Comparison between Two Algorithms for Computing the Weighted Generalized Affinity Coefficient in the Case of Interval Data
Abstract
:1. Introduction
2. Literature Review: Affinity Coefficient in the Case of Interval Variables
2.1. Algorithm 1: Computation Directly from the Initial Intervals
Algorithm 1: Computation Directly from the Initial Intervals |
RangeA = UpperA-LowerA RangeB = UpperB-LowerB If ((UpperA < LowerB). OR. (UpperB < LowerA)) Then = 0 (There is no intersection between intervals A and B) else Inters1 = max(LowerA, LowerB) Inters2 = min(UpperA, UpperB) RangeInt = Inters2-Inters1 aff = RangeInt/SQRT(RangeA*RangeB) End if |
2.2. Algorithm 2: Previous Decomposition of the Initial Intervals into a Set of mj Elementary and Disjoint Subintervals and the Generation of a New Data Matrix
3. Materials and Methods
4. Results
4.1. Application to Abalone Data
4.2. Application to City Temperature Interval Dataset
- Cluster 1: {2, 3, 4, 5, 6, 8, 11, 12, 15, 17, 18, 19, 22, 23, 29, 31};
- Cluster 2: {0, 1, 7, 9, 10, 13, 14, 16, 20, 21, 24, 25, 26, 27, 28, 30, 33, 34, 35, 36};
- Cluster 3: {32}.
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Length | Diameter | Height | Whole | Shucked | Viscera | Shell |
---|---|---|---|---|---|---|
[0.0750, 0.2400] | [0.0550, 0.1750] | [0.0100, 0.0650] | [0.0020, 0.0665] | [0.0010, 0.0310] | [0.0005, 0.0135] | [0.0015, 0.0170} |
[0.1300, 0.6600] | [0.0950, 0.4750) | [0.0000, 0.1800] | [0.0105, 1.3695] | [0.0050, 0.6410] | [0.0005, 0.2940] | [0.0035, 0.3505] |
[0.2050, 0.7450] | [0.1550, 0.5800] | [0.0000, 1.1300] | [0.0425, 2.3305] | [0.0170, 1.2530] | [0.0055, 0.5410] | [0.0155, 0.5580] |
[0.2900, 0.7800 | [0.2250, 0.6300] | [0.0600, 0.5150] | [0.1200, 2.7795] | [0.0415, 1.4880] | [0.0240, 0.7600] | [0.0400, 0.7260] |
[0.3200, 0.8150] | [0.2450, 0.6500] | [0.0800, 0.2500] | [0.1585, 2.5500] | [0.0635,1.3510] | [0.0325, 0.5750] | [0.0500, 0.7975] |
[0.3950, 0.7750] | [0.3150, 0.6000] | [0.1050, 0.2400] | [0.3515, 2.8255] | [0.1135, 1.1465] | [0.0565, 0.4805] | [0.1195, 1.005] |
[0.4500,0.7350] | [0.3550, 0.5900] | [0.1200, 0.2300] | [0.4120, 2.1300] | [0.1145, 0.8665] | [0.0665, 0.4900] | [0.1600, 0.8500] |
[0.4500, 0.8000] | [0.3800, 0.6300] | [0.1350, 0.2250] | [0.6400, 2.5260] | [0.1580, 0.9330] | [0.1100, 0.5900] | [0.2400, 0.7100] |
[0.5500, 0.7000 | [0.4650, 0.5850] | [0.1800, 0.2250] | [1.0575, 2.1835] | [0.3245, 0.7535] | [0.1900, 0.3910] | [0.3750, 0.8850] |
Cities | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sept. | Oct. | Nov. | Dec. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Amsterdam | [−4, 4] | [−5, 3] | [2, 12] | [5, 15] | [7, 17] | [10, 20] | [10, 20] | [12, 23] | [10, 20] | [5, 15] | [1, 10] | [−1, 4] |
1 | Athens | [6, 12] | [6, 12] | [8, 16] | [11, 19] | [16, 25] | [19, 29] | [22, 32] | [22, 32] | [19, 28] | [16, 23] | [11, 18] | [8, 14] |
2 | Bahrain | [13, 19] | [14, 19] | [17, 23] | [21, 27] | [25, 32] | [28, 34] | [29, 36] | [30, 36] | [28, 34] | [24, 31] | [20, 26] | [15, 21] |
3 | Bombay | [19, 28] | [19, 28] | [22, 30] | [24, 32] | [27, 33] | [26, 32] | [25, 30] | [25, 30] | [24, 30] | [24, 32] | [23, 32] | [20, 30] |
4 | Cairo | [8, 20] | [9, 22] | [11, 25] | [14, 29] | [17, 33] | [20, 35] | [22, 36] | [22, 35] | [20, 33] | [18, 31] | [14, 26] | [10, 20] |
