Roman Wall Paintings: Characterisation of Plaster Coats Made of Clay Mud
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitruvius. On Architecture; Schofield, R., Ed.; Penguin classics; Penguin Books Limited: London, UK, 2009; ISBN 9780141931951. [Google Scholar]
- Pliny. Natural History; Eichholz, D.E., Ed.; Loeb Classical Library; Heinemann: Cambridge, UK, 1962. [Google Scholar]
- Laurie, A.P. Greek and Roman Methods of Painting: Some Comments on the Statements Made by Pliny and Vitruvius about Wall and Panel Painting; Cambridge University Press: Cambridge, UK, 1910. [Google Scholar]
- Bugini, R.; Folli, L.; Biondelli, D. Grain morphology of aggregates in Roman plasters. In Proceedings of the 14th Euroseminar on Microscopy on Applied to Building Materials, Helsingør, Denmark, 10–14 June 2013; Danish Technological Institute: Taastrup, Denmark, 2013; pp. 25–28. [Google Scholar]
- Bugini, R.; Folli, L. Critères pour la comparaison des enduits peints romains de la Lombardie. ArcheoSciences 2013, 37, 41–50. [Google Scholar] [CrossRef]
- Ergenç, D.; La Russa, M.F.; Ruffolo, S.A.; Fort, R.; Sánchez Montes, A.L. Characterization of the wall paintings in La Casa de los Grifos of Roman city Complutum. Eur. Phys. J. Plus 2018, 133, 355. [Google Scholar] [CrossRef]
- Mateos, L.D.; Esquivel, D.; Cosano, D.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Micro-Raman analysis of mortars and wall paintings in the Roman villa of Fuente Alamo (Puente Genil, Spain) and identification of the application technique. Sens. Actuators A Phys. 2018, 281, 15–23. [Google Scholar] [CrossRef]
- Giorgi, L.; Nevin, A.; Nodari, L.; Comelli, D.; Alberti, R.; Gironda, M.; Mosca, S.; Zendri, E.; Piccolo, M.; Izzo, F.C. In-situ technical study of modern paintings part 1: The evolution of artistic materials and painting techniques in ten paintings from 1889 to 1940 by Alessandro Milesi (1856–1945). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 530–538. [Google Scholar] [CrossRef]
- Nodari, L.; Ricciardi, P. Non-invasive identification of paint binders in illuminated manuscripts by ER-FTIR spectroscopy: A systematic study of the influence of different pigments on the binders’ characteristic spectral features. Herit. Sci. 2019, 7, 7. [Google Scholar] [CrossRef]
- La Nasa, J.; Moretti, P.; Maniccia, E.; Pizzimenti, S.; Colombini, M.P.; Miliani, C.; Modugno, F.; Carnazza, P.; De Luca, D. Discovering Giuseppe Capogrossi: Study of the Painting Materials in Three Works of Art Stored at Galleria Nazionale (Rome). Heritage 2020, 3, 52. [Google Scholar] [CrossRef]
- Pronti, L.; Romani, M.; Viviani, G.; Stani, C.; Gioia, P.; Cestelli-Guidi, M. Advanced methods for the analysis of Roman wall paintings: Elemental and molecular detection by means of synchrotron FT-IR and SEM micro-imaging spectroscopy. Rend. Lincei Sci. Fis. Nat. 2020, 31, 485–493. [Google Scholar] [CrossRef]
- Sbroscia, M.; Cestelli-Guidi, M.; Colao, F.; Falzone, S.; Gioia, C.; Gioia, P.; Marconi, C.; Mirabile Gattia, D.; Loreti, E.M.; Marinelli, M.; et al. Multi-analytical non-destructive investigation of pictorial apparatuses of “Villa della Piscina” in Rome. Microchem. J. 2020, 153, 104450. [Google Scholar] [CrossRef]
- Cortea, I.M.; Ghervase, L.; Țentea, O.; Pârău, A.C.; Rădvan, R. First Analytical Study on Second-Century Wall Paintings from Ulpia Traiana Sarmizegetusa: Insights on the Materials and Painting Technique. Int. J. Archit. Herit. 2020, 14, 751–761. [Google Scholar] [CrossRef]
- Bugini, R.; Corti, C.; Folli, L.; Rampazzi, L. Unveiling the Use of Creta in Roman Plasters: Analysis of Clay Wall Paintings From Brixia (Italy). Archaeometry 2017, 59, 84–95. [Google Scholar] [CrossRef]
