On-Site Identification of Pottery with pXRF: An Example of European and Chinese Red Stonewares
Abstract
:1. Introduction
2. Experimental
2.1. Artefacts
2.2. Portable X-ray Fluorescence (pXRF)
2.3. Evaluation of the pXRF Data
3. Results
3.1. Nature of Red Porcelain/Stoneware and Expected Raw Materials and Compositional Characteristics
3.2. Elements Associated with Fluxes
3.3. Elements Associated with Stable Minerals
3.4. Most Pertinent Element for the Differentiation of the Provenance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferchault de Réaumur, R.A. Observations sur la Matière Qui Colore des Perles Fausses et sur Quelques Autres Matières Animales D’une Semblable Couleur, à L’occasion de Quoi on Essaie D’expliquer la Formation des Ecailles de Poissons; Mémoires Académie des Sciences: Paris, France, 1716. [Google Scholar]
- Ferchault de Réaumur, R.A. Idée Générale des Différentes Manières Dont on Peut Faire la Porcelaine et Quelles Sont les Véritables Matières de Celle de la Chine; Mémoires Académie des Sciences: Paris, France, 1727. [Google Scholar]
- Ferchault de Réaumur, R.A. Second Mémoire sur la Porcelaine ou Suite des Principes qui Doivent Conduire Dans la Composition des Porcelaines de Différents Genres et qui Etablissent les Caractères des Matières Fondantes Qu’on ne Peut Choisir Pour Tenir Lieu de Celle Qu’on Employe à la Chine; Mémoires Académie des Sciences: Paris, France, 1729. [Google Scholar]
- Ferchault de Réaumur, R.A. Mémoire sur L’art de Faire une Nouvelle Espèce de Porcelaine par des Moyens Extrêmement Simples et Faciles ou de Transformer le Verre en Porcelaine; Mémoires Académie des Sciences: Paris, France, 1739. [Google Scholar]
- Colomban, P. The Destructive/Non-Destructive Identification of Enameled Pottery, Glass Artifacts and Associated Pigments—A Brief Overview. Arts 2013, 2, 77–110. [Google Scholar] [CrossRef] [Green Version]
- Sabbatini, L.; Van der Werf, I.D. (Eds.) Chemical Analysis in Cultural Heritage; Physical Sciences Reviews; Walter De Gruyter Gmbh: Berlin, Germany, 2020. [Google Scholar]
- Janssens, K. Modern Methods for Analysing Archaeological and Historical Glass; John Wiley & Sons Ltd.: Chichester, UK, 2013; Volume 2. [Google Scholar]
- Richet, P. Encyclopedia of Glass Science, Technology, History, and Culture; Richet, P., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 2. [Google Scholar]
- Colomban, P.; Milande, V. On-site Raman analysis of the earliest known Meissen porcelain and stoneware. J. Raman Spectrosc. 2006, 37, 606–613. [Google Scholar] [CrossRef] [Green Version]
- Colomban, P. On-site Raman identification and dating of ancient glasses: A review of procedures and tools. J. Cult. Herit. 2008, 9, e55–e60. [Google Scholar] [CrossRef]
- Ricciardi, P.; Colomban, P.; Tournié, A.; Milande, V. Non-destructive on-site identification of ancient glasses: Genuine artefacts, embellished pieces or forgeries? J. Raman Spectrosc. 2009, 40, 604–617. [Google Scholar] [CrossRef]
- Colomban, P. The on-site/remote Raman analysis with mobile instruments: A review of drawbacks and success in cultural heritage studies and other associated fields. J. Raman Spectrosc. 2012, 43, 1529–1535. [Google Scholar] [CrossRef]
- Colomban, P. On-site Raman study of artwork: Procedure and illustrative examples. J. Raman Spectrosc. 2018, 49, 921–934. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Edwards, H.G.M.; Jehlička, J. The role of mobile instrumentation in novel applications of Raman spectroscopy: Archaeometry, geosciences, and forensics. Chem. Soc. Rev. 2014, 43, 2628–2649. [Google Scholar] [CrossRef]
