Recent Developments of Computational Methods for pKa Prediction Based on Electronic Structure Theory with Solvation Models
Abstract
:1. Introduction
2. Basics of pKa Computation
3. Polarizable Continuum Model-Based Approach
3.1. Basics of the Polarizable Continuum Model
3.2. The AKB Scheme
3.3. Some Applications of the AKB Scheme
3.3.1. Application to Salicylic Acid
3.3.2. Solvent Dependence
4. Integral Equation-Based Approach
4.1. Basics of RISM-SCF and 3D-RISM-SCF
4.2. First-Principles Calculation of pKa and pKw
4.3. Data-Driven Approach for pKa Prediction with 3D-RISM-SCF
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Navo, C.D.; Jiménez-Osés, G. Computer Prediction of pKa Values in Small Molecules and Proteins. ACS Med. Chem. Lett. 2021, 12, 1624–1628. [Google Scholar] [CrossRef]
- Li, H.; Robertson, A.D.; Jensen, J.H. Very Fast Empirical Prediction and Rationalization of Protein pKa Values. Proteins Struct. Funct. Genet. 2005, 61, 704–721. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.M.; Coote, M.L. A universal approach for continuum solvent pKa calculations: Are we there yet? Theor. Chem. Acc. 2010, 125, 3–21. [Google Scholar] [CrossRef]
- Mangold, M.; Rolland, L.; Costanzo, F.; Sprik, M.; Sulpizi, M.; Blumberger, J. Absolute pKa Values and Solvation Structure of Amino Acids from Density Functional Based Molecular Dynamics Simulation. J. Chem. Theory Comput. 2011, 7, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- Klamt, A.; Schuurmann, G. Cosmo—A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc. Perkin Trans. 2 1993, 799–805. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Cances, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Mennucci, B.; Tomasi, J. Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys. 1997, 106, 5151–5158. [Google Scholar] [CrossRef]
- Foresman, J.B.; Keith, T.A.; Wiberg, K.B.; Snoonian, J.; Frisch, M.J. Solvent effects. 5. Influence of cavity shape, truncation of electrostatics, and electron correlation ab initio reaction field calculations. J. Phys. Chem. 1996, 100, 16098–16104. [Google Scholar] [CrossRef]
- Pliego, J.R.; Riveros, J.M. Gibbs energy of solvation of organic ions in aqueous and dimethyl sulfoxide solutions. Phys. Chem. Chem. Phys. 2002, 4, 1622–1627. [Google Scholar] [CrossRef]
- Takano, Y.; Houk, K.N. Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J. Chem. Theory Comput. 2005, 1, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Oshiyama, A.; Shigeta, Y. A Simple scheme for estimating the pKa values of 5-substituted uracils. Chem. Phys. Lett. 2011, 502, 248–252. [Google Scholar] [CrossRef]
- Matsui, T.; Miyachi, H.; Baba, T.; Shigeta, Y. Theoretical Study on Reaction Scheme of Silver(I) Containing 5-Substituted Uracils Bridge Formation. J. Phys. Chem. A 2011, 115, 8504–8510. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Baba, T.; Kamiya, K.; Shigeta, Y. An accurate density functional theory based estimation of pKa values of polar residues combined with experimental data: From amino acids to minimal proteins. Phys. Chem. Chem. Phys. 2012, 14, 4181. [Google Scholar] [CrossRef]
- Baba, T.; Matsui, T.; Kamiya, K.; Nakano, M.; Shigeta, Y. A Density Functional Study on the pKa of Small Polyprotic Molecules. Int. J. Quantum Chem. 2014, 114, 1128–1134. [Google Scholar] [CrossRef]
- Hirata, F. (Ed.) Molecular Theory of Solvation; Kluwer: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Chandler, D.; Andersen, H.C. Optimized Cluster Expansions for Classical Fluids. 2. Theory of Molecular Liquids. J. Chem. Phys. 1972, 57, 1930–1937. [Google Scholar] [CrossRef]
