Farlie–Gumbel–Morgenstern Bivariate Moment Exponential Distribution and Its Inferences Based on Concomitants of Order Statistics
Abstract
:1. Introduction
- To propose a bivariate version of the ME distribution using the FGM approach and study its competency compared with the other FGM bivariate distributions.
- To reveal the commendable theoretical flexibility of the proposed FGM bivariate moment exponential (FGMBME) distribution.
- To develop the distribution theory of the FGMBME distribution based on the COS and study the estimation problem in detail.
- To demonstrate the compactness of the FGMBME distributional aspect based on the COS.
- To demonstrate the successful establishment of the proposed estimator theoretically, as well as empirically.
2. Farlie–Gumbel–Morgenstern Bivariate Moment Exponential Distribution
2.1. Presentation
2.2. Moment-Generating Function and Moments
3. Estimation and Inference
3.1. Estimation Method
3.2. Application of Real-Life Data
4. Distribution Theory of the COS Arising from the FGMBME Distribution
5. BLUE of Using the COS
6. Empirical Illustration
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dara, S.T.; Ahmad, M. Recent Adavances in Moment Distribution and their Hazard Rate. Thesis. National College of Business Administration and Economics. Ph.D. Thesis, National College of Business Administration and Economics, Rahim Yar Khan, Pakistan, 2012. [Google Scholar]
- Hasnain, S.; Iqbal, Z.; Ahmad, M. On exponentiated moment exponential distribution. Pakistan J. Stat. 2015, 31, 267–280. [Google Scholar]
- Tripathi, Y.M.; Kayal, T.; Dey, S. Estimation of the PDF and the CDF of exponentiated moment exponential distribution. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 1282–1296. [Google Scholar] [CrossRef]
- Abbas, S.; Jahangir, A.; Shahbaz, S.; Afify, A.; Shahbaz, M. Topp-Leone moment exponential distribution: Properties and applications. J. Natl. Sci. Found. Sri Lanka 2020, 48, 265–274. [Google Scholar] [CrossRef]
- Iriarte, Y.A.; Astorga, J.M.; Venegas, O.; Gómez, H.W. Slashed Moment Exponential Distribution. J. Stat. Theory Appl. 2017, 16, 354–365. [Google Scholar] [CrossRef]
- Hashmi, S.; Ahsan-ul Haq, M.; Usman, R.; Özel Kadilar, G. The Weibull-Moment Exponential Distribution: Properties, Characterization and Applications. J. Reliab. Stat. Stud. 2018, 12, 1–22. [Google Scholar]
- Bhatti, F.; Hamedani, G.; Korkmaz, M.; Sheng, W.; Ali, A. On the Burr XII-moment exponential distribution. PLoS ONE 2021, 16, 1–21. [Google Scholar] [CrossRef]
- Shrahili, M.; Hassan, A.; Almetwally, E.; Ghorbal, A.; Elbatal, I. Alpha Power Moment Exponential Model with Applications to Biomedical Science. Sci. Program. 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- Ahsan-ul Haq, M. On Poisson Moment Exponential Distribution with Applications. Ann. Data Sci. 2022, 1–22. [Google Scholar] [CrossRef]
- Morgenstern, D. Einfache Beispiele Zweidimensionaler Verteilungen. Mitteilingsblatt Fur Math. Stat. 1956, 8, 234–235. [Google Scholar]
- David, H.; Nagaraja, H. Concomitants of order statistics. In Order Statistics: Theory & Methods; Handbook of Statistics; Elsevier: Amsterdam, The Netherlands, 1998; Volume 16, pp. 487–513. [Google Scholar] [CrossRef]
- Scaria, J.; Thomas, B. Second order concomitants from the morgenstern family of distributions. J. Appl. Stat. Sci. 2013, 21, 63–76. [Google Scholar]
- Castillo, E. Extreme Value Theory in Engineering; Academic Press Inc.: London, UK, 1988. [Google Scholar]
