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1. Introduction

Basic mathematical techniques in probability theory and statistics are associated with
characteristic functions and complex numbers. Innovations in the latter areas are therefore
also reflected in the former and are to be presented here.

In [1], p. 24, Cramér says about the earliest origins of characteristic functions that "the
first use of an analytical instrument substantially equivalent to the characteristic function
seems to be due to Lagrange [2]" and that "similar functions where then systematically
employed by Laplace in his great work [3]". Expressions like ek

√
−1 also occur in [4]. Further,

significant deeping and expansion, as well as the firm anchoring in modern probability the-
ory, are due to Lévy [5], Cramer [1], Esseen [6], Gnedenko and Kolmogoroff [7], Ibragimov
and Linnik [8], Ramachandran [9], Feller [10], Lukacs [11], Petrov [12] and Bhattacharya
and Ranga Rao [13].

The characteristic function of a random variable X is usually defined as

ϕX(t) = EeitX , t ∈ R

where E means mathematical expectation and i means the so-called imaginary unit, which

is formally dealt with in the series eix =
∞
∑

k=o

(ix)k

k! , x ∈ R like a constant. It is customary

to define the quantity i by saying that it is not a real number but a “formal quantity”
or “number” that satisfies the equation i2 = −1 and assuming at the same time that it
allows an interpretation as an element of the two-dimensional Gaussian number plane,
which makes the range of values of the function x → eix appear pretty unclear. This
long-standing apparent lack of mathematical rigor and some consequences resulting from
this for characteristic functions will be addressed here.

To start right away, the vectors, or complex numbers, zl =

(
xl
yl

)
, l = 1, 2 and

z =

(
x
y

)
are considered here as elements of the complex algebraic structure

C = (V,⊕,~, ·, o, 1p, i) where V is a two-dimensional vector space, which is chosen here
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as V = R2 for simplicity, ⊕means usual vector addition and the product of two complex
numbers and the k′th power of such number are accordingly explained as

z1 ~ z2 =

(
x1x2 − y1y2
x1y2 + x2y1

)
and z~k = z~(k−1) ~ z, k = 1, 2, ..., z~0 = 1p =

(
1
0

)
(1)

while multiplication of vector z by scalar λ ∈ R is denoted λ · z. The vector i =

(
0
1

)
could be called an imaginary unit for historical reasons, but it has no imaginary character
at all. The reader is encouraged to distinguish here and in the following carefully between
the not really comprehensible symbol i and the well-defined vector i. Obviously, z~ 1p = z,
and i solves the quadratic vector equation

i~2 = −1p. (2)

For more details about the complex algebraic structure C and its non-classical gener-
alizations, we refer to [14–19]. The rest of the paper is organized as follows. In Section 2,
we consider vector powers and the vector exponential function. The vector representation
of characteristic functions and further aspects concerning it as well as several examples
are studied in Section 3. A final discussion in Section 4, which includes some historical
remarks and an outlook on possible further work, closes this paper.

2. Vector-Valued Exponential Function

The vector-valued vector powers z~k : R2 → R2 can be derived directly from the
definition (1) or alternatively using binomial formulas as the following example implies:(

x
y

)~6

= (x6 − 15x4y2 + 15x2y4 − y6) · 1p+ (6x5y− 20x3y3 + 6xy5) · i.

Lemma 1. The k-th power of z allows for the representation

z~k =

 xk −
(

k
2

)
y2xk−2 +

(
k
4

)
y4xk−4 −

(
k
6

)
y6xk−6 . . .(

k
1

)
yxk−1 −

(
k
3

)
y3xk−3 +

(
k
5

)
y5xk−5 −

(
k
7

)
y7xk−7 . . .

.

Let us say that this representation starts in the term xk, proceeds alternating in the lower and
upper rows, respectively, and finally ends in the term sign · yk, which is on the top row if k is an
even number and on the bottom row if k is odd. The sign is plus if k admits one of the representations
k = 4n or k = 4n + 1, respectively, for an n in N = {0, 1, 2, . . . }, and it is minus if k = 4n + 2 or
k = 4n + 3 holds for an n in N.

Proof. By starting from

z~k = (x1p+ yi)~k =
k

∑
l=0

(
k
l

)
yl xk−li~l

and making use of the equations

i~(4n) = 1p, i~(1+4n) = i, i~(2+4n) = −1p, i~(3+4n) = −i, n = 0, 1, 2, . . .

it follows that z~k allows the claimed representation.
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Example 1. The following equation shows that the multiplication of elements from the unit circle
again results in elements from just there:(

cos t
sin t

)~k

=

(
cos tk
sin tk

)
.