5 | Calcutta | [13, 27] | [16, 29] | [21, 34] | [24, 36] | [26, 36] | [26, 33] | [26, 32] | [26, 32] | [26, 32] | [24, 32] | [18, 29] | [13, 26] |
6 | Colombo | [22, 30] | [22, 30] | [23, 31] | [24, 31] | [25, 31] | [25, 30] | [25, 29] | [25, 29] | [25, 30] | [24, 29] | [23, 29] | [22, 30] |
7 | Copenhagen | [−2, 2] | [−3, 2] | [−1, 5] | [3, 10] | [8, 16] | [11, 20] | [14, 22] | [14, 21] | [11, 18] | [7, 12] | [3, 7] | [1, 4] |
8 | Dubai | [13, 23] | [14, 24] | [17, 28] | [19, 31] | [22, 34] | [25, 36] | [28, 39] | [28, 39] | [25, 37] | [21, 34] | [17, 30] | [14, 26] |
9 | Frankfurt | [−10, 9] | [−8, 10] | [−4, 17] | [0, 24] | [3, 27] | [7, 30] | [8, 32] | [8, 31] | [5, 27] | [0, 22] | [−3, 14] | [−8, 10] |
10 | Geneva | [−3, 5] | [−6, 6] | [3, 9] | [7, 13] | [10, 17] | [15, 17] | [16, 24] | [16, 23] | [11, 19] | [6, 13] | [3, 8] | [−2, 6] |
11 | Hong Kong | [13, 17] | [12, 16] | [15, 19] | [19, 23] | [22, 27] | [25, 29] | [25, 30] | [25, 30] | [25, 29] | [22, 27] | [18, 23] | [14, 19] |
12 | Kula Lumpur | [22, 31] | [23, 32] | [23, 33] | [23, 33] | [23, 32] | [23, 32] | [23, 31] | [23, 32] | [23, 32] | [23, 31] | [23, 31] | [23, 31] |
13 | Lisbon | [8, 13] | [8, 14] | [9, 16] | [11, 18] | [13, 21] | [16, 24] | [17, 26] | [18, 27] | [17, 24] | [14, 21] | [11, 17] | [8, 14] |
14 | London | [2, 6] | [2, 7] | [3, 10] | [5, 13] | [8, 17] | [11, 20] | [13, 22] | [13, 21] | [11, 19] | [8, 14] | [5, 10] | [3, 7] |
15 | Madras | [20, 30] | [20, 31] | [22, 33] | [26, 35] | [28, 39] | [27, 38] | [26, 36] | [26, 35] | [25, 34] | [24, 32] | [22, 30] | [21, 29] |
16 | Madrid | [1, 9] | [1, 12] | [3, 16] | [6, 19] | [9, 24] | [13, 29] | [16, 34] | [16, 33] | [13, 28] | [8, 20] | [4, 14] | [1, 9] |
17 | Manila | [21, 27] | [22, 27] | [24, 29] | [24, 31] | [25, 31] | [25, 31] | [23, 29] | [24, 28] | [25, 28] | [24, 29] | [22, 28] | [22, 27] |
18 | Mauritius | [22, 28] | [22, 29] | [22, 29] | [21, 28] | [19, 25] | [18, 24] | [17, 23] | [17, 23] | [17, 24] | [18, 25] | [19, 27] | [21, 28] |
19 | Mexico City | [6, 22] | [15, 23] | [17, 25] | [18, 27] | [18, 27] | [18, 27] | [18, 27] | [18, 26] | [18, 26] | [16, 25] | [14, 25] | [8, 23] |
20 | Moscow | [−13, −6] | [−12, −5] | [−8, 0] | [0, 8] | [7, 18] | [11, 23] | [13, 24] | [11, 22] | [6, 16] | [1, 8] | [−5, 0] | [−11, −5] |
21 | Munich | [−6, 1] | [−5, 3] | [−2, 9] | [3, 14] | [7, 18] | [10, 21] | [12, 23] | [11, 23] | [8, 20] | [4, 13] | [0, 7] | [−4, 2] |
22 | Nairobi | [12, 25] | [13, 26] | [14, 25] | [14, 24] | [13, 22] | [12, 21] | [11, 21] | [11, 21] | [11, 24] | [13, 24] | [13, 23] | [13, 23] |
23 | New Delhi | [6, 21] | [10, 24] | [14, 29] | [20, 36] | [26, 40] | [28, 39] | [27, 35] | [26, 34] | [24, 34] | [18, 34] | [11, 28] | [7, 23] |
24 | New York | [−2, 4] | [−3, 4] | [1, 9] | [6, 15] | [12, 22] | [17, 27] | [21, 29] | [20, 28] | [16, 24] | [11, 19] | [5, 12] | [−2, 6] |
25 | Paris | [1, 7] | [1, 7] | [2, 12] | [5, 16] | [8, 19] | [12, 22] | [14, 24] | [13, 24] | [11, 21] | [7, 16] | [4, 10] | [1, 6] |
26 | Rome | [4, 11] | [5, 13] | [7, 16] | [10, 19] | [13, 23] | [17, 28] | [20, 31] | [20, 31] | [17, 27] | [13, 21] | [9, 16] | [5, 12] |
27 | San Francisco | [6, 13] | [6, 14] | [7, 17] | [8, 18] | [10, 19] | [11, 21] | [12, 22] | [12, 22] | [12, 23] | [11, 22] | [8, 18] | [6, 14] |