- Coles, S.G.; Tawn, J.A. Statistical Methods for Multivariate Extremes: An Application to Structural Design. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1994, 43, 1–31. [Google Scholar] [CrossRef]
- Sajeev kumar, N.K.; Irshad, M. Estimation of A Parameter of Morgenstern Type Bivariate Logistic Distribution with Equal Coefficients of Variation By Concomitants of Order Statistics. Calcutta Stat. Assoc. Bull. 2014, 66, 213–228. [Google Scholar] [CrossRef]
- Irshad, M.R.; Maya, R.; Arun, S.P. Concomitants of Order Statistics Arising from the Morgenstern Type Bivariate Lindley Distribution. Theory Pract. Math. Comput. Sci. 2021, 11, 39–47. [Google Scholar] [CrossRef]
- Maya, R.; Irshad, M.R.; Arun, S.P. Farlie-Gumbel-Morgenstern Bivariate Bilal Distribution and Its Inference Aspects Using Concomitants of Order Statistics. J. Probab. Stat. Sci. 2021, 19, 1–20. [Google Scholar]
- Barakat, H.; Nigm, E.S.; Alawady, M.; Husseiny, I. Concomitants of Order Statistics and Record Values from Iterated FGM type Bivariate-Generalized Exponential Distribution. REVSTAT-Stat. J. 2021, 2, 291–307. [Google Scholar]
- Richard, A.J.; Dean, W.W. Applied Multivariate Statistical Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Kotz, S.; Balakrishnan, N.; Johnson, N.L. Continuous Multivariate Distrbutions; John Wiley and Sons: New York, NY, USA, 2000. [Google Scholar]
- Scaria, J.; Nair, N.U. On Concomitants of Order Statistics from Morgenstern Family. Biom. J. 1999, 41, 483–489. [Google Scholar] [CrossRef]
- Lloyd, E.H. Least-squares estimation of location and scale parameters using order statistics. Biometrika 1952, 39, 88–95. [Google Scholar] [CrossRef]
Model | Association Parameter | Other Parameters | AIC | BIC | |
---|---|---|---|---|---|
FGMBE | = 1 | = 0.566, = 0.557 | 29.321 | 62.643 | 65.080 |
FGMBB | = 1 | = 0.750, = 0.739 | 12.314 | 28.629 | 31.067 |
FGMBME | = 1 | = 0.308, = 0.304 | 11.575 | 27.150 | 29.588 |
Model | Association Parameter | Other Parameters | AIC | BIC | |
---|---|---|---|---|---|
FGMBE | = 1 | = 153.734, = 222.239 | 575.388 | 1154.776 | 1157.214 |
FGMBB | = 1 | = 202.629, = 292.903 | 544.198 | 1092.396 | 1094.834 |
FGMBME | = 1 | = 83.360, = 120.401 | 542.795 | 1089.590 | 1092.027 |
n | Coefficients | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0.25 | 0.25000 | 0.25000 | 0.25000 | 0.25000 | 1.00000 | ||||||||
0.50 | 0.25000 | 0.25000 | 0.25000 | 0.25000 | 1.00000 | |||||||||
3 | 0.25 | 0.16698 | 0.16608 | 0.16695 | 0.16667 | 0.16667 | 1.00000 | |||||||
0.50 | 0.16824 | 0.16418 | 0.16764 | 0.16665 | 0.16667 | 1.00012 | ||||||||
4 | 0.25 | 0.12547 | 0.12455 | 0.12457 | 0.12542 | 0.12500 | 0.12500 | 1.00000 | ||||||
0.50 | 0.27030 | 0.12314 | 0.12327 | 0.12660 | 0.12417 | 0.12500 | 1.00024 | |||||||
5 | 0.25 | 0.10054 | 0.09974 | 0.09950 | 0.09975 | 0.10047 | 0.10000 | 0.10000 | 1.00000 | |||||
0.50 | 0.10236 | 0.09889 | 0.09796 | 0.09902 | 0.10182 | 0.09997 | 0.10000 | 1.00030 | ||||||
6 | 0.25 | 0.08390 | 0.08322 | 0.08291 | 0.08292 | 0.08323 | 0.08383 | 0.08333 | 0.08333 | 1.00000 | ||||
0.50 | 0.08583 | 0.08285 | 0.08158 | 0.08168 | 0.08292 | 0.08522 | 0.08330 | 0.08333 | 1.00036 | |||||
7 | 0.25 | 0.07200 | 0.07143 | 0.07111 | 0.07101 | 0.07112 | 0.07143 | 0.07192 | 0.07143 | 0.07143 | 1.00000 | |||
0.50 | 0.07395 | 0.07140 | 0.07008 | 0.06973 | 0.07020 | 0.07142 | 0.07331 | 0.07140 | 0.07143 | 1.00042 | ||||
8 | 0.25 | 0.06306 | 0.06258 | 0.06227 | 0.06213 | 0.06214 | 0.06229 | 0.06257 | 0.06298 | 0.06250 | 0.06250 | 1.00000 | ||
0.50 | 0.06500 | 0.06281 | 0.06153 | 0.06098 | 0.06104 | 0.06164 | 0.06275 | 0.06433 | 0.06247 | 0.06250 | 1.00048 | |||