- Andersen, H.; Chandler, D.; Weeks, J. Optimized Cluster Expansions for Classical Fluids. 3. Applications to Ionic Solutions and Simple Liquids. J. Chem. Phys. 1972, 57, 2626–2631. [Google Scholar] [CrossRef]
- Andersen, H.; Chandler, D. Optimized Cluster Expansions for Classical Fluids. 1. General Theory and Variational Formulation of Mean Spherical Model and hard-sphere Percus-Yevick Equations. J. Chem. Phys. 1972, 57, 1918–1929. [Google Scholar] [CrossRef]
- Beglov, D.; Roux, B. An Integral Equation to Describe the Solvation of Polar Molecules in Liquid Water. J. Phys. Chem. B 1997, 101, 7821–7826. [Google Scholar] [CrossRef]
- Beglov, D.; Roux, B. Solvation Of Complex Molecules in A Polar Liquid: An Integral Equation Theory. J. Chem. Phys. 1996, 104, 8678–8689. [Google Scholar] [CrossRef]
- Kovalenko, A.; Hirata, F. Three-Dimensional Density Profiles of Water in Contact with A Solute of Arbitrary Shape: A RISM Approach. Chem. Phys. Lett. 1998, 290, 237–244. [Google Scholar] [CrossRef]
- Ten-No, S.; Hirata, F.; Kato, S. A Hybrid Approach for the Solvent Effect on the Electronic Structure of A Solute Based on the RISM and Hartree-Fock Equations. Chem. Phys. Lett. 1993, 214, 391–396. [Google Scholar] [CrossRef]
- Kovalenko, A.; Hirata, F. Self-Consistent Description of A Metal-Water Interface by the Kohn-Sham Density Functional Theory and the Three-Dimensional Reference Interaction Site Model. J. Chem. Phys. 1999, 110, 10095–10112. [Google Scholar] [CrossRef]
- Sato, H.; Kovalenko, A.; Hirata, F. Self-Consistent Field, Ab Initio Molecular Orbital and Three-Dimensional Reference Interaction Site Model Study for Solvation Effect on Carbon Monoxide in Aqueous Solution. J. Chem. Phys. 2000, 112, 9463–9468. [Google Scholar] [CrossRef]
- Yoshida, N.; Ishizuka, R.; Sato, H.; Hirata, F. Ab initio theoretical study of temperature and density dependence of molecular and thermodynamic properties of water in the entire fluid region: Autoionization processes. J. Phys. Chem. B 2006, 110, 8451–8458. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Hirata, F. Theoretical study for autoionization of liquid water: Temperature dependence of the ionic product (pKw). J. Phys. Chem. A 1998, 102, 2603–2608. [Google Scholar] [CrossRef]
- Fujiki, R.; Kasai, Y.; Seno, Y.; Matsui, T.; Shigeta, Y.; Yoshida, N.; Nakano, H. A computational scheme of pKa values based on the three-dimensional reference interaction site model self-consistent field theory coupled with the linear fitting correction scheme. Phys. Chem. Chem. Phys 2018, 20, 27272–27279. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef]
- Mennucci, B. Polarizable continuum model. WIREs Comput. Mol. Sci. 2012, 2, 386–404. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Shigeta, Y.; Morihashi, K. Assessment of Methodology and Chemical Group Dependences in the Calculation of the pKa for Several Chemical Groups. J. Chem. Theory Comput. 2017, 13, 4791–4803. [Google Scholar] [CrossRef]
- Hengphasatporn, K.; Matsui, T.; Shigeta, Y. Estimation of Acid Dissociation Constants (pKa) of N-Containing Heterocycles in DMSO and Transferability of Gibbs Free Energy in Different Solvent Conditions. Chem. Lett. 2020, 49, 307–310. [Google Scholar] [CrossRef]
- Dawson, R.M.C.; Elliott, D.C.; Elliott, W.H.; Jones, K.M. Data for Biochemical Research; Clarendon Press: Oxford, UK, 1969; Volume 316. [Google Scholar]
- Kaljurand, I.; Kutt, A.; Soovali, L.; Rodima, T.; Maemets, V.; Leito, I.; Koppel, I.A. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: Unification of different basicity scales. J. Org. Chem. 2005, 70, 1019–1028. [Google Scholar] [CrossRef]
