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Abstract: In this research, we design the Farlie–Gumbel–Morgenstern bivariate moment exponential
distribution, a bivariate analogue of the moment exponential distribution, using the Farlie–Gumbel–
Morgenstern approach. With the analysis of real-life data, the competitiveness of the Farlie–Gumbel–
Morgenstern bivariate moment exponential distribution in comparison with the other Farlie–Gumbel–
Morgenstern distributions is discussed. Based on the Farlie–Gumbel–Morgenstern bivariate moment
exponential distribution, we develop the distribution theory of concomitants of order statistics
and derive the best linear unbiased estimator of the parameter associated with the variable of
primary interest (study variable). Evaluations are also conducted regarding the efficiency comparison
of the best linear unbiased estimator relative to the respective unbiased estimator. Additionally,
empirical illustrations of the best linear unbiased estimator with respect to the unbiased estimator
are performed.

Keywords: concomitants of order statistics; moment exponential distribution; inference

1. Introduction

The authors in [1] introduced the moment exponential (ME) distribution by assigning
linear weights to the exponential distribution. With the scale parameter σ, the probability
density function (pdf) of the ME distribution can be expressed as follows:

f (x; σ) =





x
σ2 e−

x
σ , x > 0, σ > 0

0, otherwise.
(1)

The corresponding cumulative distribution function (cdf) is given by

F(x; σ) = 1−
(

1 +
x
σ

)
e−

x
σ , x > 0, σ > 0. (2)

The moment-generating function (mgf) of the ME distribution is obtained as

M(t) = (1− σt)−2, t ≥ 0. (3)

Many researchers are drawn to the ME distribution, and they further study it because
of its simplicity and superiority to the exponential distribution. The authors in [2] have
proposed an exponentiated ME distribution and discussed its significance in detail. Different
estimators for the pdf and cdf of the exponentiated ME distribution were provided in [3]. The
Topp–Leone ME distribution was developed in [4], where its competence in comparison with
other well-known models in the literature is also discussed. The authors in [5] provided

Stats 2023, 6, 253–267. https://doi.org/10.3390/stats6010015 https://www.mdpi.com/journal/stats

https://doi.org/10.3390/stats6010015
https://doi.org/10.3390/stats6010015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://orcid.org/0000-0003-1138-740X
https://orcid.org/0000-0002-5999-1588
https://doi.org/10.3390/stats6010015
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats6010015?type=check_update&version=1


Stats 2023, 6 254

narration for the ME distribution’s slashed version. The authors in [6] explained the Weibull-
ME distribution and its significance. Another development of the ME distribution, known
as the BurrXII-ME distribution, and its properties were recently proposed in [7]. Another
generalization, the alpha power ME distribution, and its applications to biomedical science,
was taken into consideration in [8]. The so-called Poisson-moment exponential distribution
was introduced in [9] as an alternative to the ME-distribution-based model for count data
modeling. The aforementioned literature ought to demonstrate that the ME distribution
is a very alluring generalization of the exponential distribution and has a wide range of
applications. To our knowledge, no statistician has proposed any of the ME distribution’s
bivariate versions, despite the fact that its competence has been thoroughly established
in the body of existing literature. This provided us with a strong motivation to propose
a bivariate version of the ME distribution utilizing the Farlie–Gumbel–Morgenstern (FGM)
technique.

When conducting research on a bivariate population, two types of statistical situations
commonly arise: In the former scenario, it is possible to determine the shape of the bivariate
population distribution, making it easier to develop subsequent procedures for model-
ing and analyzing the data that result from it. In the latter scenario, since the bivariate
population distribution’s shape will not be known in advance, the problems that result
are complex, and modeling the parent bivariate distribution becomes obviously critical.
In univariate cases, a parent distribution can be modeled using a variety of techniques.
Nevertheless, one way of designing a bivariate model is to use the FGM technique if prior
information is available in the form of the marginal distribution of random variables.

The authors in [10] proposed a family of bivariate distributions, called the FGM family,
with a cdf of the following form:

H(x, y) = F(x)G(y){1 + ξ[1− F(x)][1− G(y)]}, (4)

where F(x) and G(y) are two univariate cdfs, and the association parameter ξ lies in the
interval [−1, 1]. If the cdfs F(x) and G(y) are absolutely continuous with pdfs f (x) and
g(y), respectively, the joint pdf of H(x, y) is given by

h(x, y) = f (x)g(y){1 + ξ[1− 2F(x)][1− 2G(y)]}. (5)

By substituting the expression of any desired set of marginal distributions of random
vector (X, Y), members of the family can be derived.