9 | 0.25 | 0.05610 | 0.05569 | 0.05541 | 0.05525 | 0.05520 | 0.05526 | 0.05542 | 0.05567 | 0.05602 | 0.05555 | 0.05555 | 1.00000 | |
0.50 | 0.05800 | 0.05611 | 0.05491 | 0.05428 | 0.05412 | 0.05437 | 0.05500 | 0.05599 | 0.05733 | 0.05553 | 0.05555 | 1.00054 | ||
10 | 0.25 | 0.05052 | 0.05017 | 0.04992 | 0.04975 | 0.04968 | 0.04968 | 0.04976 | 0.04992 | 0.05015 | 0.05045 | 0.05000 | 0.05000 | 1.00000 |
0.50 | 0.05238 | 0.05073 | 0.04963 | 0.04897 | 0.04868 | 0.04873 | 0.04907 | 0.04967 | 0.05055 | 0.05171 | 0.04997 | 0.05000 | 1.00060 |
n | Coefficients | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 0.75 | 0.25000 | 0.25000 | 0.25000 | 0.25000 | 1.00000 | ||||||||
1.00 | 0.25000 | 0.25000 | 0.25000 | 0.25000 | 1.00000 | |||||||||
3 | 0.75 | 0.16987 | 0.16122 | 0.16903 | 0.16658 | 0.16667 | 1.00054 | |||||||
1.00 | 0.17297 | 0.15672 | 0.17073 | 0.16638 | 0.16667 | 1.00174 | ||||||||
4 | 0.75 | 0.13006 | 0.12062 | 0.12109 | 0.12848 | 0.12487 | 0.12500 | 1.00104 | ||||||
1.00 | 0.13529 | 0.11674 | 0.11790 | 0.13096 | 0.12456 | 0.12500 | 1.00353 | |||||||
5 | 0.75 | 0.10601 | 0.09731 | 0.09532 | 0.09777 | 0.10393 | 0.09985 | 0.10000 | 1.00150 | |||||
1.00 | 0.11257 | 0.09472 | 0.09143 | 0.09587 | 0.10672 | 0.09948 | 0.10000 | 1.00523 | ||||||
6 | 0.75 | 0.08978 | 0.08209 | 0.07925 | 0.07956 | 0.08234 | 0.08740 | 0.08317 | 0.08333 | 1.00192 | ||||
1.00 | 0.09716 | 0.08071 | 0.07571 | 0.07647 | 0.08137 | 0.09028 | 0.08278 | 0.08333 | 1.00664 | |||||
7 | 0.75 | 0.07803 | 0.07130 | 0.06823 | 0.06753 | 0.06864 | 0.07130 | 0.07548 | 0.07126 | 0.07143 | 1.00239 | |||
1.00 | 0.08588 | 0.07094 | 0.06530 | 0.06428 | 0.06631 | 0.07096 | 0.07834 | 0.07086 | 0.07143 | 1.00804 | ||||
8 | 0.75 | 0.06909 | 0.06320 | 0.06015 | 0.05897 | 0.05918 | 0.06054 | 0.06297 | 0.06646 | 0.06234 | 0.06250 | 1.00257 | ||
1.00 | 0.07730 | 0.06375 | 0.05762 | 0.05570 | 0.05651 | 0.05892 | 0.06314 | 0.06933 | 0.06200 | 0.06250 | 1.00806 | |||
9 | 0.75 | 0.06205 | 0.05687 | 0.05396 | 0.05255 | 0.05225 | 0.05286 | 0.05426 | 0.05643 | 0.05939 | 0.05540 | 0.05555 | 1.00289 | |
1.00 | 0.07030 | 0.05803 | 0.05230 | 0.04988 | 0.04949 | 0.05063 | 0.05297 | 0.05686 | 0.06211 | 0.05502 | 0.05555 | 1.00963 | ||
10 | 0.75 | 0.05635 | 0.05177 | 0.04903 | 0.04753 | 0.04694 | 0.04709 | 0.04787 | 0.04923 | 0.05116 | 0.05369 | 0.04985 | 0.05000 | 1.00301 |
1.00 | 0.06459 | 0.05345 | 0.04791 | 0.04523 | 0.04432 | 0.04468 | 0.04607 | 0.04842 | 0.05179 | 0.05629 | 0.04946 | 0.05000 | 1.01092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arun, S.P.; Chesneau, C.; Maya, R.; Irshad, M.R. Farlie–Gumbel–Morgenstern Bivariate Moment Exponential Distribution and Its Inferences Based on Concomitants of Order Statistics. Stats 2023, 6, 253-267. https://doi.org/10.3390/stats6010015
Arun SP, Chesneau C, Maya R, Irshad MR. Farlie–Gumbel–Morgenstern Bivariate Moment Exponential Distribution and Its Inferences Based on Concomitants of Order Statistics. Stats. 2023; 6(1):253-267. https://doi.org/10.3390/stats6010015
Chicago/Turabian StyleArun, Sasikumar Padmini, Christophe Chesneau, Radhakumari Maya, and Muhammed Rasheed Irshad. 2023. "Farlie–Gumbel–Morgenstern Bivariate Moment Exponential Distribution and Its Inferences Based on Concomitants of Order Statistics" Stats 6, no. 1: 253-267. https://doi.org/10.3390/stats6010015
APA StyleArun, S. P., Chesneau, C., Maya, R., & Irshad, M. R. (2023). Farlie–Gumbel–Morgenstern Bivariate Moment Exponential Distribution and Its Inferences Based on Concomitants of Order Statistics. Stats, 6(1), 253-267. https://doi.org/10.3390/stats6010015