- Garrido, G.; Roses, M.; Rafols, C.; Bosch, E. Acidity of several anilinium derivatives in pure tetrahydrofuran. J. Solut. Chem. 2008, 37, 689–700. [Google Scholar] [CrossRef]
- Jover, J.; Bosque, R.; Sales, J. QSPR Prediction of pK for Aliphatic Carboxylic Acids and Anilines in Different Solvents. QSAR Comb. Sci. 2008, 27, 1204–1215. [Google Scholar] [CrossRef]
- Kovalenko, A.; Hirata, F. First-principles realization of a van der Waals-Maxwell theory for water. Chem. Phys. Lett. 2001, 349, 496–502. [Google Scholar] [CrossRef]
- Kido, K.; Sato, H.; Sakaki, S. First Principle Theory for pKa Prediction at Molecular Level: pH Effects Based on Explicit Solvent Model. J. Phys. Chem. B 2009, 113, 10509–10514. [Google Scholar] [CrossRef] [PubMed]
- Kido, K.; Sato, H.; Sakaki, S. Systematic Assessment on Aqueous pKa and pKb of an Amino Acid Base on RISM-SCF-SEDD Method: Toward First Principles Calculations. Int. J. Quantum Chem. 2012, 112, 103–112. [Google Scholar] [CrossRef]
- Islam, T.M.B.; Yoshino, K.; Sasane, A. 11B NMR study of p-carboxybenzeneboronic acid ions for complex formation with some monosaccharides. Anal. Sci. 2003, 19, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Seno, Y.; Yoshida, N.; Nakano, H. Theoretical analysis of complex formation of p-carboxybenzeneboronic acid with a monosaccharide. J. Mol. Liq. 2016, 217, 93–98. [Google Scholar] [CrossRef]
- Radak, B.K.; Chipot, C.; Suh, D.; Jo, S.; Jiang, W.; Phillips, J.C.; Schulten, K.; Roux, B. Constant-PH Molecular Dynamics Simulations for Large Biomolecular Systems. J. Chem. Theory Comput. 2017, 13, 5933. [Google Scholar] [CrossRef]
- Tielker, N.; Eberlein, L.; Gussregen, S.; Kast, S.M. The SAMPL6 challenge on predicting aqueous pKa values from EC-RISM theory. J. Comput.-Aided Mol. Des. 2018, 32, 1151–1163. [Google Scholar] [CrossRef]
- Tielker, N.; Tomazic, D.; Heil, J.; Kloss, T.; Ehrhart, S.; Gussregen, S.; Schmidt, K.F.; Kast, S.M. The SAMPL5 challenge for embedded-cluster integral equation theory: Solvation free energies, aqueous pKa, and cyclohexane-water log D. J. Comput.-Aided Mol. Des. 2016, 30, 1035–1044. [Google Scholar] [CrossRef]
- Matos, M.J.; Oliveira, B.L.; Martínez-Sáez, N.; Guerreiro, A.; Cal, P.M.S.D.; Bertoldo, J.; Maneiro, M.; Perkins, E.; Howard, J.; Deery, M.J.; et al. Chemo- and Regioselective Lysine Modification on Native Proteins. J. Am. Chem. Soc. 2018, 140, 4004. [Google Scholar] [CrossRef]
- Işık, M.; Rustenburg, A.S.; Rizzi, A.; Gunner, M.R.; Mobley, D.L.; Chodera, J.D. Overview of the SAMPL6 PKa Challenge: Evaluating Small Molecule Microscopic and Macroscopic PKa Predictions. J. Comput.-Aided Mol. Des. 2021, 35, 131. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.; Chen, B.; Wu, Y.; Guan, L. Prediction of PKa Values for Neutral and Basic Drugs Based on Hybrid Artificial Intelligence Methods. Sci. Rep. 2018, 8, 3991. [Google Scholar] [CrossRef]
- Klamt, A. Conductor-Like Screening Model for Real Solvents—A New Approach to the Quantitative Calculation of Solvation Phenomena. J. Phys. Chem. 1995, 99, 2224–2235. [Google Scholar] [CrossRef]
- Klamt, A.; Eckert, F.; Diedenhofen, M.; Beck, M.E. First principles calculations of aqueous pKa values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the pKa scale. J. Phys. Chem. A 2003, 107, 9380–9386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckert, F.; Klamt, A. Accurate prediction of basicity in aqueous solution with COSMO-RS. J. Comput. Chem. 2006, 27, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Eckert, F.; Leito, I.; Kaljurand, I.; Kutt, A.; Klamt, A.; Diedenhofen, M. Prediction of Acidity in Acetonitrile Solution with COSMO-RS. J. Comput. Chem. 2009, 30, 799–810. [Google Scholar] [CrossRef] [Green Version]