Theoretical and practical advancements in concomitants of order statistics (COS) pave
the way for a fresh look at the analysis of data resulting from bivariate distributions. Let
(Xi, Yi), i = 1, 2, . . . , n, be n independent and identically distributed random vectors arising
from the random vector (X, Y), which follows an arbitrary absolutely continuous bivariate
distribution with cdf F(x, y) and pdf f (x, y). If the components in the sample associated to
X (i.e., the Xi’s), are ordered as X1:n, X2:n, . . . , Xn:n, then the component associated to Y (i.e.,
the Yi’s), accompanying with the rth order statistic Xr:n, that is, the corresponding ordered
pair of Xr:n is called the concomitant of the rth order statistic, and it is denoted as Y[r:n]. One
can refer to [11] to learn more about the early theoretical development of the COS. The most
significant COS application is based on challenges with biological selection problems. For
example, if the top k of n rams are selected for breeding based on their genetic makeup,
Y[n−k+1:n], . . . , Y[n:n] could be a representation of the wool quality of one of their female
offspring. A geneticist is more likely to select the best set of offspring in such experiments
with fewer trials than in ones where all trials are carried out, which is much more difficult,
expensive, and time-consuming. One can find examples of these applications in [12]. In
many engineering situations, when developing structural designs, a statistical solution
based on concomitant extremes is needed for the quantification of the risk of failure arising
due to extreme levels of some environmental processes. These are also notable challenging
applications of the COS, and examples can be found in [13,14].
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In the literature, the ordering of X′i s, particularly distributions originating from the
FGM family, allowed for the COS to be used to estimate the parameters associated with the
distribution of the variable Y of primary interest. The inferential aspects of the FGM-type
bivariate logistic distributions with equal coefficients of variation by the COS were studied
in [15]. From the FGM-type bivariate Lindley distribution, the authors in [16] developed the
COS distribution theory and proposed the estimator of the parameter associated with the
variable Y. The FGM-type bivariate Bilal distribution was proposed in [17], who studied
the estimation problem in detail by COS. Additionally, the authors in [18] elucidated some
properties and applications of FGM bivariate generalized exponential distribution based on
the COS.

Consequently, this work has many goals, which are listed below:

• To propose a bivariate version of the ME distribution using the FGM approach and study
its competency compared with the other FGM bivariate distributions.

• To reveal the commendable theoretical flexibility of the proposed FGM bivariate mo-
ment exponential (FGMBME) distribution.

• To develop the distribution theory of the FGMBME distribution based on the COS and
study the estimation problem in detail.

• To demonstrate the compactness of the FGMBME distributional aspect based on the COS.
• To demonstrate the successful establishment of the proposed estimator theoretically,

as well as empirically.

The remaining part of this paper is consolidated as follows: In Section 2, we propose
the FGMBME distribution and discuss its main properties. Section 3 reveals the inferential
aspects of the proposed distribution. The distributional aspects of the COS arising from
the FGMBME distribution are obtained in Section 4. In Section 5, we derive the best linear
unbiased estimator (BLUE) of the parameter associated with the study variate involved in
the FGMBME distribution using the COS. This section also considers a moment-type estimator
for the association parameter ξ. The efficiency of the BLUE with respect to the respective
unbiased estimator is also compared. Section 6 is devoted to comparing the proposed
estimator using real-life data. The research study is then fully fledged with the concluding
remarks in Section 7.

2. Farlie–Gumbel–Morgenstern Bivariate Moment Exponential Distribution
2.1. Presentation

The joint pdf f (x, y) of the FGMBME distribution is obtained by incorporating the pdfs

f (x; σ1) = x
σ2

1
e−

x
σ1 , g(y; σ2) = y

σ2
2

e−
y

σ2 and cdfs F(x; σ1) = 1 −
(

1 + x
σ1

)
e−

x
σ1 , G(y; σ2) =

1−
(

1 + y
σ2

)
e−

y
σ2 of two univariate ME distributions in (5). Thus, the joint pdf f (x, y) of the

FGMBME distribution is obtained as

f (x, y) =





xy
σ2

1 σ2
2

e−
x

σ1 e−
y

σ2

×
[

1 + ξ

(
2e−

x
σ1

{
1 +

x
σ1

}
− 1
)(

2e−
y

σ2

{
1 +

y
σ2

}
− 1
)]

,

x > 0, y > 0; σ1 > 0, σ2 > 0;−1 ≤ ξ ≤ 1,

0, otherwise.

(6)
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The corresponding cdf is indicated as

F(x, y) =





[
1−

(
1 +

x
σ1

)
2e−

x
σ1

][
1−

(
1 +

y
σ2

)
2e−

y
σ2

]
×

{
1 + ξ

(
1 +

x
σ1

)
e−

x
σ1

(
1 +

y
σ2

)
e−

y
σ2

}
,

x > 0, y > 0; σ1 > 0, σ2 > 0;−1 ≤ ξ ≤ 1,

0, otherwise.