28 | Seoul | [0, 7] | [1, 6] | [1, 8] | [6, 16] | [12, 22] | [16, 25] | [18, 31] | [16, 30] | [9, 28] | [3, 24] | [7, 19] | [1, 8] |
29 | Singapore | [23, 30] | [23, 30] | [24, 31] | [24, 31] | [24, 30] | [25, 30] | [25, 30] | [25, 30] | [24, 30] | [24, 30] | [24, 30] | [23, 30] |
30 | Stockholm | [−9, −5] | [−9, −6] | [−4, 2] | [1, 8] | [6, 15] | [11, 19] | [14, 22] | [13, 20] | [9, 15] | [5, 9] | [1, 4] | [−2, 2] |
31 | Sydney | [20, 30] | [20, 30] | [18, 26] | [16, 23] | [12, 20] | [5, 17] | [8, 16] | [9, 17] | [11, 20] | [13, 22] | [16, 26] | [20, 30] |
32 | Tehran | [0, 5] | [5, 8] | [10, 15] | [15, 18] | [20, 25] | [28, 30] | [36, 38] | [38, 40] | [29, 30] | [18, 20] | [9, 12] | [−5, 0] |
33 | Tokyo | [0, 9] | [0, 10] | [3, 13] | [9, 18] | [14, 23] | [18, 25] | [22, 29] | [23, 31] | [20, 27] | [13, 21] | [8, 16] | [2, 12] |
34 | Toronto | [−8, −1] | [−8, −1] | [−4, 4] | [−2, 11] | [−8, 18] | [13, 24] | [16, 27] | [16, 26] | [12, 22] | [6, 14] | [−1, 17] | [−5, 1] |
35 | Vienna | [−2, 1] | [−1, 3] | [1, 8] | [5, 14] | [10, 19] | [13, 22] | [15, 24] | [14, 23] | [11, 19] | [7, 13] | [2, 7] | [1, 3] |
36 | Zurich | [−11, 9] | [−8, 15] | [−7, 18] | [−1, 21] | [2, 27] | [6, 30] | [10, 31] | [8, 25] | [5, 23] | [3, 22] | [0, 19] | [−11, 8] |
References
- Malerba, D.; Esposito, F.; Gioviale, V.; Tamma, V. Comparing dissimilarity measures in symbolic data analysis. In Proceedings of the Joint Conferences on “New Techniques and Technologies for Statistics” and “Exchange of Technology and Knowhow” (ETK-NTTS’01), New York, NY, USA, 7–10 August 2001; pp. 473–481. [Google Scholar]
- Diday, E. Symbolic data analysis and the SODAS project: Purpose, history, perspective. In Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data; Studies in Classification, Data Analysis, and Knowledge Organization; Bock, H.H., Diday, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–23. [Google Scholar] [CrossRef]
- Noirhomme-Fraiture, M.; Rouard, M. Visualizing and editing symbolic objects. In Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data; Studies in Classification, Data Analysis, and Knowledge Organization; Bock, H.H., Diday, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 125–138. [Google Scholar] [CrossRef]
- Diday, E. The Symbolic Approach in Clustering and Related Methods of Data Analysis: The Basic Choices. In Classification and Related Methods of Data Analysis; Bock, H.H., Ed.; Proc. IFCS-87: Amsterdam, The Netherlands, 1988; pp. 673–684. [Google Scholar]
- Bock, H.-H.; Diday, E. Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data, 1st ed.; Studies in Classification, Data Analysis, and Knowledge Organization; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Billard, L.; Diday, E. From the statistics of data to the statistics of knowledge. J. Am. Stat. Assoc. 2003, 98, 470–487. [Google Scholar] [CrossRef]
- Billard, L.; Diday, E. Symbolic Data Analysis: Conceptual Statistics and Data Mining, 1st ed.; Wiley: Chichester, UK, 2007. [Google Scholar]
- Brito, P. Symbolic data analysis: Another look at the interaction of data mining and statistics. WIREs Data Min. Knowl. Discov. 2014, 4, 281–295. [Google Scholar] [CrossRef]
