Necessity and Use of a Multilayer Test Object Based on an Anonymous 19th Century Copy of a Painting by Ivan Konstantinovich Aivazovsky (1817–1900)
Abstract
:1. Introduction
2. History of the Test-Object Creation
3. Identification of Binders and Pigments on the Test Object by FTIR Spectroscopy
3.1. Front Side of the Test Object
3.2. Reverse Side of the Test Object
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fiorillo, F.; Fiorentino, S.; Montanari, M.; Monaco, C.R.; Bianco, A.D.; Vandini, M. Learning from the past, intervening in the present: The role of conservation science in the challenging restoration of the wall painting Marriage at Cana by Luca Longhi (Ravenna, Italy). Herit. Sci. 2020, 8, 10. [Google Scholar] [CrossRef]
- Brumann, C. Cultural Heritage. In International Encyclopaedia of the Social & Behavioural Sciences, 2nd ed.; Elsevier: Orlando, FL, USA, 2015; pp. 414–419. [Google Scholar] [CrossRef]
- Manzano, E.; Blanc, R.; Martin-Ramos, J.D.; Chiari, G.; Sarrazin, P.; Vilchez, J.L. A combination of invasive and non-invasive techniques for the study of the palette and painting structure of a copy of Raphael’s Transfiguration of Christ. Herit. Sci. 2021, 9, 150. [Google Scholar] [CrossRef]
- Miliani, C.; Rosi, F.; Brunetti, B.G.; Sgamellotti, A. In Situ Non-invasive Study of Artworks: The MOLAB Multi technique Approach. Acc. Chem. Res. 2010, 43, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Haddad, A.; Hartman, D.; Martins, A. Complex Relationships: A Materials Study of Édouard Vuillard’s Interior, Mother and Sister of the Artist. Herit. Sci. 2021, 4, 2903–2929. [Google Scholar] [CrossRef]
- Cosentino, A. Terahertz and Cultural Heritage Science: Examination of Art and Archaeology. Technologies 2016, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Anglos, D. Laser-induced breakdown spectroscopy in heritage science. Phys. Sci. Rev. 2019, 4, 14. [Google Scholar] [CrossRef]
- Rosi, F.; Cartechini, L.; Sali, D.; Miliani, C. Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: From micro- to non-invasive FT-IR. Phys. Sci. Rev. 2019, 4, 19. [Google Scholar] [CrossRef]
- Iwanicka, M.; Moretti, P.; van Oudheusden, S.; Sylwestrzak, M.; Cartechini, L.; van den Berg, K.J.; Targowski, P.; Miliani, C. Complementary use of Optical Coherence Tomography (OCT) and Reflection FTIR spectroscopy for in-situ non-invasive monitoring of varnish removal from easel paintings. Microchem. J. 2018, 138, 7–18. [Google Scholar] [CrossRef]
- Lizun, D.; Kurkiewicz, T.; Szczupak, B. Technical examination of Liu Kang’s Paris and Shanghai painting supports (1929–1937). Herit. Sci. 2021, 9, 37. [Google Scholar] [CrossRef]
- de Meyer, S.; Vanmeert, F.; Vertongen, R.; van Loon, A.; Gonzalez, V.; Delaney, J.; Dooley, K.; Dik, J.; van der Snickt, G.; Vandivere, A.; et al. Macroscopic X-ray powder diffraction imaging reveals Vermeer’s discriminating use of lead white pigments in Girl with a Pearl Earring. Sci. Adv. 2019, 5, eaax1975. [Google Scholar] [CrossRef] [Green Version]
- Sandu, I.C.A.; Bracci, S.; Sandu, I.; Lobefaro, M. Integrated analytical study for the authentication of five Russian icons (XVI-XVII centuries). Microsc. Res. Tech. 2009, 72, 755–765. [Google Scholar] [CrossRef]
- de Fonjaudran, C.M.; Nevin, A.; Piqué, F.; Cather, S. Stratigraphic analysis of organic materials in wall painting samples using micro-FTIR attenuated total reflectance and a novel sample preparation technique. Anal. Bioanal. Chem. 2008, 392, 77–86. [Google Scholar] [CrossRef]