(7)

Figure 1 displays the pdfs for several arbitrary values of the parameters. As shown in
this figure, the FGMBME distribution has a variety of shapes, making it useful for analyzing
bivariate data. ]

(a) σ1 = 0.5, σ2 = 0.8, ξ = −0.4 (b) σ1 = 2, σ2 = 3, ξ = 0.9

(c) σ1 = 0.2, σ2 = 3, ξ = −0.5 (d) σ1 = 2, σ2 = 3, ξ = −0.5

Figure 1: Pdf plots for varying values of parameters.

Let (X, Y ) be a random vector that follow the FGMBME distribution. Evidently,
we have

E(X) = 2σ1, V ar(X) = 2σ2
1,

E(Y ) = 2σ2, V ar(Y ) = 2σ2
2,

and, with more integral developments, we get

E(XY ) = σ1σ2

(
4 +

9

16
ξ

)

The correlation coefficient ρ between X and Y is given by

ρ =
E(XY )− E(X)E(Y )√

V ar(X)V ar(Y )
=

9

32
ξ, (2.3)

such that ρ ∈ [−0.28125, 0.28125], corresponding to a moderately negative or
positive correlation.

5

Figure 1. Pdf plots for varying values of parameters.

Let (X, Y) be a random vector that follows the FGMBME distribution. Evidently, we have

E(X) = 2σ1, Var(X) = 2σ2
1 ,

E(Y) = 2σ2, Var(Y) = 2σ2
2 ,
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and, with more integral developments, we obtain

E(XY) = σ1σ2

(
4 +

9
16

ξ

)
.

The correlation coefficient ρ between X and Y is given by

ρ =
E(XY)− E(X)E(Y)√

Var(X)Var(Y)
=

9
32

ξ, (8)

such that ρ ∈ [−0.28125, 0.28125], corresponding to a moderately negative or positive
correlation.

2.2. Moment-Generating Function and Moments

In this section, the mgf, moments, and the conditional moments of the FGMBME distri-
bution are derived. In full generality, the mgf of a random vector (X, Y) with a distribution
from the FGM family is given by

M(X,Y)(t1, t2) = E(et1X+t2Y) = MX(t1)MY(t2)+

ξ

[(
MX(t1)− 2

∫ ∞

0
F(x) f (x)et1xdx

)(
MY(t2)− 2

∫ ∞

0
G(y)g(y)et2ydy

)]
,

(9)

where MX(t1) and MY(t2) are the mgfs of X and Y, respectively. Thus, the mgf of a random
vector (X, Y) that follows the FGMBME distribution is obtained as

M(X,Y)(t1, t2) =
1

(1− σ1t1)2(1− σ2t2)
2 + ξ

[
{4(2− σ1t1)

−3 + 2(2− σ1t1)
−2 − (1− σ1t1)

−2}

×{4(2− σ2t2)
−3 + 2(2− σ2t2)

−2 − (1− σ2t2)
−2}

]
.

(10)

In this setting, the (r, s)-th moment of (X, Y) is obtained as

E(XrYs) = σr
1σs

2(r + 1)!(s + 1)!
[

1 + ξ

{
1

2r+s+2 +
s + r + 4
2r+s+3 −

1
2r+1 +

(r + 2)(s + 2)
2r+s+4 − r + 2

2r+2 −
1

2s+1 −
s + 2
2s+2 + 1

}]
.

(11)

In full generality, for a random vector (X, Y) with a distribution into the FGM family,
the conditional pdf of Y | X = x is given by

h(y | X = x) = g(y){1 + ξ[1− 2F(x)][1− 2G(y)]}, −1 ≤ ξ ≤ 1. (12)

By using (12), the conditional pdf of Y | X = x with x > 0, where (X, Y), a random
vector that follows the FGMBME distribution, is given by

f (y | X = x) =
y
σ2

2
e−

y
σ2

[
1 + ξ

(
2e−

x
σ1

{
1 +

x
σ1

}
− 1
)(

2e−
y

σ2

{
1 +

y
σ2

}
− 1
)]

, y > 0.

Therefore, the conditional mean of Y | X = x is obtained as

E(Y | X = x) =
1
4

σ2

[
3ξ − 6ξe−

x
σ1 (σ1 + x)

σ1
+ 8

]
.
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3. Estimation and Inference
3.1. Estimation Method

Let (xi, yi), i = 1, 2, · · · , n be observations from a random sample of size n from the
FGMBME distribution with unknown parameters σ1, σ2, and ξ. Using the pdf of the FGMBME
distribution, the log-likelihood function is obtained as

log L =
n

∑
i=1

log xi+
n

∑
i=1

log yi −
1
σ1

n

∑
i=1

xi −
1
σ2

n

∑
i=1

yi

+
n

∑
i=1

log Ai − 2n log σ1 − 2n log σ2,
(13)

where

Ai = 1 + ξ

[
2e−

xi
σ1

(
1 +

xi
σ1

)
− 1
][

2e−
yi
σ2

(
1 +

yi
σ2

)
− 1
]

.

