Biomethanol as a Marine Fuel Within Land Use Sustainability Boundaries
Abstract
1. Introduction
2. The Role of Alternative Fuels in Maritime Decarbonisation
Methanol as a Marine Fuel
3. Integration of Land Use Modelling, Shipping Emission Modelling, and Lifecycle Assessment
4. Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. An Overview of Biomethanol as a Marine Fuel
| Aspect | Advantages | Disadvantages | Example References |
|---|---|---|---|
| GHG emissions | Significant WTW CO2 reductions (up to 70–80%) compared to fossil marine fuels when produced from sustainable feedstocks with no iLUC. | GHG benefits sensitive to LUC and feedstock source; iLUC could offset savings. | [35,43] |
| Air pollutant emissions | No SOx, lower particulate matter, and lower NOx emissions compared to HFO; no methane slip. | Still emits CO2 on combustion; NOx control may be required (e.g., Selective Catalytic Reduction (SCR) or Exhaust Gas Recirculation (EGR)). | [42,47] |
| Water and land impacts | High-yield crops like sugarcane can produce large volumes of feedstock on relatively small land area if managed well. | Water-intensive crops may strain local resources; large-scale monocultures can reduce biodiversity and degrade soils; and can add pressure to planetary boundaries for land, water, and nutrients flows if scaled. | [28,29,93] |
| Technical compatibility | Liquid at ambient temperature and pressure; can be stored in modified existing tanks and bunkering infrastructure relatively easy to adapt; simplifies drop-in transition relative to cryogenic fuels. | Lower volumetric energy density (~50% of HFO) requiring larger tanks or more frequent refuelling; corrosive to some materials; and materials compatibility upgrades may be needed. | [37,39,45] |
| Safety | Lower toxicity and handling risks than ammonia; easier storage than cryogenic hydrogen. | Flammable with low flash point/low visibility flame; toxic if ingested; and requires strict handling protocols. | [19,43] |
| Economic factors | Potential cost reductions with scale-up and learning; co-location with existing agro-industrial systems (e.g., Brazilian sugarcane) can reduce logistics costs. | Currently more expensive than fossil fuels; production costs depend on feedstock price, plant efficiency, and policy incentives. | [19,43,45] |
| Scalability and supply | Multiple production pathways (biomass, e-methanol) allow gradual transition to low/zero-carbon feedstocks. Demand-side changes such as halving food loss and moderate diet shifts can free land for bioenergy without threatening food security. | Sustainable biomass availability is limited; competition with aviation and other sectors could constrain supply. | [11,29,70] |
Appendix A.2. Conversion Pathway Context
Appendix B
Appendix B.1. Biomethanol Production from AGNPP
Appendix B.2. Upstream Logistics for the Suggested Coastal Siting
Appendix B.3. Uncertainty and Sensitivities, Including Monte Carlo

| Case | Median | p05 | p95 |
|---|---|---|---|
| (a) 14 EJ | 20.52 | 13.86 | 27.05 |
| (b) 16 EJ | 20.28 | 13.70 | 26.83 |
| (c) 19 EJ | 25.79 | 17.84 | 33.75 |
| (d) 20 EJ | 20.42 | 13.75 | 27.07 |
| Case | Median | p05 | p95 |
|---|---|---|---|
| (a) 14 EJ | 77.19 | 69.76 | 84.66 |
| (b) 16 EJ | 77.50 | 70.07 | 84.83 |
| (c) 19 EJ | 71.35 | 62.25 | 80.30 |
| (d) 20 EJ | 77.35 | 69.78 | 84.74 |
| Case | CI Gap (kg CO2-eq GJ−1) | Carbon Credit @ EUR 100–150/t (EUR GJ−1) | Residual CfD if ΔC = EUR 10/GJ (EUR GJ−1) |
|---|---|---|---|
| 14 EJ | 69.3 | 6.9–10.4 | 3.1–0.0 |
| 16 EJ | 69.7 | 7.0–10.5 | 3.0–0.0 |
| 19 EJ | 64.3 | 6.4–9.6 | 3.6–0.4 |
| 20 EJ | 69.5 | 7.0–10.4 | 3.0–0.0 |
References
- United Nations Conference on Trade and Development (UNCTAD). Review of Maritime Transport 2024: Navigating Maritime Chokepoints; United Nations Publications: New York, NY, USA, 2024; ISBN 978-92-1-003206-3. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Transport. In Climate Change 2022—Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 1049–1160. ISBN 978-1-009-15792-6. [Google Scholar]