- Conti, C.; Colombo, C.; Realini, M. Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS). J. Raman Spectrosc. 2015, 46, 476–482. [Google Scholar] [CrossRef]
- Manfredi, M.; Barberis, E.; Rava, A.; Robottia, E.; Gosetti, F.; Marengo, E. Portable Diffuse Reflectance Infrared Fourier Transform (DRIFT) Technique for the Non-invasive Identification of Canvas Ground: IR Spectra Reference Collection. Anal. Methods 2014, 7, 2313–2322. [Google Scholar] [CrossRef]
- Casadio, F.; Leona, M.; Lombardi, J.R.; van Duyne, R. Identification of Organic Colorants in Fibers, Paints, and Glazes by Surface Enhanced Raman Spectroscopy. Acc. Chem. Res. 2010, 43, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Saladino, M.L.; Ridolfi, S.; Carocci, I.; Martino, D.C.; Lombardo, R.; Spinella, A.; Traina, G.; Caponetti, E. A multi-analytical non-invasive and micro-invasive approach to canvas oil paintings. General considerations from a specific case. Microchem. J. 2020, 133, 607–613. [Google Scholar] [CrossRef]
- Vetter, W.; Schreiner, M. Characterization of pigment-binding media systems—Comparison of non-invasive in-situ reflection FTIR with transmission FTIR microscopy. In Proceedings of the 9th International Conference of the Infrared and Raman Users’ Group (IRUG), Buenos Aires, Argentina, 3–6 March 2010; Available online: https://www.morana-rtd.com/e-preservationscience/2011/Vetter-12-07-2010.pdf (accessed on 10 June 2022).
- Calvanoa, C.D.; Rigante, E.; Picca, R.A.; Cataldi, T.R.I.; Sabbatini, L. An easily transferable protocol for in-situ quasi-non-invasive analysis of protein binders in works of art. Talanta 2020, 215, 120882. [Google Scholar] [CrossRef] [PubMed]
- Oakley, L.; Zaleski, S.; Males, B.; Cossairt, O.; Walton, M. Improved spectral imaging microscopy for cultural heritage through oblique illumination. Herit. Sci. 2020, 8, 27. [Google Scholar] [CrossRef]
- van der Weerd, J.; van Loon, A.; Boon, J. FTIR studies of the effects of pigments on the aging of oil. Stud. Conserv. 2005, 50, 3–22. [Google Scholar] [CrossRef]
- Mazzeo, R.; Prati, S.; Quaranta, M.; Joseph, E.; Kendix, E.; Galeotti, M. Attenuated total reflection micro FTIR characterisation of pigment-binder interaction in reconstructed paint films. Anal. Bioanal. Chem. 2008, 392, 65–76. [Google Scholar] [CrossRef]
- Manzano, E.; Blanc, R.; Martin-Ramos, J.D.; Chiari, G.; Sarrazin, P.; Vilchez, J.L. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev. 2018, 53, 703–746. [Google Scholar] [CrossRef]
- Genestar, C.; Pons, C. Earth pigments in painting: Characterization and differentiation by means of FTIR spectroscopy and SEM-EDS microanalysis. Anal. Bioanal. Chem. 2005, 382, 269–274. [Google Scholar] [CrossRef]
- Bikiaris, D.; Daniilia, S.; Sotiropoulou, S.; Katsimbiri, O.; Pavlidou, E.; Moutsatsou, A.P.; Chryssoulakis, Y. Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: Application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim. Acta Part A 1999, 56, 3–18. [Google Scholar] [CrossRef]
- Ilic, B.; Radonjanin, V.; Malesev, M.; Zdujic, M.; Mitrovic, A. Effects of mechanical and thermal activation on pozzolanic activity of kaolin containing mica. Appl. Clay Sci. 2016, 123, 173–181. [Google Scholar] [CrossRef]