- Bertrand, P.; Goupil, F. Descriptive statistics for symbolic data. In Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data; Studies in Classification, Data Analysis, and Knowledge Organization; Bock, H.H., Diday, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 103–124. [Google Scholar] [CrossRef]
- El Golli, A.; Conan-Guez, B.; Rossi, F. A self-organizing map for dissimilarity data. In Classification, Clustering, and Data Mining Applications; Studies in Classification, Data Analysis, and Knowledge Organization; Banks, D., House, L., McMorris, F.R., Arabie, P., Gaul, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 61–68. [Google Scholar] [CrossRef]
- Chavent, M.; de Carvalho, F.A.T.; Lechevallier, Y.; Verde, R. New clustering methods for interval data. Comput. Statist. 2006, 21, 211–230. [Google Scholar] [CrossRef]
- Kao, C.-H.; Nakano, J.; Shieh, S.-H.; Tien, Y.-J.; Wu, H.-M.; Yang, C.-K.; Chen, C.-H. Exploratory data analysis of interval-valued symbolic data with matrix visualization. Comput. Stat. Data Anal. 2014, 79, 14–29. [Google Scholar] [CrossRef]
- Bock, H.-H. Clustering methods and Kohonen maps for symbolic data. J. Japanese Soc. Comput. Statist 2002, 15, 1–13. [Google Scholar]
- Bock, H.-H. Visualizing symbolic data by Kohonen maps. In Symbolic Data Analysis and the SODAS Software; Diday, E., Noirhomme, M., Eds.; Wiley: Chichester, UK, 2008; pp. 205–234. [Google Scholar]
- Noirhomme-Fraiture, M.; Rouard, M. Representation of Subpopulations and Correlation with Zoom Star. In Proceedings of the NTTS’ 98, EUSTAT, Sorrento, Italy, 4–6 November 1998; pp. 357–362. [Google Scholar]
- Goswami, J.P.; Mahanta, A.K. Interval Data Clustering. IOSR J. Comput. Eng. 2020, 22, 45–50. [Google Scholar]
- Ramos-Guajardo, A.B. A hierarchical clustering method for random intervals based on a similarity measure. Comput. Stat. 2022, 37, 229–261. [Google Scholar] [CrossRef]
- Brito, P.; Silva, A.P.D.; Dias, J.G. Probabilistic clustering of interval data. Intell. Data Anal. 2015, 19, 293–313. [Google Scholar] [CrossRef]
- Anderberg, M.R. Cluster Analysis for Applications, 1st ed.; Academic Press: New York, NY, USA, 1973. [Google Scholar] [CrossRef]
- Brito, P. Hierarchical and pyramidal clustering for symbolic data. J. Jpn. Soc. Comput. Stat. 2002, 15, 231–244. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.S. A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng. Appl. Artif. Intell. 2022, 110, 104743. [Google Scholar] [CrossRef]
- Xu, X.; Lu, J.; Wang, W. Hierarchical clustering of complex symbolic data and application for emitter. J. Comput. Sci. Technol. 2018, 33, 807–822. [Google Scholar] [CrossRef]
- Chavent, M.; Lechevallier, Y. Dynamical clustering algorithm of interval data: Optimization of an adequacy criterion based on Hausdorff distance. In Classification, Clustering, and Data Analysis; Jajuga, K., Sokolowski, A., Bock, H.-H., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 3, pp. 53–60. [Google Scholar]
- Chavent, M.; De Carvalho, F.A.T.; Lechevallier, Y.; Verde, R. Trois nouvelles méthods de classification automatique de données symboliques de type intervalle. Rev. Stat. Appl. 2003, LI, 5–29. [Google Scholar]
- De Carvalho, F.A.T.; Brito, P.; Bock, H. Dynamic clustering for interval data based on L2 distance. Comput. Stat. 2006, 21a, 231–250. [Google Scholar] [CrossRef]