In the next step, the vector exponential function exp : R2 → R2 is defined as the
convergent vector series

exp(z) =
∞

∑
k=0

z~k

k!
. (3)

In particular, we have the Euler-type formula

exp(t · i) =
(

cos t
sin t

)
, t ∈ R. (4)

Remark 1. (a) Many more general exponential functions exp||.|| : R2 → R2 were introduced
in [14,16,18,19] with reference to general functionals ||.|| : R2 → [0, ∞) and a look forward to
non-classically generalized complex algebraic structures (while exp refers to the Euclidean norm).

(b) Corresponding generalized trigonometric functions lead there to generalized Euler-type
formulas.

(c) With the functional ||.|| = ||.||p,

||
(

x
y

)
||p = (|x|p + |y|p)1/p,

(
x
y

)
∈ R2,

defined for every p > 0 and the product

z1 �p z2 = ||z1||p||z2||p
z1 ~ z2

||z1 ~ z2||p

introduced in [14] instead of (1), for example, the p-generalized Euler formula

et·i
||.||p =

(
cosp t
sinp t

)
, t ∈ R

with

cosp t =
cos t
Np(t)

, sinp t =
sin t

Np(t)
and Np(t) = ||

(
cos t
sin t

)
||p

results where ez
||.||p means the central projection of vector exp||.||(z) =

∞
∑

k=0

z�pk

k! onto the lp-unit

circle.

(d) Visualizations of the functions fy : R → R2 with fy(x) = exp||.||(
(

x
y

)
) and any

fixed y ∈ R and the functions fg : R→ R2 with fg(x) = exp||.||(
(

x
g(x)

)
) and any function

g : R→ R can help gain a deeper understanding of the vector-valued function z→ exp||.||(z).

3. Characteristic Functions
3.1. An Update

The characteristic function of a random variable X, ϕX : R → R2, is formally com-
pletely correct defined by ϕX(t) = E exp(tX · i), t ∈ R. However, for the sake of con-
venience, we will write the multiplication of the scalar tX and the vector i differently,
such that

ϕX(t) = E exp(itX) = E
(

cos(tX)
sin(tX)

)
=

(
u(t)
v(t)

)
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looks more similar to the classical definition. The characteristic function of the random
variable −X is then

ϕ−X(t) =
(

u(t)
−v(t)

)
=

(
1 0
0 −1

)(
u(t)
v(t)

)
= ϕX(t),

that is, the complex conjugate of ϕX or the x-axis mirrored version of ϕX . If X has a finite
k-th order moment, then its characteristic function has derivatives up to order k,

ϕ
(k)
X (t) =

∞∫
−∞

xk Mk

(
cos tx
sin tx

)
dF(x)

where, for n = 0, 1, 2, . . . ,

M4n =

(
1 0
0 1

)
, M1+4n =

(
0 −1
1 0

)
, M2+4n = −M4n and M3+4n = −M1+4n.

Taylor’s theorem now allows for t→ 0 an expansion of corresponding order for ϕX ,

ϕX(t) = 1p+ k−1

∑
l=1

tl EXl

l!
Ml1p+ O(tk)

(
1
1

)
where

M4n1p = 1p, M1+4n1p = i, M2+4n1p = −1p and M3+4n1p = −i
and O(.) means Landau’s symbol. Thus, ϕX allows for the vector power expansion

ϕX(t) =

(
1 − t2

2!EX2 + t4

4!EX4 . . .
tEX − t3

3!EX3 + t5

5!EX5 . . .

)

starting in the term 1 and ending in the Landau-type term O(tk), which is on the top row
if k is an even number and on the bottom row if k is odd. The following theorem is thus
proved.

Theorem 1. If X has a finite k-th order moment, then ϕX satisfies the following vector power
expansion for t→ 0,

ϕX(t) = (1− t2

2!
EX2 +

t4

4!
EX4 −+ . . .)1p+ (tEX− t3

3!
EX3 +

t5

5!
EX5 −+ . . .)i,

starting in the term 1 and ending in the Landau-type term O(tk), which is at the end of the
expression in brackets in front of the vector 1p if k is an even number and otherwise at the end of the
expression in the other brackets.

The following corollary is an immediate conclusion from Theorem 1.