- Madariaga, J.M. Analytical chemistry in the field of cultural heritage. Anal. Methods 2015, 7, 4848–4876. [Google Scholar] [CrossRef]
- Koleini, F.; Colomban, P.; Pikirayi, I.; Prinsloo, L.C. Glass Beads, Markers of Ancient Trade in Sub-Saharan Africa: Methodology, State of the Art and Perspectives. Heritage 2019, 2, 2343–2369. [Google Scholar] [CrossRef] [Green Version]
- Shackley, M.S. Is there reliability and validity in portable X-ray fluorescence spectrometry (PXRF)? SAA Archaeol. Rec. 2010, 10, 17–20. [Google Scholar]
- Liritzis, I.; Zacharias, N. Portable XRF of Archaeological Artifacts: Current Research, Potentials and Limitations. In X-ray Fluorescence Spectrometry (XRF) in Geoarchaeology, 1st ed.; Schackley, M.S., Ed.; Springer: New York, NY, USA, 2011; pp. 109–142. [Google Scholar]
- Colomban, P.; Tournié, A.; Maucuer, M.; Meynard, P. On-site Raman and XRF analysis of Japanese/Chinese bronze/brass patina—The search for specific Raman signatures. J. Raman Spectrosc. 2012, 43, 799–808. [Google Scholar] [CrossRef]
- Goodale, N.; Bailey, D.G.; Jones, G.T.; Prescott, C.; Scholz, E.; Stagliano, N.; Lewis, C. pXRF: A study of inter-instrument performance. J. Archaeol. Sci. 2012, 39, 875–883. [Google Scholar] [CrossRef]
- Frahm, E. Validity of “off-the-shelf” handheld portable XRF for sourcing Near Eastern obsidian chip debris. J. Archaeol. Sci. 2013, 40, 1080–1092. [Google Scholar] [CrossRef]
- Speakman, R.J.; Shackley, M.S. Silo science and portable XRF in archaeology: A response to Frahm. J. Archaeol. Sci. 2013, 40, 1435–1443. [Google Scholar] [CrossRef]
- Forster, N.; Grave, P. Effects of elevated levels of lead in ceramics on provenancing studies using non-destructive PXRF: A case study in Byzantine Cypriot glazed ceramics. X-ray Spectrom. 2013, 42, 480–486. [Google Scholar] [CrossRef]
- Liu, S.; Li, Q.H.; Fu, Q.; Gan, F.X.; Xiong, Z.M. Application of a portable XRF spectrometer for classification of potash glass beads unearthed from tombs of Han Dynasty in Guangxi, China. X-ray Spectrom. 2013, 42, 470–479. [Google Scholar] [CrossRef]
- Brand, N.W.; Brand, C.J. Performance comparison of portable XRF instruments. Geochem. Explor. Environ. Anal. 2014, 14, 125–138. [Google Scholar] [CrossRef]
- Hunt, A.M.W.; Speakman, R.J. Portable XRF analysis of archaeological sediments and ceramics. J. Archaeol. Sci. 2015, 53, 626–638. [Google Scholar] [CrossRef]
- Fermo, P.; Andreoli, M.; Bonizzoni, L.; Fantauzzi, M.; Giubertoni, G.; Ludwig, N.; Rossi, A. Characterisation of Roman and Byzantine glasses from the surroundings of Thugga (Tunisia): Raw materials and colours. Microchem. J. 2016, 129, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Licenziati, F.; Calligaro, T. Study of mosaic glass tesserae from Delos, Greece using a combination of portable μ-Raman and X-ray fluorescence spectrometry. J. Archaeol. Sci. Rep. 2016, 7, 640–648. [Google Scholar] [CrossRef]
- Frahm, E.; Goldstein, S.T.; Tryon, C.A. Late Holocene forager-fisher and pastoralist interactions along the Lake Victoria shores, Kenya: Perspectives from portable XRF of obsidian artifacts. J. Archaeol. Sci. Rep. 2017, 11, 717–742. [Google Scholar] [CrossRef]
- Stroth, L.; Otto, R.; Daniels, J.T.; Braswell, G.A. Statistical artifacts: Critical approaches to the analysis of obsidian artifacts by portable X-ray fluorescence. J. Archaeol. Sci. Rep. 2019, 24, 738–747. [Google Scholar] [CrossRef]