The maximum likelihood (ML) estimates σ̂1, σ̂2, and ξ̂ of σ1, σ2, and ξ, respectively, are
obtained by maximizing log L. To this end, the system of partial derivatives of log L with
respect to each parameter set equal to zero is given by

∂ log L
∂σ1

=
1

σ1
2

n

∑
i=1

xi −
n

∑
i=1

Bi
Ai
− 2n

σ1
= 0,

∂ log L
∂σ2

=
1

σ22

n

∑
i=1

yi −
n

∑
i=1

Ci
Ai
− 2n

σ2
= 0, and

∂ log L
∂ξ

=
n

∑
i=1

Di
Ai

= 0,

(14)

where

Bi =
2ξxi
σ1

2 e−
xi
σ1

(
2xi
σ1

e−
yi
σ2 +

2xiyi
σ1σ2

e−
yi
σ2 − xi

σ1

)
,

Ci =
2ξyi
σ22 e−

yi
σ2

(
2yi
σ2

e−
xi
σ1 +

2xiyi
σ1σ2

e−
xi
σ1 − yi

σ2

)
,

and

Di =

[
2e−

xi
σ1

(
1 +

xi
σ1

)
− 1
][

2e−
yi
σ2

(
1 +

yi
σ2

)
− 1
]

.

As the system of Equation (14) does not have explicit solutions, in order to obtain the
ML estimates, we maximize the log-likelihood function for numerical optimization. In this
study, we determine the ML estimates numerically using the constrOptim function in the
built-in stats package of the R software.

3.2. Application of Real-Life Data

For some variety of real-life datasets, the FGMBME distribution serves as one of the most
accurate and reliable models. For example, consider the real-life data from [19], which
includes mineral content measurements of bones in 25 elderly women’s dominant ulna (X)
and ulna (Y). The FGMBME distribution is fitted to the data, and the results are compared with
two other FGM distributions, namely the FGM bivariate exponential (FGMBE) (see [20]) and
the FGM bivariate Bilal (FGMBB) (see [17]). Along with the ML estimates, the negative of log-
likelihood function (− log L), Akaike information criterion (AIC), and Bayesian information
criterion (BIC) are computed. They are provided in Table 1. For all three distributions, the
ML estimate of ξ is ξ̂ = 1. Based on the − log L, AIC, and BIC values given in Table 1, it
can be concluded that the FGMBME distribution provides better performance than the FGMBE
and FGMBB distributions.
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Table 1. ML estimates, − log L, AIC and BIC values of the considered models.

Model Association
Parameter

Other
Parameters − log L AIC BIC

FGMBE ξ̂ = 1
σ̂1 = 0.566, σ̂2

= 0.557 29.321 62.643 65.080

FGMBB ξ̂ = 1
σ̂1 = 0.750, σ̂2

= 0.739 12.314 28.629 31.067

FGMBME ξ̂ = 1
σ̂1 = 0.308, σ̂2

= 0.304 11.575 27.150 29.588

Secondly, we consider the real-life data from [19], which includes, the tail length (X)
and wing length (Y) in millimeters for a sample of size n = 45 of female hook-billed kites.
For the above data, we computed the ML estimates of the parameters of the FGMBE, FGMBB,
and FGMBME distributions, and the − log L, AIC, and BIC values are given in Table 2. Here,
also, the ML estimates of ξ are obtained as ξ̂ = 1 for all the distributions. Based on − log L,
AIC, and BIC values given in Table 2, it can be concluded that the FGMBME distribution
provides better performance than the FGMBE and FGMBB distributions.

Table 2. ML estimates, − log L, AIC, and BIC values of the considered models.

Model Association
Parameter

Other
Parameters − log L AIC BIC

FGMBE ξ̂ = 1
σ̂1 = 153.734,
σ̂2 = 222.239 575.388 1154.776 1157.214

FGMBB ξ̂ = 1
σ̂1 = 202.629,
σ̂2 = 292.903 544.198 1092.396 1094.834

FGMBME ξ̂ = 1
σ̂1 = 83.360,
σ̂2 = 120.401 542.795 1089.590 1092.027

4. Distribution Theory of the COS Arising from the FGMBME Distribution

In this section, we perform the distribution theory of the COS derived from the FGMBME
distribution. Let (Xi, Yi), i = 1, 2, . . . , n, be n independent and identically distributed
random vectors from the FGMBME distribution. Let Y[r:n] be the concomitant of the rth-order
statistic Xr:n arising from (6). Then, using the expression for the distribution of the COS
given in [21], the pdf f[r:n](y) of Y[r:n] and the joint pdf f[r,s:n](y1, y2) of (Y[r:n], Y[s:n]) are
obtained as follows:

For 1 ≤ r ≤ n, we have

f[r:n](y) =
y
σ2

2
e−

y
σ2

[
1 + ξGr

(
2e−

y
σ2

{
1 +

y
σ2

}
− 1
)]

, y > 0, (15)

and, for 1 ≤ r < s ≤ n,

f[r,s:n](y1, y2) =
y1y2

σ2
1 σ2

2
e−

y1
σ1 e−

y2
σ2

[
1 + ξGr

(
2e−

y1
σ1

{
1 +

y1

σ1

}
− 1
)

+ξGs

(
2e−

y2
σ2

{
1 +

y2

σ2

}
− 1
)
+ ξ2(Gs − Grs)

×
(

2e−
y1
σ1

{
1 +

y1

σ1

}
− 1
)(

2e−
y2
σ2

{
1 +

y2

σ2

}
− 1
)]

, y1, y2 > 0,

(16)

where Gr =
n−2r+1

n+1 , Gs =
n−2s+1

n+1 , and Grs =
2r(n−2s)

(n+1)(n+2) . The expression for the kth moment
of the concomitant Y[r:n] is obtained as

E[Yk
[r:n]] = σk

2 (k + 1)!
[

1 + ξGr

{
−1 +

1
2k+1 +

k + 2
2k+2

}]
(17)
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and the product moment of Y[r:n] and Y[s:n] is indicated as

E[Y[r:n]Y[s:n]] = σ2
2

[
4− 3ξ

{n− (r + s) + 1}
(n + 1)

+
9ξ2

16
{Gs − Grs}

]
. (18)

From (17), we obtain the mean and variance of Y[r:n] as

E[Y[r:n]] = σ2

[
2− 3

4
ξGr

]
(19)

and

Var[Y[r:n]] = σ2
2

[
2− 3

4
ξGr −

9
16

ξ2Gr
2
]

, (20)

respectively.
By virtue of (18) and (19), we obtain the covariance between the rth and sth COS, and it

is given by

Cov[Y[r:n], Y[s:n]] = σ2
2

9
16

ξ22r
[

n− 2s + 1
(n + 1)2 −

(n− 2s)
(n + 1)(n + 2)

]
. (21)

Let us set
κr = 2− 3

4
ξGr, (22)

$r,r = 2− 3
4

ξGr −
9

16
ξ2Gr

2 (23)

and

$r,s =
9
16

ξ22r
[

n− 2s + 1
(n + 1)2 −

(n− 2s)
(n + 1)(n + 2)

]
. (24)

Then, from (22)–(24), the following results hold: For 1 ≤ r ≤ n, we have

E[Y[r:n]] = σ2κr, (25)

Var[Y[r:n]] = σ2
2 $r,r (26)

and, for 1 ≤ r < s ≤ n,
Cov[Y[r:m], Y[s:n]] = σ2

2 $r,s. (27)

5. BLUE of σ2 Using the COS

In this section, using the COS, we obtain the BLUE of the parameter σ2 involved in
the FGMBME distribution. Let Y[r:n], r = 1, 2, . . . , n, be the COS arising from the FGMBME
distribution defined in (16). Let Y[n] = (Y[1:n], Y[2:n], . . . , Y[n:n])

′ denote the vector of COS.
Then, from (25)–(27), we can write

E[Y[n]] = σ2κ, (28)

where κ = (κ1, κ2, . . . , κn)′, and the dispersion matrix of Y[n] is indicated as

D(Y[n]) = σ2
2 Λ, (29)

with Λ = [[$r,s]]. If ξ is contained in κ, and Λ are known, then the combination of (28)
and (29) allows to apply the generalized Gauss–Markov theorem on the linear model
(Y[n], σ2κ, σ2

2 Λ) (see [11]). According to [22], the BLUE of σ2 is then given by

σ̃2 = (κ′Λ−1κ)−1κ′Λ−1Y[n]. (30)
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Furthermore, the variance of σ̃2 is given by

Var(σ̃2) = (κ′Λ−1κ)−1σ2
2 . (31)

From (30), it is clear that σ̃2 is a linear function of Y[r:n], r = 1, 2, . . . , n. Thus, σ̃2 can be
written as

σ̃2 =
n

∑
r=1

brY[r:n],

where br, r = 1, 2, . . . , n, are constants. It should be noted that the interval [−1, 1] contains
all possible values of ξ. If the estimate σ̃2 of σ2 for a given ξ = ξ0 ∈ [−1, 1] is evaluated,
then one need not compute the estimate of σ2 for ξ = −ξ0, as the coefficients of the COS in
the estimate for this case can be obtained from the coefficients of σ̃2 for ξ = ξ0, as proved in
the next result.