Corollary 1. If X has a finite variance V(X), then the polar representation of its characteristic
function can be written for t→ 0 as

ϕX(t) = r
(

cos φ
sin φ

)
with r =

√
1−V(X)t2 + o(t2),

cos φ =
1− t2

2 EX2 + o(t2)√
1−V(X)t2 + o(t2)

and sin φ =
tEX + o(t)√

1−V(X)t2 + o(t2)
.
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If X has a finite fourth-order moment, then the following refinement holds:

r =

√
1−V(X)t2 +

t4

12
(EX4 + 3(EX2)2 − 4EXEX3) + o(t4),

cos φ =
1− t2

2 EX2 + t4

12EX4 + o(t4)√
1−V(X)t2 + t4

12 (EX4 + 3(EX2)2 − 4EXEX3) + o(t4)

and

sin φ =
tEX− t3

6 EX3 + o(t4)√
1−V(X)t2 + t4

12 (EX4 + 3(EX2)2 − 4EXEX3) + o(t4)
.

Now, let X1 and X2 be independent random variables. Then, as shown in [17], the
following vector multiplication formula applies:

ϕX1+X2(t) = ϕX1(t)~ ϕX2(t), t ∈ R. (5)

The following remark is intended to stimulate further investigations.

Remark 2. (a) One might think about introducing and studying the general notion of a functional
||.||-related characteristic function or Fourier transformation ϕ̃X(t) = EeitX||.||, t ∈ R. In the
particular case of ||.|| = ||.||p discussed in Remark 1c, this would mean

ϕ̃X(t) = E
(

cosp(tX)
sinp(tX)

)
, t ∈ R.

(b) Many statements of asymptotic probability theory are proved using characteristic functions.
Strengthening of certain proofs and detection of some additional aspects could be stimulated by the
present work.

(c) Visualizations of various challenging issues related to complex numbers and functions are
given in [20,21]. Different figures of certain characteristic functions can be found in [22,23].

(d) As long as the representation of a characteristic function makes use of the classic imaginary
unit i, it is problematic or even unsuitable for visualizing this function, since one would not know
what to use for i. The vector representations of characteristic functions given here, however, can be
the basis of further visualizations. In addition, the following examples show that in some cases the
dependence on the imaginary unit only seems to exist.

We now continue with some examples.

3.2. Normal Distribution

The characteristic function of a standard Gaussian distributed random variable X is

ϕX(t) =
1√
2π
·


∞∫
−∞

cos txe−
x2
2 dx

∞∫
−∞

sin txe−
x2
2 dx

 = e
−t2

2 ·
(

1
0

)
, t ∈ R.

There does not appear to be anything new in this example: the imaginary part is zero
and the characteristic function is real, one might think at first glance. However, complex
numbers, that is, vectors from R2, whose imaginary part is zero, are not real numbers but
vectors having one zero component. For this reason, the set of real numbers is not a subset
of the set of complex numbers, although the opposite is often claimed in the literature. The
dimension distinguishes the real numbers from the complex numbers. Numerous physical
facts are determined by the interaction of two or more quantities, even if one should have
originally only been interested in a part of these variables. Complex numbers of dimensions
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two, three or higher, or their non-classical generalizations like those presented in [14–19],
are then adequate description tools and could possibly even provide information about
hidden variables.

The polar representation of this characteristic function is

ϕ
pol
X (t)[r, φ] = r

(
cos φ
sin φ

)
where r = e−

t2
2 and φ = 0.

3.3. Binomial Distribution

We recall that the characteristic function of a random variable X following the Binomial
distribution with parameters (n, p), n ∈ N, p ∈ (0, 1) is usually written as

ϕX(t) = (1− p + peit)n, t ∈ R.

Because it is not clearly said where i belongs to, it is unknown where function ϕX
takes values. The following theorem, however, presents a well-interpretable vector-valued
update of this formula.

Theorem 2. The characteristic function of the random variable X satisfies the vector representation

ϕX(t) = ((1− p) · 1p+ p · exp(it))~n, t ∈ R.

Proof. Let pk =

(
n
k

)
pk(1− p)n−k denote the probability that X attains the value k, k ∈

{0, 1, . . . , n}.
It follows from (4) and Example 1 that

ϕX(t) =
∞

∑
k=0

pk ·
(

cos tk
sin tk

)
=

∞

∑
k=0

pk ·
(

cos t
sin t

)~k

=
∞

∑
k=0

(
n
k

)
(p · exp(it))~k ~ ((1− p) · 1p)~(n−k)

Remark 3. (a) The polar representation of this characteristic function is

ϕ
pol
X (t)[r, φ] = rn ·

(
cos(nφ)
sin(nφ)

)
(mod(2π))

where

r =
√
(1− p)2 + p2 + 2p(1− p) cos t, cos φ =

1− p + p cos t
r

and sin φ =
p
r

.