- Germinario, C.; Francesco, I.; Mercurio, M.; Langella, A.; Sali, D.; Kakoulli, I.; De Bonis, A.; Grifa, C. Multi-analytical and non-invasive characterization of the polychromy of wall paintings at the Domus of Octavius Quartio in Pompeii. Eur. Phys. J. Plus 2018, 133, 359. [Google Scholar] [CrossRef]
- Biron, C.; Mounier, A.; Arantegui, J.P.; Bourdon, G.L.; Servant, L.; Chapoulie, R.; Roldán, C.; Almazán, D.; Díez-de-Pinos, N.; Daniel, F. Colours of the «images of the floating world». Non-invasive analyses of Japanese ukiyo-e woodblock prints (18th and 19th centuries) and new contributions to the insight of oriental materials. Microchem. J. 2020, 152, 104374. [Google Scholar] [CrossRef]
- Daveri, A.; Malagodi, M.; Vagnini, M. The Bone Black Pigment Identification by Noninvasive, In Situ Infrared Reflection Spectroscopy. J. Anal. Methods Chem. 2018, 2018, 6595643. [Google Scholar] [CrossRef]
- Izzo, F.; Germinario, C.; Grifa, C.; Langella, A.; Mercurio, M. External reflectance FTIR dataset (4000–400 cm−1) for the identification of relevant mineralogical phases forming Cultural Heritage materials. Infrared Phys. Technol. 2020, 106, 103266. [Google Scholar] [CrossRef]
- Zuena, M.; Buemi, L.P.; Stringari, L.; Legnaioli, S.; Lorenzetti, G.; Palleschi, V.; Nodari, L.; Tomasin, P. An integrated diagnostic approach to Max Ernst’s painting materials in his Attirement of the Bride. J. Cult. Herit. 2020, 43, 329–337. [Google Scholar] [CrossRef]
- Rosi, F.; Miliani, C.; Delaney, J.; Dooley, K.; Stringari, L.; Subelyte, G.; Buemi, L.P. CHAPTER 1. Jackson Pollock’s Drip Paintings: Tracing the Introduction of Alkyds Through Non-invasive Analysis of Mid-1940s Paintings. In Science and Art; The Royal Society of Chemistry: London, UK, 2020; pp. 1–18. ISBN 9781788016384. [Google Scholar]
- Ranalli, G.; Zanardini, E.; Andreotti, A.; Colombini, M.P.; Corti, C.; Bosch-Roig, P.; De Nuntiis, P.; Lustrato, G.; Mandrioli, P.; Rampazzi, L.; et al. Hi-tech restoration by two-steps biocleaning process of Triumph of Death fresco at the Camposanto Monumental Cemetery (Pisa, Italy). J. Appl. Microbiol. 2018, 125, 800–812. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-ray Microanalysis; Springer: New York, NY, USA, 2017; ISBN 9781493966769. [Google Scholar]
- Thorez, J. Phyllosilicates and Clay Minerals: A Laboratory Handbook for Their X-ray Diffraction Analysis; Lelotte: Dison, Belgium, 1975. [Google Scholar]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: Oxford, UK, 1997; ISBN 9780195087130. [Google Scholar]
- Farmer, V.C. The Infrared Spectra of Minerals; Mineralogical Society monograph; Mineralogical Society: London, UK, 1974; ISBN 9780903056052. [Google Scholar]
- Wilson, M.J. Clay Mineralogy: Spectroscopic and Chemical Determinative Methods; Wilson, M.J., Ed.; Chapman & Hall: London, UK, 1994; ISBN 9780412533808. [Google Scholar]
- Mirti, P.; Appolonia, L.; Casoli, A.; Ferrari, R.P.; Laurenti, E.; Amisano Canesi, A.; Chiari, G. Spectrochemical and structural studies on a roman sample of Egyptian blue. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 437–446. [Google Scholar] [CrossRef]
- Rampazzi, L.; Andreotti, A.; Bressan, M.; Colombini, M.P.; Corti, C.; Cuzman, O.; D’Alessandro, N.; Liberatore, L.; Palombi, L.; Raimondi, V.; et al. An interdisciplinary approach to a knowledge-based restoration: The dark alteration on Matera Cathedral (Italy). Appl. Surf. Sci. 2018, 458, 529–539. [Google Scholar] [CrossRef]
- Ranalli, G.; Zanardini, E.; Rampazzi, L.; Corti, C.; Andreotti, A.; Colombini, M.P.; Bosch-Roig, P.; Lustrato, G.; Giantomassi, C.; Zari, D.; et al. Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteria gel. J. Appl. Microbiol. 2019, 126, 1785–1796. [Google Scholar] [CrossRef]