Theorem 1. Concerning a specific association parameter ξ = ξ0 ∈ [−1, 1], let Y[r:n], r =
1, 2, . . . , n, represent the COS of a random sample (Xi, Yi), i = 1, 2, . . . , n, obtained from the

FGMBME distribution with the pdf defined in (6). Let σ̃2(ξ0) =
n

∑
r=1

ωrY[r:n] represent the BLUE of σ2

for a given ξ0 based on the COS Y[r:n], r = 1, 2, . . . , n. In this case, the BLUE of σ2 when ξ = −ξ0 is

given by σ̃2(−ξ0) =
n

∑
r=1

ωn−r+1Y[r:n] with Var[σ̃2(−ξ0)] = Var[σ̃2(ξ0)].

Proof. Let Y[n](ξ0) be the vector of the COS of a random sample of size n drawn from a
population with pdf defined in (6) for a given ξ0. Then, from (28) and (29), we can write the
mean vector and dispersion matrix of Y[n](ξ0) as

E[Y[n](ξ0)] = σ2κ(ξ0) = σ2[κ1(ξ0), κ2(ξ0), . . . , κn(ξ0)]
′,

and

D[Y[n](ξ0)] = σ2
2 Λ(ξ0) = σ2

2 (($r,s(ξ0))),

respectively, where

κr(ξ0) = 2− 3
4

ξ0Gr, (32)

$r,r(ξ0) = 2− 3
4

ξ0Gr −
9

16
ξ2

0Gr
2, 1 ≤ r ≤ n, (33)

and

$r,s(ξ0) =
9
16

ξ2
02r
[

n− 2s + 1
(n + 1)2 −

(n− 2s)
(n + 1)(n + 2)

]
, r 6= s. (34)

By virtue of equations (32)–(34), we obtain

κr(ξ0) = κn−r+1(−ξ0), (35)

$r,r(ξ0) = $n−r+1,n−r+1(−ξ0), (36)

$r,s(ξ0) = $r,s(−ξ0) (37)

and
$r,s(ξ0) = $n−s+1,n−r+1(ξ0), 1 ≤ r < s ≤ n. (38)

Using (30), we obtain the BLUE of σ2 as

σ̃2(ξ0) = {[κ(ξ0)]
′[Λ(ξ0)]

−1κ(ξ0)}−1[κ(ξ0)]
′[Λ(ξ0)]

−1Y[n](ξ0) (39)
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and the variance of σ̃2(ξ0) is

Var[σ̃2(ξ0)] = {[κ(ξ0)]
′[Λ(ξ0)]

−1κ(ξ0)}−1σ2
2 . (40)

Clearly, (39) is a linear function of Y[r:n], r = 1, 2, . . . , n, and hence, it can be written as

σ̃2(ξ0) =
n

∑
r=1

brY[r:n].

Let S be an n× n matrix defined as

S =




0 . . . 0 1

0 . . . 1 0

...
... . . .

...

1 . . . 0 0




. (41)

Hence, we have SY[n](ξ0) = (Y[n:n], . . . , Y[1:n])
′.

From (35) to (38), we obtain

E[Y[n](−ξ0)] = σ2κ(−ξ0) = σ2Sκ(ξ0).

Since the difference between D[Y[n](−ξ0)] and D[Y[n](ξ0)] is only by the order of the
elements along the diagonal element, we have

D[Y[n](−ξ0)] = σ2
2 Λ(−ξ0) = σ2

2 SΛ(ξ0)S.

Therefore, the BLUE of σ2 is

σ̃2(−ξ0) =
{
[κ(−ξ0)]

′[Λ(−ξ0)]
−1κ(−ξ0)

}−1
[κ(−ξ0)]

′[Λ(−ξ0)]
−1Y[n](−ξ0)

= {[Sκ(ξ0)]
′[SΛ(ξ0)S]−1Sκ(ξ0)}−1[Sκ(ξ0)]

′[SΛ(ξ0)S]−1Y[n](−ξ0)

= {[κ(ξ0)]
′SS[Λ(ξ0)]

−1SSκ(ξ0)}−1[κ(ξ0)]
′SS[Λ(ξ0)]

−1SY[n](−ξ0).