(b) Note that r ≤ 1 and that the inequality r ≥ 1− 2p suggests to define an estimator p̂ for p
from solving the equation mint r = 2p̂.

(c) An alternative proof of this theorem makes use of Formula (5).

3.4. Poisson Distribution

We are looking now for the vector representation of the characteristic function of a
random variable X following the Poisson distribution with parameter λ > 0, which is
usually written as

ϕX(t) = eλ(eit−1), t ∈ R.
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The unknown quantity i occurring here is replaced by the known two-dimensional
vector i in the following representation. This is made possible by the additional double use
of the vector exponential function (3).

Theorem 3. The characteristic function of X is

ϕX(t) = E exp(itX) = e−λ exp(λ · exp(it)), t ∈ R.

Proof. This assertion follows with Example 1 from

∞

∑
k=0

λk

k!
e−λ ·

(
cos tk
sin tk

)
= e−λ

∞

∑
k=0

(
λ ·
(

cos t
sin t

))~k

k!

3.5. Uniform Distribution

For real numbers a < b, let X follow the uniform distribution on (a, b). Then, its
characteristic function is known to attain the value ϕX(0) = 1 and is usually written for
non-zero t as:

ϕX(t) =
eitb − eita

it(b− a)
.

This representation can apparently easily be converted to a vector representation if

one ’interprets’ or ’substitutes’ x + iy =

(
x
y

)
:

ϕX(t) =
i[cos tb + i sin tb− (cos ta + i sin ta)]

i2t(b− a)

=
sin tb− sin ta + i(cos ta− cos tb)

t(b− a)
=

1
t(b− a)

·
(

sin tb− sin ta
cos ta− cos tb

)
.

(6)

Such a simple rewriting today, and in particular its admissibility, was historically
obscure, arguably because of the incompletely defined character of i. One might prefer,
therefore, the completely correct derivation of this vector representation starting from

E exp(itX) =
1

b− a
·


b∫
a

cos txdx

b∫
a

sin txdx

.

The usual complex representation of ϕX using the unknown quantity i has thus been
updated to a purely real representation as a two-dimensional vector.

3.6. Exponential Distribution

Something similar to the case of a uniform distribution applies to an exponentially
distributed random variable X where

E exp(itX) =
λ

λ2 + t2 (λ · 1p+ t · i) applies instead of ϕX(t) =
λ(λ + it)
λ2 + t2 , λ > 0.

The corresponding polar representation is

ϕ
pol
X (t)[r, φ] = r ·

(
cos φ
sin φ

)
with r =

λ√
λ2 + t2

, cos φ =
λ√

λ2 + t2
and sin φ =

t√
λ2 + t2

.
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3.7. Gamma Distribution

We now assume that X has a Gamma distribution with parameters λ > 0 and n ∈ N,
X ∼ Γ(λ, n). Then its characteristic function is

ϕX(t) =
(

λ

λ2 + t2

)n
·
(

λ
t

)~n

where, according to Lemma 1,(
λ
t

)~2

=

(
λ2 − t2

2λt

)
,
(

λ
t

)~3

=

(
λ3 − 3λt2

3λ2t− t3

)
,(

λ
t

)~4

=

(
λ4 − 6λ2t2 + t4

4(λ3t− λt3)

)
, . . .

This purely real two-dimensional vector representation updates the usual complex
one which makes use of the unknown quantity i,

ϕX(t) = (1− it
λ
)−n = (

λ

λ2 + t2 )
n(λ + it)n, t ∈ R.

As in the examples above, Gauss’s [24] interpretation of complex numbers as points in
the two-dimensional plane can be seen particularly well here,

“λ + it ′′
(

λ
t

)
= λ · 1p+ t · i

where “ξ  ”η means “interpret ξ as η”. Beginning with the work in [14], this status
of interpretation was transformed into the status of an axiom, and at the same time, the
equation i2 = −1, of which it is not said by which quantity i and which operation of
squaring it can be fulfilled, was replaced with Equation (2). The point of view of a purely
formal handling of the unexplained (imaginary or mystical) quantity i is thus not further
pursued here.

4. Discussion

Fourier transformations are among the most commonly used mathematical methods.
With respect to probability theory, a comprehensive theory of characteristic functions is
based upon the further development of some of the examples considered here. We have
just started this journey here and have not followed it far, but the reader is invited to follow
this thought further. Our approach is based upon a new understanding of the role that
the so-called imaginary unit plays as a vector from a space of dimension two. For the
cases of two imaginary units in a three-dimensional space or k− 1 such units in a space of
dimension k, reference is made to the papers [15,17].