- Simsek Franci, G. Handheld X-ray fluorescence (XRF) versus wavelength dispersive XRF: Characterization of Chinese blue-and-white porcelain sherds using handheld and laboratoy-type XRF instruments. Appl. Spectrosc. 2020, 74, 314–322. [Google Scholar] [CrossRef]
- Demirsar Arli, B.; Simsek Franci, G.; Kaya, S.; Arli, H.; Colomban, P. Portable X-ray Fluorescence (p-XRF) Uncertainty Estimation for Glazed Ceramic Analysis: Case of Iznik Tiles. Heritage 2020, 3, 1302–1329. [Google Scholar] [CrossRef]
- Simsek, G.; Arli, B.D.; Kaya, S.; Colomban, P. On-site pXRF analysis of body, glaze and colouring agents of the tiles at the excavation site of Iznik kilns. J. Eur. Ceram. Soc. 2019, 39, 2199–2209. [Google Scholar] [CrossRef]
- Bezur, A.; Casadio, F. The Analysis of Porcelain Using Handheld and Portable X-ray Fluorescence Spectrometer. In Studies in Archaeological Sciences: Handheld XRF for Art and Archaeology; Shugar, A., Mass, J., Eds.; Leuven University Press: Leuven, Belgium, 2013. [Google Scholar]
- Simsek, G.; Colomban, P.; Casadio, F.; Bellot-Gurlet, L.; Zelleke, G.; Faber, K.T.; Milande, V.; Tilliard, L. On-Site Identification of Early Böttger Red Stoneware Using Portable XRF/Raman Instruments: 1, Body analysis. J. Am. Ceram. Soc. 2014, 97, 2745–2754. [Google Scholar] [CrossRef]
- Simsek, G.; Colomban, P.; Casadio, F.; Bellot-Gurlet, L.; Zelleke, G.; Faber, K.T.; Milande, V.; Tilliard, L. On-Site Identification of Early Böttger Red Stoneware Using Portable XRF/Raman Instruments: 2, Glaze & Gilding Analysis. J. Am. Ceram. Soc. 2015, 98, 3006–3013. [Google Scholar] [CrossRef] [Green Version]
- Simsek, G.; Colomban, P. Portable XRF Study of Pottery: State of the Art and Perspective. In Proceedings of the TECHNART 2019—International Conference on the Use of Analytical Techniques for Characterization of Artworks, Bruge, Belgium, 7–10 May 2019; pp. 2–106. [Google Scholar]
- Kingery, W.D. The development of European porcelain. In High-Technology Ceramics: Past, Present, and Future—The Nature of Innovation and Change in Ceramic Technology; Kingery, D.W., Ed.; Ceramics and Civilization Series; American Ceramic Society: Westerville, OH, USA, 1986; Volume III, pp. 153–180. [Google Scholar]
- Finlay, R. The Pilgrim Art: Culture of Porcelain in World History. J. World Hist. 1998, 2, 141–187. [Google Scholar] [CrossRef]
- Barber, E.A. So-Called “Red Porcelain”, or Boccaro Ware of the Chinese, and its Imitations. Bull. Pa. Mus. 1911, 9, 17–23. [Google Scholar] [CrossRef]
- Goder, W.; Schulle, W.; Wagenbreth, O.; Walter, H. Meissen, La Découverte de la Porcelain Européenne en Saxe; Böttger, J.F., Ed.; Pygmalion-Gérard Watelet: Paris, France, 1984. [Google Scholar]
- Jouenne, M. Céramique Générale; Gauthier-Villard: Paris, France, 1959. [Google Scholar]
- Haussone, M. Technologie Générale. Faïences, Grès, Porcelaines; Baillère: Paris, France, 1969. [Google Scholar]
- Colomban, P.; Treppoz, F. Identification and differentiation of ancient and modern European porcelains by Raman macro- and microspectroscopy. J. Raman Spectrosc. 2001, 32, 93–102. [Google Scholar] [CrossRef]
- Edwards, H.G.M. 18th and 19th Century Porcelain Analysis; A Forensic Provenancing Assessment; Springer: Cham, Germany, 2020; Available online: https://www.springer.com/gp/book/9783030421915 (accessed on 15 December 2021).
