra Leone: The Case of Freetown. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2012. [Google Scholar]
- Sierra Leone Heritage. Sierra Leone Heritage. Available online: https://www.sierraleoneheritage.org/ (accessed on 17 August 2022).
- Basu, P. OBJECT DIASPORAS, RESOURCING COMMUNITIES: Sierra Leonean Collections in the Global Museumscape. Mus. Anthropol. 2011, 34, 28–42. [Google Scholar] [CrossRef]
- Akam, S. Freetown’s Wood Homes a Link to Sierra Leone’s Past Reuters. Available online: https://www.reuters.com/article/us-sierraleone-architecture-idUSBRE8420IO20120503 (accessed on 2 August 2022).
- Taylor, E.T.; Kamara, I.S.; Bockarie, A. Rainfall Pattern in Freetown, Sierra Leone: From a Retrospective Viewpoint. In Proceedings of the International Conference ADAPT to CLIMATE, Nicosia, Cyprus, 27–28 March 2014; pp. 1–8. [Google Scholar]
- Climate-Data. Climate Data for Cities Worldwide. Available online: https://en.climate-data.org/ (accessed on 17 August 2022).
- World Bank Group. Sierra Leone Overview. Available online: https://www.worldbank.org/en/country/sierraleone/overview (accessed on 17 August 2022).
- Corvo, F.; Pérez, T.; Martin, Y.; Reyes, J.; Dzib, L.R.; González-Sánchez, J.; Castañeda, A. Time of Wetness in Tropical Climate: Considerations on the Estimation of TOW According to ISO 9223 Standard. Corros. Sci. 2008, 50, 206–219. [Google Scholar] [CrossRef]
- Bates, H.W. The Naturalist on the River Amazons, a Record of Adventures, Habits of Animals, Sketches of Brazilian and Indian Life and Aspects of Nature under the Equator during Eleven Years of Travel; John Murray: London, UK, 1863. [Google Scholar]
- Esquivel-Muelbert, A.; Baker, T.R.; Dexter, K.G.; Lewis, S.L.; Brienen, R.J.W.; Feldpausch, T.R.; Lloyd, J.; Monteagudo-Mendoza, A.; Arroyo, L.; Álvarez-Dávila, E.; et al. Compositional Response of Amazon Forests to Climate Change. Glob. Chang. Biol. 2019, 25, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.-H.; KIM, N.-S.; Scharff, M.; Nielsen, A.V.; Mecklenburg, M.; Fuster-López, L.; Bratasz, L.; Andersen, C.K. Numerical Modelling of Mechanical Degradation of Canvas Paintings under Desiccation. Herit. Sci. 2022, 10, 1–13. [Google Scholar] [CrossRef]
- Brimblecombe, P. Visitor Responses and Climate Change. In Cultural Heritage from Pollution to Climate Change; Lefevre, R., Sabbioni, C., Eds.; Edipuglia: Bari, Italy, 2016; pp. 73–80. [Google Scholar]
- Woon, J.S.; Boyle, M.J.W.; Ewers, R.M.; Chung, A.; Eggleton, P. Termite Environmental Tolerances Are More Linked to Desiccation than Temperature in Modified Tropical Forests. Insectes Soc. 2019, 66, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Omasombo, J. Kisangani: A City at Its Lowest Ebb. In Urban Africa. Changing Contours of Surviving in the City; Abdoumaliq, S., Abdelghani, A., Eds.; CODESRIA Books: Dakar, Senegal; Zed Books: London, UK; University of South Africa Press: Pretoria, South Africa, 2005; pp. 96–119. [Google Scholar]
- Ernst, J.-L. Stanleyville, Kisangani. Available online: http://www.stanleyville.be/index.html (accessed on 18 August 2022).
- Creese, A.; Washington, R.; Jones, R. Climate Change in the Congo Basin: Processes Related to Wetting in the December–February Dry Season. Clim. Dyn. 2019, 53, 3583–3602. [Google Scholar] [CrossRef] [Green Version]
- Saeed, F.; Haensler, A.; Weber, T.; Hagemann, S.; Jacob, D. Representation of Extreme Precipitation Events Leading to Opposite Climate Change Signals over the Congo Basin. Atmosphere 2013, 4, 254–271. [Google Scholar] [CrossRef] [Green Version]
- Ooi, K.G. Japanese Empire in the Tropics: Selected Documents and Reports of the Japanese Period in Sarawak, Northwest Borneo, 1941–1945; Ohio University Center for International Studies: Athens, OH, USA, 1998. [Google Scholar]
- Sa’adi, Z.; Shahid, S.; Chung, E.S.; Ismail, B.T. Projection of Spatial and Temporal Changes of Rainfall in Sarawak of Borneo Island Using Statistical Downscaling of CMIP5 Models. Atmos. Res. 2017, 197, 446–460. [Google Scholar] [CrossRef]
- Krishnan, M.V.N.; Prasanna, M.V.; Vijith, H. Statistical Analysis of Trends in Monthly Precipitation at the Limbang River Basin, Sarawak (NW Borneo), Malaysia. Meteorol. Atmos. Phys. 2019, 131, 883–896. [Google Scholar] [CrossRef]
- Simpson, N.P.; Clarke, J.; Orr, S.A.; Cundill, G.; Orlove, B.; Fatorić, S.; Sabour, S.; Khalaf, N.; Rockman, M.; Pinho, P.; et al. Decolonizing Climate Change–Heritage Research. Nat. Clim. Chang. 2022 2022, 1–4. [Google Scholar] [CrossRef]
- Balocco, C.; Petrone, G.; Maggi, O.; Pasquariello, G.; Albertini, R.; Pasquarella, C. Indoor Microclimatic Study for Cultural Heritage Protection and Preventive Conservation in the Palatina Library. J. Cult. Herit. 2016, 22, 956–967. [Google Scholar] [CrossRef]
- Pineda, P.; Iranzo, A. Analysis of Sand-Loaded Air Flow Erosion in Heritage Sites by Computational Fluid Dynamics: Method and Damage Prediction. J. Cult. Herit. 2017, 25, 75–86. [Google Scholar] [CrossRef]
- Masson, T.; Fritsche, I. We Need Climate Change Mitigation and Climate Change Mitigation Needs the ‘We’: A State-of-the-Art Review of Social Identity Effects Motivating Climate Change Action. Curr. Opin. Behav. Sci. 2021, 42, 89–96. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brimblecombe, P.; Richards, J. Moisture as a Driver of Long-Term Threats to Timber Heritage—Part II: Risks Imposed on Structures at Local Sites. Heritage 2022, 5, 2966-2986. https://doi.org/10.3390/heritage5040154
Brimblecombe P, Richards J. Moisture as a Driver of Long-Term Threats to Timber Heritage—Part II: Risks Imposed on Structures at Local Sites. Heritage. 2022; 5(4):2966-2986. https://doi.org/10.3390/heritage5040154
Chicago/Turabian StyleBrimblecombe, Peter, and Jenny Richards. 2022. "Moisture as a Driver of Long-Term Threats to Timber Heritage—Part II: Risks Imposed on Structures at Local Sites" Heritage 5, no. 4: 2966-2986. https://doi.org/10.3390/heritage5040154
APA StyleBrimblecombe, P., & Richards, J. (2022). Moisture as a Driver of Long-Term Threats to Timber Heritage—Part II: Risks Imposed on Structures at Local Sites. Heritage, 5(4), 2966-2986. https://doi.org/10.3390/heritage5040154