For a closely related discussion of the question of which rich variety of quadratic
vector equations can be solved by the known formulas, we refer to [16,18].

In [25], p. 14, the role played by imaginary numbers is described as follows: "In
algebra, when trying to find a formula for the solution of the equation of third degree,
one came up with the initially meaningless expression

√
−1. But if you calculated with

it as you are used to with the usual square roots, for example,
√

2,
√

3 or
√

π, something
sensible always came out. This strengthens the belief in the right to exist of this structure,
for which the designation i has meanwhile become common. But it was almost 300 years
before Gauss showed that what had been achieved so far can reasonably be interpreted as
an extension of the range of real numbers in which there is a new number whose square is
−1." In this regard, it is said in [26] that "the role that Euler assigns to accountability shows
his algorithmic-analytical thinking and structural understanding because Euler did not
have a geometric illustration of imaginary quantities at his disposal. . . " However, there
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is an unsatisfactory inaccuracy which, from a historical perspective, was not eliminated
immediately after vector calculus was established in [27,28]. Regarding a further discussion
of early statements on this, see [19]. Even if, as in [25,29], a complex structure is initially
introduced in a seemingly correct way, later it happens in these and several other publica-

tions that i2 =

(
0
1

)
~
(

0
1

)
is visibly or indirectly equated in one way or another with

the real number −1, although, obviously, this square equals the vector
(

0
−1

)
.

A question that has probably not yet been dealt with comprehensively in the history
of science is that authors on probability-theoretical questions such as in [1,5–13] do not
refer to the mentioned gap in mathematical rigor and say nothing about the range of
values of a characteristic function. Significantly, in [30], the characteristic function is given
contradictingly on page 94 as ϕX : R→ R and on page 104 as ϕX : R→ C.

“How to choose a good research problem?” is the title of the article [31]. The answer
to this question can be very diverse. Originally in part intended just as a didactic self-study
for a pensioner, the question of the completely exact treatment of complex numbers has
mutated into the development of a great variety of new, non-classically generalized complex
numbers and has found expression in [14–19]. It also discusses, in particular, the aspects
of feasibility and importance with regard to the choice of problem. While the question
of feasibility was clarified through the development of the common basic geometric idea
behind the papers [14–19], the answer to the question of the meaning will hopefully be
completed in the future with more practical applications and such as here.

We close this paper with an outlook on another possible research question. Let
||.|| : R2 → R2 be a positively homogeneous and bounded functional such that the disc
B = {z ∈ R2 : ||z|| ≤ 1} is star-shaped with respect to the additive neutral element o, � a
vector-valued vector product generated by this functional according to Definition 1 in [19],
S = {z ∈ R2 : ||z|| = 1} the boundary of B or ||.||−unit circle, ez

||.|| : R2 → R2 the central

projection of vector exp||.||(z) ∈ R2 onto S and

1p =

(
1
0

)
||
(

1
0

)
||

as well as i =

(
0
1

)
||
(

0
1

)
||

.

If further

cosS x =
cos x
N(x)

and sinS x =
sin x
N(x)

with N(x) = ||(cos x)1p+ (sin x)i||

denote generalized trigonometric functions with respect to the functional ||.|| then it is
known from Corollary 1 in [19] that

et·i
||.|| = (cosS t)1p+ (sinS t)i.

How useful is this generalized Euler formula when signals resemble generalized
trigonometric functions rather than classical ones and the idea of a generalized Fourier trans-
formation suggests itself? If, in particular, a > 0, b > 0, ||z|| = ||z||(a,b) =

√
(x/a)2 + (y/b)2

and
z1 � z2 = z1 �(a,b) z2 = ||z1||(a,b)||z2||(a,b)

z1 ~ z2

||z1 ~ z2||(a,b)

then 1p =
(

a
0

)
is multiplicative neutral, i =

(
0
b

)
satisfies the equation i�(a,b) i = −1p

and with
cosS x = cos(a,b) x =

cos x
N(a,b)(x)

, sinS x = sin(a,b) x =
sin x

N(a,b)(x)
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and N(x) = N(a,b)(x) = ||(cos x)1p+ (sin x)i||(a,b) = 1 the elliptic Euler-type formula reads

et·i
||.||(a,b)

= (cos(a,b) t)1p+ (sin(a,b) t)i =
(

a cos t
b sin t

)
∈ S = {

(
x
y

)
:

x2

a2 +
y2

b2 = 1}.
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