Using the result SS = I, we have

σ̃2(−ξ0) =
{
[κ(ξ0)]

′[Λ(ξ0)]
−1κ(ξ0)

}−1
[κ(ξ0)]

′[Λ(ξ0)]
−1SY[n](−ξ0). (42)

In (42), SY[n](−ξ0) is (Y[n:n], Y[n−1:n] . . . , Y[1:n])
′, and the coefficients of SY[n](ξ0) in (39)

and those of Y[n](−ξ0) in (42) are exactly same. Thus, we have σ̃2(ξ0) =
n

∑
r=1

brY[r:n] and

σ̃2(−ξ0) =
n

∑
r=1

bn−r+1Y[r:n].
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Moreover, from (40), we have

Var[σ̃2(−ξ0)] =
{
[κ(−ξ0)]

′[Λ(−ξ0)]
−1κ(−ξ0)

}−1
σ2

2

=
{
[Sκ(ξ0)]

′[SΛ(ξ0)S]−1Sκ(ξ0)
}−1

σ2
2

=
{
[κ(ξ0)]

′SS[Λ(ξ0)]
−1SSκ(ξ0)

}−1
σ2

2

=
{
[κ(ξ0)]

′[Λ(ξ0)]
−1κ(ξ0)

}−1
σ2

2

= Var[σ̃2(ξ0)].

This ends the proof.

In order to illustrate our findings, we compute the coefficients br of Y[r:n], r = 1, 2, . . . , n,
in σ̃2 and Var(σ̃2) for n = 2, 3, . . . , 10, and ξ = 0.25, 0.50, 0.75, 1.00. The results are given
in Tables 3 and 4. By using Theorem 1, one can also use Tables 3 and 4 to obtain the
coefficients br of Y[r:n], r = 1, 2, . . . , n, in σ̃2, and Var(σ̃2) for n = 2, 3, . . . , 10, and ξ =
−1.00,−0.75,−0.50,−0.25.
For the purpose of comparison, we compute an unbiased estimator of the parameter σ2,

which is σ̂2 = Y
2 , and its variance is obtained as σ2

2
2n . We also compute the ratio Var(σ̂2)

Var(σ̃2)

to measure the efficiency of our estimator σ̃2 relative to σ̂2 for n = 2, 3, . . . , 10 and ξ =
0.25, 0.50, 0.75, 1.00. The results are also presented in Tables 3 and 4. From these tables, one
can clearly notice that σ̃2 is more efficient than σ̂2.

Remark 1. We took into account the correlation coefficient between the two variables for the
FGMBME distribution specified in (6), and its expression is obtained as ρ = 9

32 ξ. However, even so,
our presumption that ξ is known might be viewed as impractical in some real-life scenarios. As a
result, in cases where ξ is unknown, we compute the sample correlation τ from (Xr:n, Y[r:n]) for
r = 1, 2, . . . , n, and hence introduce a moment-type estimator, ξ̂, for ξ, as

ξ̂ =





−1, if τ < − 9
32

32
9

τ, if − 9
32
≤ τ ≤ 9

32
1, if τ >

9
32

. (43)
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Table 3. The coefficients br, r = 1, 2, . . . , n, in the BLUE, V1 = Var(σ̃2)
σ2

2
, V2 = Var(σ̂2)

σ2
2

, and the efficiency E1 = V2
V1

of σ̃2 relative to σ̂2.

n ξ Coefficients V1 V2 E1

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

2 0.25 0.25000 0.25000 0.25000 0.25000 1.00000
0.50 0.25000 0.25000 0.25000 0.25000 1.00000

3 0.25 0.16698 0.16608 0.16695 0.16667 0.16667 1.00000
0.50 0.16824 0.16418 0.16764 0.16665 0.16667 1.00012

4 0.25 0.12547 0.12455 0.12457 0.12542 0.12500 0.12500 1.00000
0.50 0.27030 0.12314 0.12327 0.12660 0.12417 0.12500 1.00024

5 0.25 0.10054 0.09974 0.09950 0.09975 0.10047 0.10000 0.10000 1.00000
0.50 0.10236 0.09889 0.09796 0.09902 0.10182 0.09997 0.10000 1.00030

6 0.25 0.08390 0.08322 0.08291 0.08292 0.08323 0.08383 0.08333 0.08333 1.00000
0.50 0.08583 0.08285 0.08158 0.08168 0.08292 0.08522 0.08330 0.08333 1.00036

7 0.25 0.07200 0.07143 0.07111 0.07101 0.07112 0.07143 0.07192 0.07143 0.07143 1.00000
0.50 0.07395 0.07140 0.07008 0.06973 0.07020 0.07142 0.07331 0.07140 0.07143 1.00042

8 0.25 0.06306 0.06258 0.06227 0.06213 0.06214 0.06229 0.06257 0.06298 0.06250 0.06250 1.00000
0.50 0.06500 0.06281 0.06153 0.06098 0.06104 0.06164 0.06275 0.06433 0.06247 0.06250 1.00048

9 0.25 0.05610 0.05569 0.05541 0.05525 0.05520 0.05526 0.05542 0.05567 0.05602 0.05555 0.05555 1.00000
0.50 0.05800 0.05611 0.05491 0.05428 0.05412 0.05437 0.05500 0.05599 0.05733 0.05553 0.05555 1.00054