- Carty, W.M.; Senapatti, I. Porcelain—Raw materials, processing, phase evolution, and mechanical behavior. J. Am. Ceram. Soc. 1998, 81, 3–20. [Google Scholar] [CrossRef]
- Iqbal, Y.; Lee, W. Microstructural evolution in triaxial porcelain. J. Am. Ceram. Soc. 2000, 83, 3121–3127. [Google Scholar] [CrossRef]
- Sciau, P.; Loé, L.; Colomban, P. Metal nanoparticles in contemporary potters’ master pieces: Lustre and red “pigeon blood” potteries as models to understand the ancient pottery. Ceram. Int. 2016, 42, 15349–15357. [Google Scholar] [CrossRef]
- Ullrich, B. Vergleichende Untersuchungen an historischen deutschen und chinesischen Steinzeugen des frühen 18. Jahrhunderts. Silik. Tech. 1990, 41, 328–330. [Google Scholar]
- Kockelmann, W.; Chapon, L.C.; Engels, R.; Schelten, J.; Neelmeijer, C.; Walcha, H.-M.; Artioli, G.; Shalev, S.; Perelli-Cippo, E.; Tardocchi, M.; et al. Neutrons in cultural heritage research. J. Neutron Res. 2006, 14, 37–42. [Google Scholar] [CrossRef]
- Kockelmann, W.; Kirfel, A. Neutron diffraction studies of archaeological objects on ROTAX. Physica B 2004, 350, e581–e585. [Google Scholar] [CrossRef]
- Schulle, W.; Goder, F.W. Die Erfindung des europaischen Porzellans durch Böttger—eine systematische schöpferische Entwicklung. Keram. Ztschr. 1982, 34, 598–600. [Google Scholar]
- Swann, C.P.; Nelson, C.H. Böttger stoneware from North America and Europe: Are they authentic? Nucl. Instr. Meth. Phys. Res. B 2000, 161–163, 694–698. [Google Scholar] [CrossRef]
- Schmidt, B.; Wetzig, K. Special Ion Beam Applications in Materials Analysis Problems. In Ion Beams in Materials Processing and Analysis; Springer: Vienna, Austria, 2013; pp. 377–411. [Google Scholar]
- Anders, G.J.P.A.; Jörg, C.J.A.; Stern, W.B. On some physical characteristics of Chinese and European red wares. Archaeometry 1992, 34, 43–52. [Google Scholar] [CrossRef]
- Brongniart, A. Traité des Arts Céramiques ou des Poteries Considérées dans leur Histoire, leur Pratique et leur Théorie, 3rd ed.; Asselin, P., Ed.; Libraire Faculté de Médecine: Paris, France, 1877; Volume 2. [Google Scholar]
- Hall, G.E.M.; Bonham-Carter, G.F.; Buchar, A. Evaluation of portable X-ray fluorescence (pXRF) in exploration and mining: Phase 1, control reference materials. Geochem. Explor. Environ. Anal. 2014, 14, 99–123. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.; Taylor, G.; Orr, C. pXRF method development for elemental analysis of archaeological soil. Archaeometry 2020, 62, 1145–1163. [Google Scholar] [CrossRef]
- Fornacelli, C.; Volpi, V.; Ponta, E.; Russo, L.; Briano, A.; Donati, A.; Giamello, M.; Bianchi, G. Grouping Ceramic Variability with pXRF for Pottery Trade and Trends in Early Medieval Southern Tuscany. Preliminary Results from the Vetricella Case Study (Grosseto, Italy). Appl. Sci. 2011, 11, 11859. [Google Scholar] [CrossRef]
- XRF Background Notes. Available online: http://cais.uga.edu/wp-content/uploads/2019/01/XRF_Background.pdf (accessed on 19 December 2021).