- Toure, O.; Dussap, C.G.; Lebert, A. Comparison of Predicted pKa Values for Some Amino-Acids, Dipeptides and Tripeptides, Using COSMO-RS, ChemAxon and ACD/Labs Methods. Oil Gas Sci. Technol. 2013, 68, 281–297. [Google Scholar] [CrossRef]
- Andersson, M.P.; Jensen, J.H.; Stipp, S.L.S. Predicting pKa for proteins using COSMO-RS. PeerJ 2013, 1, e198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Fragment Molecular Orbital Method: An Approximate Computational Method For Large Molecules. Chem. Phys. Lett. 1999, 313, 701–706. [Google Scholar] [CrossRef]
- Fedorov, D.G.; Kitaura, K.; Li, H.; Jensen, J.H.; Gordon, M.S. The Polarizable Continuum Model (PCM) Interfaced With The Fragment Molecular Orbital Method (FMO). J. Comput. Chem. 2006, 27, 976–985. [Google Scholar] [CrossRef]
- Yoshida, N. Efficient implementation of the three-dimensional reference interaction site model method in the fragment molecular orbital method. J. Chem. Phys. 2014, 140, 214118. [Google Scholar] [CrossRef]
- Yoshida, N.; Kiyota, Y.; Hirata, F. The Electronic-Structure Theory Of A Large-Molecular System In Solution: Application to The Intercalation of Proflavine With Solvated DNA. J. Mol. Liq. 2011, 159, 83–92. [Google Scholar] [CrossRef]
- Mongan, J.; Case, D.A.; McCammon, J.A. Constant pH molecular dynamics in generalized born implicit solvent. J. Comput. Chem. 2004, 25, 2038–2048. [Google Scholar] [CrossRef]
- Itoh, S.G.; Damjanovic, A.; Brooks, B.R. pH replica-exchange method based on discrete protonation states. Proteins 2011, 79, 3420–3436. [Google Scholar] [CrossRef] [Green Version]
Compound | ||||
---|---|---|---|---|
(a) | 1157.9 | 2.69 (2.97) | 1271.4 | 13.29 (13.40) |
(b) | 1180.0 | 4.10 (2.97) | 1232.1 | 10.76 (13.40) |
(c) | 1174.6 | 3.76 (3.49) | - | - |
Solvent | ε | N | Ref. | k | G (H+) | MAE |
---|---|---|---|---|---|---|
Water | 78.4 | 14 | [35] | 0.09641 | −1094.9 | 0.38 |
Methanol | 32.7 | 6 | [35] | 0.09454 | −1080.5 | 0.19 |
DMSO | 46.7 | 4 | [35] | 0.11580 | −1112.2 | 0.22 |
Acetonitrile | 36.0 | 9 | [35] | 0.10487 | −1046.3 | 0.50 |
THF a | 7.58 | 4 | [36] | 0.11712 | −1066.4 | 0.19 |
THF b | 7.58 | 7 | [37] | 0.05938 | −988.7 | 0.42 |
Acetone b | 20.7 | 5 | [37] | 0.06186 | −1042.7 | 0.25 |
Nitromethane b | 35.9 | 6 | [37] | 0.09395 | −1048.2 | 0.23 |
Reaction | ||||
---|---|---|---|---|
PCBA + H2O→PCBA− + H3O+ | 28.74 | 21.1 | 4.7 | |
PCBA− + 2H2O→PCBA2− + H3O+ | 36.76 | 26.9 | (8.7 a) | 10.6 |
PCBA-complex + H2O→PCBA-complex− + H3O+ | 28.13 | 20.6 | 4.3 | |
PCBA-complex− + 2H2O→PCBA-complex2− + H3O+ | 31.22 | 22.9 | 6.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujiki, R.; Matsui, T.; Shigeta, Y.; Nakano, H.; Yoshida, N. Recent Developments of Computational Methods for pKa Prediction Based on Electronic Structure Theory with Solvation Models. J 2021, 4, 849-864. https://doi.org/10.3390/j4040058
Fujiki R, Matsui T, Shigeta Y, Nakano H, Yoshida N. Recent Developments of Computational Methods for pKa Prediction Based on Electronic Structure Theory with Solvation Models. J. 2021; 4(4):849-864. https://doi.org/10.3390/j4040058
Chicago/Turabian StyleFujiki, Ryo, Toru Matsui, Yasuteru Shigeta, Haruyuki Nakano, and Norio Yoshida. 2021. "Recent Developments of Computational Methods for pKa Prediction Based on Electronic Structure Theory with Solvation Models" J 4, no. 4: 849-864. https://doi.org/10.3390/j4040058
APA StyleFujiki, R., Matsui, T., Shigeta, Y., Nakano, H., & Yoshida, N. (2021). Recent Developments of Computational Methods for pKa Prediction Based on Electronic Structure Theory with Solvation Models. J, 4(4), 849-864. https://doi.org/10.3390/j4040058