- De Carvalho, F.A.T.; de Souza, R.M.C.R.; Chavent, M.; Lechevallier, Y. Adaptive Hausdorff distances and dynamic clustering of symbolic interval data. Pattern Recognit. Lett. 2006, 27, 167–179. [Google Scholar] [CrossRef]
- Souza, R.M.C.R.; de Carvalho, F.A.T. Clustering of interval data based on city-block distances. Pattern Recognit. Lett. 2004, 25, 353–365. [Google Scholar] [CrossRef]
- Gowda, K.C.; Diday, E. Symbolic Clustering Using a New Dissimilarity Measure. Pattern Recognit. Lett. 1991, 24, 567–578. [Google Scholar] [CrossRef]
- Gowda, K.C.; Diday, E. Symbolic Clustering Using a New Similarity Measure. IEEE Trans. Syst. Man Cybern. 1992, 22, 368–378. [Google Scholar] [CrossRef]
- Bacelar-Nicolau, H.; Nicolau, F.C.; Sousa, Á.; Bacelar-Nicolau, L. Measuring similarity of complex and heterogeneous data in clustering of large data sets. Biocybern. Biomed. Eng. 2009, 29, 9–18. [Google Scholar]
- Bacelar-Nicolau, H.; Nicolau, F.C.; Sousa, Á.; Bacelar-Nicolau, L. Clustering of variables with a three-way approach for health sciences. Test. Psychom. Methodol. Appl. Psychol. 2014, 21, 435–447. [Google Scholar] [CrossRef]
- Gordon, A.D. Classification, 2nd ed.; Chapman & Hall/CRC: New York, NY, USA, 1999. [Google Scholar] [CrossRef]
- Lerman, I.C. Sur l’analyse des données préalable à une classification automatique. Rev. Math. Sc. Hum. 1970, 32, 5–15. [Google Scholar]
- Lerman, I.C. Étude Distributionelle de Statistiques de Proximité Entre Structures Algébriques Finies du Même Type: Apllication à la Classification Automatique. Cah. Bur. Univ. Rech. Opér. Série Rech. 1973, 19, pp. 3–53. Available online: http://www.numdam.org/item/BURO_1973__19__3_0.pdf (accessed on 15 July 2023).
- Lerman, I.C. Classification et Analyse Ordinale des Données; Dunod: Paris, France, 1981. [Google Scholar]
- Lerman, I.C. Comparing Taxonomic Data. Math Sci. Hum. 2000, 150, 37–51. [Google Scholar] [CrossRef]
- Lerman, I.C. Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering. In Advanced Information and Knowledge Processing; Springer: London, UK, 2016. [Google Scholar] [CrossRef]
- Nicolau, F.C. Cluster analysis and distribution function. Methods Oper. Res. 1983, 45, 431–433. [Google Scholar]
- Bacelar-Nicolau, H. Two probabilistic models for classification of variables in frequency tables. In Classification and Related Methods of Data Analysis; Bock, H.-H., Ed.; Elsevier Sciences Publishers B.V.: Holland, The Netherlands, 1988; pp. 181–186. [Google Scholar]
- Matusita, K. On the theory of statistical decision functions. Ann. Inst. Stat. Math. 1951, 3, 17–35. [Google Scholar] [CrossRef]
- Matusita, K. Decision rules, based on distance for problems of fit, two samples and estimation. Ann. Inst. Stat. Math. 1955, 26, 631–640. [Google Scholar] [CrossRef]
- Bacelar-Nicolau, H. The affinity coefficient. In Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data; Studies in Classification, Data Analysis, and Knowledge Organization; Bock, H.H., Diday, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 160–165, Chapter Similarity and Dissimilarity. [Google Scholar] [CrossRef]
- Sousa, Á.; Bacelar-Nicolau, H.; Nicolau, F.C.; Silva, O. On clustering interval data with different scales of measures: Experimental results. Asian J. Appl. Sci. Eng. 2015, 4, 17–25. Available online: http://hdl.handle.net/10400.3/3411 (accessed on 15 March 2023).