- Edwards, H.G.M. Porcelain Analysis and Its Role in the Forensic Attribution of Ceramic Specimens; Springer: Cham, Switzerland, 2022. [Google Scholar]
Object | Question | Number of Studies |
---|---|---|
Obsidian and prehistoric tools | Origin, trade | 85 |
Pottery (body) | Origin, technology | 48 |
Glaze and enamels | Composition, technology | 22 |
Paintings, frescoes | Colouring agents | 21 |
Bronze | Composition | 18 |
Rock art | Colouring agents | 8 |
Glass beads | Origin, trade | 6 |
Metal residues, slags | Technology | 5 |
MNC Code | Origin | Approx. Production Date | Object (Factory) | Dimension (cm) | Surface | Couleur | Remarks, Date of Entrance in the Collection |
---|---|---|---|---|---|---|---|
903.4 | China (Yixing) | 18th c. | Teapot | H:9.9; L: 18.9 × 21.5 | Unpolished | Brown-red | 1826 (from Salé Coll.) |
10,169.908 | 19th c. | Teapot | H:5.6; D:6; L:8.9; | Glossy | Red | Expected to be a copy of a teapot made by Hui Mengshen, 1894 (Coll. Frandon and de Voltais) | |
466 | 18th c. | Teapot (feasan) | H:11.4; D:6.5;L:13.9 | Unpolished | Brown-red | 1806 | |
434.6 | Teapot | H:16.6; D:11.6; L:18.6 | Unpolished | Brown-red | |||
457 | Unknown | Teapot | H:16.6; D:11.6; L:18.6 | Unpolished | Brown-red | ||
459 | Unknown | Teapot | H:16; D:9.8; L:14.8 | Unpolished | Brown-red | ||
7349.1 | Unknown | Tea box | H:17.4; D:10;L:11.7; | Unpolished | Dark-brown | Manufactured in Hle Sing or Y-Ching, 1878 | |
3984.3 | 18th or 19th c. | Teapot | H:10.9; D:6.7; L:17.2; | Dark-brown | 1849 | ||
903.1 | unknown | Teapot | H: 6.5; D:7.4; L:10.4; | Glossy | Dark brown | ||
23,578 | 19th c. | Teapot | H:14.8; D:12.6; L:18.2; | Enamelled decor | Many colours | 1974 | |
3985.3 | Unknown | Tea cup | H:6; D:7.5 D (base):3.7 | Interior enamelled in white | Dark-brown | Mark: made at Chang-ai, Kiang-nan, 1849 | |
SC 10-169-1056 * | Teapot | H::~10 | Unpolished | Light red | Assigned as Yixing | ||
SC 462 * | Germany | Teapot | H:9.4; D~13 | Unpolished | Red | Assigned to Böttger | |
14,820 | England | 19th c. | Horn-shaped vase (Isleworth) | H~20 | Glossy | Red | 1908 (from de Grollier Coll.) |
2227.7 | 1836? | Candlestick (J. Wedgwood Factory) | H~12 | Unpolished | Red-brown | 1836 (from M. Wood Coll., Burslem) | |
2450.1 | 1837? | Decoction pot (J. Wedgwood Factory) | H:25 | Red | 1837 (from I. Taylor Coll.) | ||
3589.5 | France | Unknown | Burette | H~20 | Glossy | Red | 1846 (from M. Le Coq Coll.) |
310.2 | 1790 | Ewer | H:19.3; D:8; L:11.4; | Glossy | Red | 1802 | |
19,832 | Russia | 1852 | Ewer (Mejigorie Factory, Kiev) | H:16 | Unpolished | Brown-red | 1938 |
467.3 | Holland (Delft) | First quarter of 18th c. | Doedelrakspeler statuette (bagpiper), (Lambertus van Eenhoorn mark) | H:17; L:9; | Glossy | Red | 1806 In the past assigned to a Böttger copy |
14,808 | 1680–1708 | Teapot (De Grecroonde Factory- Ary de Milde mark) | H:10; L:14; | Glazed | Black | ||
2244.2 | 1680–1708 | Teapot (De Grecroonde Factory- Ary de Milde mark) | H:11.5; L:17 | Glossy | Brown-red | 1836 (from Dresden Coll.) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simsek Franci, G.; Colomban, P. On-Site Identification of Pottery with pXRF: An Example of European and Chinese Red Stonewares. Heritage 2022, 5, 88-102. https://doi.org/10.3390/heritage5010005
Simsek Franci G, Colomban P. On-Site Identification of Pottery with pXRF: An Example of European and Chinese Red Stonewares. Heritage. 2022; 5(1):88-102. https://doi.org/10.3390/heritage5010005
Chicago/Turabian StyleSimsek Franci, Gulsu, and Philippe Colomban. 2022. "On-Site Identification of Pottery with pXRF: An Example of European and Chinese Red Stonewares" Heritage 5, no. 1: 88-102. https://doi.org/10.3390/heritage5010005
APA StyleSimsek Franci, G., & Colomban, P. (2022). On-Site Identification of Pottery with pXRF: An Example of European and Chinese Red Stonewares. Heritage, 5(1), 88-102. https://doi.org/10.3390/heritage5010005