10 0.25 0.05052 0.05017 0.04992 0.04975 0.04968 0.04968 0.04976 0.04992 0.05015 0.05045 0.05000 0.05000 1.00000
0.50 0.05238 0.05073 0.04963 0.04897 0.04868 0.04873 0.04907 0.04967 0.05055 0.05171 0.04997 0.05000 1.00060



Stats 2023, 6 265

Table 4. The coefficients br, r = 1, 2, . . . , n, in the BLUE, V1 = Var(σ̃2)
σ2

2
, V2 = Var(σ̂2)

σ2
2

, and the efficiency E1 = V2
V1

of σ̃2 relative to σ̂2.

n ξ Coefficients V1 V2 E1

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

2 0.75 0.25000 0.25000 0.25000 0.25000 1.00000
1.00 0.25000 0.25000 0.25000 0.25000 1.00000

3 0.75 0.16987 0.16122 0.16903 0.16658 0.16667 1.00054
1.00 0.17297 0.15672 0.17073 0.16638 0.16667 1.00174

4 0.75 0.13006 0.12062 0.12109 0.12848 0.12487 0.12500 1.00104
1.00 0.13529 0.11674 0.11790 0.13096 0.12456 0.12500 1.00353

5 0.75 0.10601 0.09731 0.09532 0.09777 0.10393 0.09985 0.10000 1.00150
1.00 0.11257 0.09472 0.09143 0.09587 0.10672 0.09948 0.10000 1.00523

6 0.75 0.08978 0.08209 0.07925 0.07956 0.08234 0.08740 0.08317 0.08333 1.00192
1.00 0.09716 0.08071 0.07571 0.07647 0.08137 0.09028 0.08278 0.08333 1.00664

7 0.75 0.07803 0.07130 0.06823 0.06753 0.06864 0.07130 0.07548 0.07126 0.07143 1.00239
1.00 0.08588 0.07094 0.06530 0.06428 0.06631 0.07096 0.07834 0.07086 0.07143 1.00804

8 0.75 0.06909 0.06320 0.06015 0.05897 0.05918 0.06054 0.06297 0.06646 0.06234 0.06250 1.00257
1.00 0.07730 0.06375 0.05762 0.05570 0.05651 0.05892 0.06314 0.06933 0.06200 0.06250 1.00806

9 0.75 0.06205 0.05687 0.05396 0.05255 0.05225 0.05286 0.05426 0.05643 0.05939 0.05540 0.05555 1.00289
1.00 0.07030 0.05803 0.05230 0.04988 0.04949 0.05063 0.05297 0.05686 0.06211 0.05502 0.05555 1.00963

10 0.75 0.05635 0.05177 0.04903 0.04753 0.04694 0.04709 0.04787 0.04923 0.05116 0.05369 0.04985 0.05000 1.00301
1.00 0.06459 0.05345 0.04791 0.04523 0.04432 0.04468 0.04607 0.04842 0.05179 0.05629 0.04946 0.05000 1.01092
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6. Empirical Illustration

We empirically compare the efficiency of the estimator σ̃2 to the unbiased estimator σ̂2
using female hook-billed kite data from Section 3. We start with an n = 10-sized random
sample drawn from observations of X and arranged in ascending order of magnitude.
The ordered observations are 178, 179, 186, 186, 188, 189, 196, 197, 200, and 209. The
corresponding COS are 268, 257, 262, 266, 280, 262, 285, 285, 272, and 305. Based on this,
using (43), the moment-type estimator of ξ is obtained as ξ̂ = 2.94. Since −1 ≤ ξ ≤ 1,
and the estimated value of ξ falls outside of this range, ξ̂ = 1, the highest permissible
value, is chosen for the moment-type estimate of ξ. As a result, the BLUE σ̃2 is calculated as
σ̃2 = 137.93 and its variance as Var(σ̃2) = 0.04. Again, the value of the unbiased estimator
σ̂2 is obtained as σ̂2 = 137.10, and its variance is obtained as Var(σ̂2) = 0.50. As a result,
we conclude that σ̃2 is a better estimator than σ̂2.

7. Conclusions

By utilizing the FGM methodology, a bivariate variant of the ME distribution was derived
in this article, and using two real-life data sets, its competitiveness with other well-known
FGM distributions was discussed. Furthermore, the distribution theory of the COS arising
from the FGMBME distribution was thoroughly studied. The best linear unbiased estimator
(BLUE) of the parameter associated with the variable of primary interest was derived. BLUE’s
efficacy in comparison with the respective unbiased estimator generated was evaluated.
Empirical evidence supports the efficiency of BLUE. In light of this article, we recommend
that one should take into account the FGMBME distribution rather than the FGMBE distribution
and the FGMBB distribution for modeling some bivariate real-life datasets.
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