- Brunello, V.; Corti, C.; Sansonetti, A.; Tedeschi, C.; Rampazzi, L. Non-invasive FTIR study of mortar model samples: Comparison among innovative and traditional techniques. Eur. Phys. J. Plus 2019, 134, 270. [Google Scholar] [CrossRef]
- Arrizabalaga, I.; Gomez-Laserna, O.; Carrero, J.A.; Bustamante, J.; Rodriguez, A.; Arana, G.; Madariaga, J.M.; Antonio Carrero, J.; Bustamante, J.; Rodriguez, A.; et al. Diffuse reflectance FTIR database for the interpretation of the spectra obtained with a handheld device on built heritage materials. Anal. Methods 2015, 7, 1061–1070. [Google Scholar] [CrossRef]
- Bruni, S.; Cariati, F.; Casadio, F.; Toniolo, L. Spectrochemical characterization by micro-FTIR spectroscopy of blue pigments in different polychrome works of art. Vib. Spectrosc. 1999, 20, 15–25. [Google Scholar] [CrossRef]
- Ramjoue, E. Quelques particularites techniques des fresques romaines de Vandoeuvres dans le Canton de Geneve. In Roman Wall Painting; Béarat, H., Ed.; Fribourg University, Institute of Mineralogy and Petrography: Fribourg, Switzerland, 1997; pp. 167–179. [Google Scholar]
- Carta Geologica d’Italia (CARG) 1:50.000—Foglio Milano n. 118, Servizio Geologico d’Italia (Piacenza, Italia). Available online: https://www.isprambiente.gov.it/Media/carg/lombardia.html (accessed on 28 April 2021).
- Gettens, R.J.; Stout, G.L. Painting Materials: A Short Encyclopaedia; Dover Publications: New York, NY, USA, 1966; ISBN 0486215970. [Google Scholar]
- Riederer, J. Egyptian blue. In Artists’ Pigments. A Handbook of Their History and Characteristics—Vol. 3; West FitzHugh, E., Ed.; National Gallery of Art, Washington and Oxford University Press: Oxford, UK, 1997; pp. 23–45. ISBN 9782970013204. [Google Scholar]
- Edreira, M.C.; Feliu, M.J.; Fernández-Lorenzo, C.; Martín, J. Spectroscopic Study of Egyptian Blue Mixed with Other Pigments. Helv. Chim. Acta 2003, 86, 29–49. [Google Scholar] [CrossRef]
- Alberghina, M.F.; Germinario, C.; Bartolozzi, G.; Bracci, S.; Grifa, C.; Izzo, F.; La Russa, M.F.; Magrini, D.; Massa, E.; Mercurio, M.; et al. Non-invasive characterization of the pigment’s palette used on the painted tomb slabs at Paestum archaeological site. IOP Conf. Ser. Mater. Sci. Eng. 2020, 949, 012002. [Google Scholar] [CrossRef]
Site | Number of Samples with the Same Stratigraphy | Chronology (Century *) | Plaster Thickness (mm) | Render Coat: Aggregate Composition | Finish Coat | Pigment | ||
---|---|---|---|---|---|---|---|---|
Binder Composition | Aggregate Composition | Crystal Size (mm) | ||||||
Milano | ||||||||
Università Cattolica | 6 | 1st | 12–30 | quartz, silicates, limestone | Mg lime | quartz, limestone, brick | 0.04–3.0 | not examined |
Università Cattolica | 17 | 3rd | 18–35 | quartz, silicates, brick | Mg lime | calcite, quartz, silicates | 0.04–2.7 0.1–3.0 | not examined |
piazza Fontana | 6 | mid 1st | 20–35 | quartz, silicates | Mg lime | quartz, silicates | 1.0–3.0 | cinnabar, carbon black |
piazza Fontana | 2 | early 1st | 25 | quartz, silicates | Mg lime | quartz | 0.1–3.0 | carbon black |
piazza Meda | 2 | mid 1st | 25–30 | quartz, silicates, brick | Mg lime | quartz | 0.4 | red ochre |
piazza Meda | 1 | early 4th | 28 | quartz, silicates, brick | Mg lime | quartz | 0.4 | green earth |
via Correnti | 9 | 1st | 15–25 | quartz, silicates, limestone | Mg lime | quartz, silicates, limestone | 0.1–1.2 | green earth |
via Correnti | 25 | 2nd | 15–20 | quartz, silicates, limestone | Mg lime | quartz, limestone, calcite | 0.05–2.5 0.04–2.0 | green earth, yellow ochre |
via Broletto | 9 | 3rd | 15–22 | quartz, silicates | Mg lime | quartz, silicates, calcite | 0.05–0.4 | cinnabar, red ochre, green earth |
