On the Vector Representation of Characteristic Functions
Abstract
:1. Introduction
2. Vector-Valued Exponential Function
3. Characteristic Functions
3.1. An Update
3.2. Normal Distribution
3.3. Binomial Distribution
3.4. Poisson Distribution
3.5. Uniform Distribution
3.6. Exponential Distribution
3.7. Gamma Distribution
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cramér, H. Random Variables and Probability Distributions; University Printing House: Cambridge, UK, 1937. [Google Scholar]
- Lagrange, J.L. Mémoire sur l’utilité de la méthode de prende le milieu entre les résultats de plusieurs observations. Misc. Taur. 1770–1773, 5, 167–232. [Google Scholar]
- Laplace, P.S. Théorie Analytique des Probabilités; Encyclopedia Universalis: Paris, France, 1812. [Google Scholar]
- Tchebychef, P.L. Note sur la convergence de la série de Taylor. Crelle J. Die Reine Angew. Math. B 1844, 28, 279–283. [Google Scholar]
- Lévy, P. Calcul des Probabilités; Gauthier-Villars: Paris, France, 1925. [Google Scholar]
- Esseen, K.G. Fourier analysis of distributions. Acta Math. 1945, 77, 1–125. [Google Scholar] [CrossRef]
- Gnedenko, B.V.; Kolmogorov, A.N. Limit Distributions for Sums of Independent Random Variables; Addison-Wesley Mathematics Series; Addison-Wesley: Cambridge, MA, USA, 1954. [Google Scholar]
- Ibragimov, I.A.; Linnik, Y.V. Independent and Stationary Connected Variables; Nauka: Moscow, Russia, 1965. (In Russian) [Google Scholar]
- Ramachandran, B. Advanced Theory of Characteristic Functions; Statistical Publishing Society: Calcutta, India, 1967. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Applications; Wiley: Hoboken, NJ, USA, 1970; Volume I–II. [Google Scholar]
- Lukacs, E. Characteristic Functions; Charles Griffin and Company: London, UK, 1970. [Google Scholar]
- Petrov, V.V. Sums of Independent Random Variables; Springer: Berlin/Heidelberg, Germany, 1972. (In Russian) [Google Scholar]
- Bhattacharya, R.N.; Ranga Rao, R. Normal Approximation and Asymptotic Expansions; John Wiley Sons: Hoboken, NJ, USA, 1975. [Google Scholar]
- Richter, W.-D. On lp-complex numbers. Symmetry 2020, 12, 877. [Google Scholar] [CrossRef]
- Richter, W.-D. Three-complex numbers and related algebraic structures. Symmetry 2021, 13, 342. [Google Scholar] [CrossRef]
- Richter, W.-D. Complex numbers related to semi-antinorms, ellipses or matrix homogeneous functionals. Axioms 2021, 10, 340. [Google Scholar] [CrossRef]
- Richter, W.-D. On complex numbers in higher dimensions. Axioms 2022, 11, 22. [Google Scholar] [CrossRef]
- Richter, W.-D. On hyperbolic complex numbers. Appl. Sci. 2022, 12, 5844. [Google Scholar] [CrossRef]
- Richter, W.-D. Deterministic and random generalized complex numbers related to a class of positively homogeneous functionals. Axioms 2023, 12, 60. [Google Scholar] [CrossRef]
- Needham, T. Visual Complex Analysis; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Wegert, E. Visual Complex Functions. An Introduction with Phase Portraits; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Sasvári, Z. Multivariate Characteristic and Correlation Functions; De Gruyter: Berlin, Germany, 2013. [Google Scholar]
- Witkovský, V. Numerical inversion of a characteristic function. Acta Imeco 2016, 5, 32–44. [Google Scholar]
- Gauss, C.F. Theoria Residuorum Biquadraticorum: Commentatio Secunda; Werke 2; Chelsea Publishing Company: New York, NY, USA, 1965; pp. 93–148. [Google Scholar]
- Gellert, W.; Küstner, H.; Hellwich, M.; Kästner, H. Kleine Enzyklopädie Mathematik; VEB Bibliographisches Institut: Leipzig, Germany, 1967. [Google Scholar]
- Thiele, R. Leonhard Euler. 15.April 1707-18. September 1783. Zur Erinnerung an seinen 300. Geburtstag. Mitteilungen Dtsch. Math. Ver. 2007, 15, 93–103. [Google Scholar]
- Grassmann, G. Die Lineale Ausdehnungslehre ein neuer Zweig der Mathematik; Cambridge University Press: Cambridge, UK, 1844. [Google Scholar]
- Hamilton, W.R. On quaternions. Proc. R. Ir. Acad. 1847, 3, 89–92. [Google Scholar]
- Walz, G. Lexikon der Mathematik; Spektrum Akademischer Verlag: Heidelberg/Berlin, Germany, 2001. [Google Scholar]
- Bremaud, P. An Introduction to Probabilistic Modeling; Springer: New York, NY, USA, 1988. [Google Scholar]
- Along, U. Wie wählt man ein gutes Forschungsproblem? Mitteilungen Dtsch. Math. Ver. 2010, 18, 160–163. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, W.-D. On the Vector Representation of Characteristic Functions. Stats 2023, 6, 1072-1081. https://doi.org/10.3390/stats6040067
Richter W-D. On the Vector Representation of Characteristic Functions. Stats. 2023; 6(4):1072-1081. https://doi.org/10.3390/stats6040067
Chicago/Turabian StyleRichter, Wolf-Dieter. 2023. "On the Vector Representation of Characteristic Functions" Stats 6, no. 4: 1072-1081. https://doi.org/10.3390/stats6040067
APA StyleRichter, W. -D. (2023). On the Vector Representation of Characteristic Functions. Stats, 6(4), 1072-1081. https://doi.org/10.3390/stats6040067