- Sousa, Á.; Bacelar-Nicolau, H.; Nicolau, F.C.; Silva, O. Clustering an interval data set: Are the main partitions similar to a priori partition? Int. J. Curr. Res. 2015, 7, 23151–23157. Available online: http://hdl.handle.net/10400.3/3771 (accessed on 1 May 2023).
- Sousa, Á.; Nicolau, F.C.; Bacelar-Nicolau, H.; Silva, O. Weighted generalised affinity coefficient in cluster analysis of complex data of the interval type. Biom. Lett. 2010, 47, 45–56. Available online: http://hdl.handle.net/10400.3/2661 (accessed on 10 July 2023).
- Stéphan, V.; Hébrail, G.; Lechevallier, Y. Generation of symbolic objects from relational databases. In Analysis of Symbolic Data. Exploratory Methods for Extracting Statistical Information from Complex Data; Studies in Classification, Data Analysis, and Knowledge Organization; Bock, H.H., Diday, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 78–105. [Google Scholar] [CrossRef]
- Guru, D.S.; Kiranagi, B.B.; Nagabhushan, P. Multivalued type proximity measure and concept of mutual similarity value useful for clustering symbolic patterns. Pattern Recog. Lett. 2004, 25, 1203–1213. [Google Scholar] [CrossRef]
- De Carvalho, F.d.A.T. Fuzzy c-means clustering methods for symbolic interval data. Pattern Recog. Lett. 2007, 28, 423–437. [Google Scholar] [CrossRef]
Y1 | Yj | Yp | |||
---|---|---|---|---|---|
1 | I11 = [a11, b11] | I1j = [a1j, b1j] | I1p = [a1p, b1p] | ||
k | Ik1 = [akj, bkj] | Ikj = [akj, bkj] | Ikp = [akp, bkp] | ||
N | IN1 = [aN1, bN1] | INj = [aNj, bNj] | INp = [aNp, bNp] |
Yj | |||||||
---|---|---|---|---|---|---|---|
1 | |||||||
k | |||||||
N |
A | B | C | D | E | F | G | H | I | |
---|---|---|---|---|---|---|---|---|---|
A | 1.000000 | ||||||||
B | 0.295899 | 1.000000 | |||||||
C | 0.096265 | 0.714581 | 1.000000 | ||||||
D | 0.004515 | 0.611748 | 0.835651 | 1.000000 | |||||
E | 0.000000 | 0.625292 | 0.804286 | 0.884309 | 1.000000 | ||||
F | 0.000000 | 0.550538 | 0.735457 | 0.799001 | 0.874737 | 1.000000 | |||
G | 0.000000 | 0.541550 | 0.705257 | 0.731724 | 0.815422 | 0.889002 | 1.000000 | ||
H | 0.000000 | 0.436690 | 0.665697 | 0.748095 | 0.817462 | 0.831564 | 0.871040 | 1.000000 | |
I | 0.000000 | 0.246183 | 0.498152 | 0.531911 | 0.595100 | 0.660145 | 0.727961 | 0.700374 | 1.000000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, Á.; Silva, O.; Bacelar-Nicolau, L.; Cabral, J.; Bacelar-Nicolau, H. Comparison between Two Algorithms for Computing the Weighted Generalized Affinity Coefficient in the Case of Interval Data. Stats 2023, 6, 1082-1094. https://doi.org/10.3390/stats6040068
Sousa Á, Silva O, Bacelar-Nicolau L, Cabral J, Bacelar-Nicolau H. Comparison between Two Algorithms for Computing the Weighted Generalized Affinity Coefficient in the Case of Interval Data. Stats. 2023; 6(4):1082-1094. https://doi.org/10.3390/stats6040068
Chicago/Turabian StyleSousa, Áurea, Osvaldo Silva, Leonor Bacelar-Nicolau, João Cabral, and Helena Bacelar-Nicolau. 2023. "Comparison between Two Algorithms for Computing the Weighted Generalized Affinity Coefficient in the Case of Interval Data" Stats 6, no. 4: 1082-1094. https://doi.org/10.3390/stats6040068
APA StyleSousa, Á., Silva, O., Bacelar-Nicolau, L., Cabral, J., & Bacelar-Nicolau, H. (2023). Comparison between Two Algorithms for Computing the Weighted Generalized Affinity Coefficient in the Case of Interval Data. Stats, 6(4), 1082-1094. https://doi.org/10.3390/stats6040068