corso Magenta (Monastero Maggiore) | 10 | 3rd | 25–55 | quartz, silicates, brick | Mg lime | quartz, calcite | 0.1–2.0 | red ochre |
corso Magenta (palazzo Litta) | 6 | 3rd | 40–45 | quartz, silicates | Mg lime | quartz | 1.0–3.0 | Egyptian blue, green earth, red ochre, carbon black |
via S. Maria Porta | 3 | 3rd | 15–60 | quartz, silicates | Mg lime | calcite | 0.2–1.5 | cinnabar, yellow ochre, Egyptian blue |
Brescia | ||||||||
Under the Sanctuary | 6 | 2nd BCE | 2–5 | limestone, gneiss | Mg lime | quartz, limestone | 0.4 | red earth, carbon black, chalk |
Sanctuary | 34 | early 1st BCE | 5–10 | quartz, limestone, dolomite | Ca lime | dolomite | 0.3–3.0 | yellow ochre, red earth, Egyptian blue + green earth, cinnabar, carbon black |
Sanctuary | 18 | early 1st BCE | 20–25 | limestone, quartz, brick | Ca lime | clay + quartz | 0.1–0.3 | Egyptian blue, red ochre |
Sanctuary | 1 | early 1st | 30 | limestone, flint | Ca lime | dolomite, limestone | 0.3–3.0 | not examined |
via Trieste | 6 | mid 1st | 2–3 | quartz, limestone | Mg lime | calcite | 1.5 | red earth, green earth, yellow ochre |
palazzo Martinengo | 7 | early 1st | 4–5 | limestone | Mg lime | dolomite | 0.3–3.5 | red earth, Egyptian blue + green earth |
palazzo Martinengo | 14 | late 1st | 4–13 | quartz, limestone | Mg lime | dolomite | 0.3–4.0 | Egyptian blue + green earth, red earth |
Liceo Arnaldo | 19 | mid 1st–early 2nd | 4–8 | dolomite | Mg lime | dolomite | 0.5–1.5 | red earth, green earth, yellow ochre |
Santa Giulia | 42 | late 2nd–early 3rd | 3–11 | dolomite | Mg lime | dolomite | 0.3–2.5 | green earth, yellow ochre, Egyptian blue |
Brescia Province | ||||||||
Cividate Camuno | ||||||||
via Palazzo | 9 | 1st | 10–20 | quartz, silicates | Mg lime | calcite, limestone | 0.1–3.5 | red ochre, yellow ochre, Egyptian blue |
Theatre | 5 | late 1st | 5 | quartz, limestone, brick | Mg lime | calcite | 0.1–1.0 | red earth |
domus | 7 | mid 1st | 10–20 | quartz, limestone | Mg lime | calcite | 0.3–4.0 | not examined |
Amphitheatre | 10 | early 1st | 5–15 | quartz, limestone | Mg lime | calcite | 0.3–4.0 | red ochre, green earth |
Sanctuary of Minerva-Breno | 18 | 1st | 10–20 | quartz, limestone | Mg lime | calcite | 0.1–3.5 | red ochre, yellow ochre, Egyptian blue |
Sirmione-Villa Grotte di Catullo | 19 | 2nd | 15–50 | limestone | Ca lime | calcite, limestone | 0.2–4.0 0.2–0.6 | Egyptian blue, cinnabar, red and yellow ochre, minium (lead), green earth, carbon back |
Bedriacum | ||||||||
domus | 20 | 1st–2nd | 15–20 | quartz, limestone | Ca lime | brick, calcite, limestone | 0.4–5.0 0.1–0.8 | yellow ochre, red earth, green earth |
Rubble pit | 8 | 1st–5th | 10–20 | quartz, limestone | Mg lime | quartz, limestone, brick | 0.5–5.0 | red ochre, red earth, chalk |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bugini, R.; Corti, C.; Folli, L.; Rampazzi, L. Roman Wall Paintings: Characterisation of Plaster Coats Made of Clay Mud. Heritage 2021, 4, 889-905. https://doi.org/10.3390/heritage4020048
Bugini R, Corti C, Folli L, Rampazzi L. Roman Wall Paintings: Characterisation of Plaster Coats Made of Clay Mud. Heritage. 2021; 4(2):889-905. https://doi.org/10.3390/heritage4020048
Chicago/Turabian StyleBugini, Roberto, Cristina Corti, Luisa Folli, and Laura Rampazzi. 2021. "Roman Wall Paintings: Characterisation of Plaster Coats Made of Clay Mud" Heritage 4, no. 2: 889-905. https://doi.org/10.3390/heritage4020048
APA StyleBugini, R., Corti, C., Folli, L., & Rampazzi, L. (2021). Roman Wall Paintings: Characterisation of Plaster Coats Made of Clay Mud. Heritage, 4(2), 889-905. https://doi.org/10.3390/heritage4020048