- Bruni, S.; Guglielmi, V.; Foglia, E.D.; Castoldi, M.; Gianni, G.B.; Bruni, S.; Guglielmi, V.; Foglia, E.D.; Castoldi, M.; Gianni, G.B. A non-destructive spectroscopic study of the decoration of archaeological pottery: From matt-painted bichrome ceramic sherds (southern Italy, VIII-VII B.C.) to an intact Etruscan cinerary urn. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 191, 88–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalli, K.; Santillan, J.; Williams, Q. A high pressure infrared spectroscopic study of PbCO3-cerussite: Constraints on the structure of the post-aragonite phase. Phys. Chem. Miner. 2005, 32, 412–417. [Google Scholar] [CrossRef]
- Osmond, G. Zinc Soaps: An Overview of Zinc Oxide Reactivity and Consequences of Soap Formation in Oil-Based Paintings. Met. Soaps Art 2019, 25–46. [Google Scholar] [CrossRef]
- Garrappaa, S.; Kocía, E.; Svarcovaa, S.; Bezdickaa, P.; Hradila, D. Initial stages of metal soaps` formation in model paints: The role of humidity. Microchem. J. 2020, 156, 104842. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Doménech-Carbó, M.T.; Osete-Cortina, L.; Donnici, M.; Guasch-Ferré, N.; Gasol-Fargas, R.M.; Iglesias-Campos, M.Á. Electrochemical assessment of pigments-binding medium interactions in oil paint deterioration: A case study on indigo and Prussian blue. Herit. Sci. 2020, 8, 71. [Google Scholar] [CrossRef]
- Tsitovich, V.; Lukina, L.; Timchenko, T. Technology and Expertise of Painting; Aivazovsky, I.K., Ed.; Kyiv, Ukraine, 2002; pp. 27–33. Available online: http://195.20.96.242:5028/kvportal/DocDescription?docid=KvKOBU.BibRecord.117169 (accessed on 10 June 2022).
- Tomasini, E.; Siracusano, G.; Maier, M.S. Spectroscopic, morphological and chemical characterization of historic pigments based on carbon. Paths for the identification of an artistic pigment. Microchem. J. 2012, 102, 28–37. [Google Scholar] [CrossRef]
- IRUG Open Database. Available online: https://www.irug.org/ (accessed on 10 June 2022).
- Gražėnaitė, E.; Kiuberis, J.; Beganskienė, A.; Senvaitienė, J.; Kareiva, A. XRD and FTIR characterisation of historical green pigments and their lead-based glazes. CHEMIJA 2014, 25, 199–205. [Google Scholar]
- Gayo, G.X.; Lavat, A.E. Green ceramic pigment based on chromium recovered from a plating waste. Ceram. Int. 2018, 44, 22181–22188. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreev, I.I.; Sirro, S.V.; Lykina, A.A.; Smolyanskaya, A.A.; Minin, A.V.; Kravtsenyuk, O.V.; Menu, M.; Smolyanskaya, O.A. Necessity and Use of a Multilayer Test Object Based on an Anonymous 19th Century Copy of a Painting by Ivan Konstantinovich Aivazovsky (1817–1900). Heritage 2022, 5, 2955-2965. https://doi.org/10.3390/heritage5040153
Andreev II, Sirro SV, Lykina AA, Smolyanskaya AA, Minin AV, Kravtsenyuk OV, Menu M, Smolyanskaya OA. Necessity and Use of a Multilayer Test Object Based on an Anonymous 19th Century Copy of a Painting by Ivan Konstantinovich Aivazovsky (1817–1900). Heritage. 2022; 5(4):2955-2965. https://doi.org/10.3390/heritage5040153
Chicago/Turabian StyleAndreev, Ivan I., Sergey V. Sirro, Anastasiya A. Lykina, Aleksandra A. Smolyanskaya, Alexander V. Minin, Olga V. Kravtsenyuk, Michel Menu, and Olga A. Smolyanskaya. 2022. "Necessity and Use of a Multilayer Test Object Based on an Anonymous 19th Century Copy of a Painting by Ivan Konstantinovich Aivazovsky (1817–1900)" Heritage 5, no. 4: 2955-2965. https://doi.org/10.3390/heritage5040153
APA StyleAndreev, I. I., Sirro, S. V., Lykina, A. A., Smolyanskaya, A. A., Minin, A. V., Kravtsenyuk, O. V., Menu, M., & Smolyanskaya, O. A. (2022). Necessity and Use of a Multilayer Test Object Based on an Anonymous 19th Century Copy of a Painting by Ivan Konstantinovich Aivazovsky (1817–1900). Heritage, 5(4), 2955-2965. https://doi.org/10.3390/heritage5040153