- Faber, J.; Hanayama, S.; Zhang, S.; Pereda, P.; Comer, B.; Hauerhof, E.; Schim van der Loeff, W.; Smith, T.; Zhang, Y.; Kosaka, H.; et al. Fourth IMO Greenhouse Gas Study 2020; International Maritime Organization (IMO): London, UK, 2021; ISBN 978-92-801-1732-3. [Google Scholar]
- Lindstad, H.E.; Rehn, C.F.; Eskeland, G.S. Sulphur Abatement Globally in Maritime Shipping. Transp. Res. Part Transp. Environ. 2017, 57, 303–313. [Google Scholar] [CrossRef]
- Bullock, S.; Mason, J.; Larkin, A. Are the IMO’s New Targets for International Shipping Compatible with the Paris Climate Agreement? Clim. Policy 2024, 24, 963–968. [Google Scholar] [CrossRef]
- Bullock, S.; Larkin, A.; Köhler, J. Beyond Fuel: The Case for a Wider Perspective on Shipping and Climate Change. Clim. Policy 2025, 25, 1326–1334. [Google Scholar] [CrossRef]
- Bullock, S.; Mason, J.; Broderick, J.; Larkin, A. Shipping and the Paris Climate Agreement: A Focus on Committed Emissions. BMC Energy 2020, 2, 5. [Google Scholar] [CrossRef]
- Gettelman, A.; Christensen, M.W.; Diamond, M.S.; Gryspeerdt, E.; Manshausen, P.; Stier, P.; Watson-Parris, D.; Yang, M.; Yoshioka, M.; Yuan, T. Has Reducing Ship Emissions Brought Forward Global Warming? Geophys. Res. Lett. 2024, 51, e2024GL109077. [Google Scholar] [CrossRef]
- Yoshioka, M.; Grosvenor, D.P.; Booth, B.B.B.; Morice, C.P.; Carslaw, K.S. Warming Effects of Reduced Sulfur Emissions from Shipping. Atmos. Chem. Phys. 2024, 24, 13681–13692. [Google Scholar] [CrossRef]
- REN21. Renewables 2024 Global Status Report–Market and Industry Trends|Bioenergy; REN21: Paris, France, 2024; Available online: https://www.ren21.net/gsr-2024/modules/energy_supply/02_market_and_industry_trends/01_bioenergy/ (accessed on 7 September 2025).
- Daioglou, V.; Muratori, M.; Lamers, P.; Fujimori, S.; Kitous, A.; Köberle, A.C.; Bauer, N.; Junginger, M.; Kato, E.; Leblanc, F.; et al. Implications of Climate Change Mitigation Strategies on International Bioenergy Trade. Clim. Change 2020, 163, 1639–1658. [Google Scholar] [CrossRef]
- Hanssen, S.V.; Daioglou, V.; Steinmann, Z.J.N.; Frank, S.; Popp, A.; Brunelle, T.; Lauri, P.; Hasegawa, T.; Huijbregts, M.A.J.; Van Vuuren, D.P. Biomass Residues as Twenty-First Century Bioenergy Feedstock—A Comparison of Eight Integrated Assessment Models. Clim. Change 2020, 163, 1569–1586. [Google Scholar] [CrossRef] [PubMed]
- Bergero, C.; Gosnell, G.; Gielen, D.; Kang, S.; Bazilian, M.; Davis, S.J. Pathways to Net-Zero Emissions from Aviation. Nat. Sustain. 2023, 6, 404–414. [Google Scholar] [CrossRef]
- DNV Biofuels in Shipping–Current Market and Guidance on Use and Reporting; DNV: Oslo, Norway, 2025; Available online: https://www.dnv.com/maritime/publications/biofuels-in-shipping-white-paper-2025-download/ (accessed on 16 January 2025).
- Speizer, S.; Fuhrman, J.; Aldrete Lopez, L.; George, M.; Kyle, P.; Monteith, S.; McJeon, H. Integrated Assessment Modeling of a Zero-Emissions Global Transportation Sector. Nat. Commun. 2024, 15, 4439. [Google Scholar] [CrossRef]
- Sonnleitner, A.; Bacovsky, D. Development and Deployment of Advanced Biofuel Demonstration Facilities; IEA Bioenergy: Paris, France, 2024. [Google Scholar]
- ITF. Managing Competing Sectoral Demands for Energy Resources: Transitioning to Sustainable Transport. ITF Roundtable Reports, No. 143; OECD Publishing: Paris, France, 2024. [Google Scholar]
- IEA. Net Zero Roadmap: A Global Pathway to Keep the 1.5 °C Goal in Reach—2023 Update; IEA Bioenergy (Technology Collaboration Programme): Paris, France, 2023. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Ebadian, M.; Van Dyk, S.; McMillan, J.D.; Saddler, J. Biofuels Policies That Have Encouraged Their Production and Use: An International Perspective. Energy Policy 2020, 147, 111906. [Google Scholar] [CrossRef]
- White, P.M.; Webber, C.L.; Viator, R.P.; Aita, G. Sugarcane Biomass, Dry Matter, and Sucrose Availability and Variability When Grown on a Bioenergy Feedstock Production Cycle. BioEnergy Res. 2019, 12, 55–67. [Google Scholar] [CrossRef]
- Singels, A.; Jones, M.R.; Lumsden, T.G. Potential for Sugarcane Production Under Current and Future Climates in South Africa: Sugar and Ethanol Yields, and Crop Water Use. Sugar Tech 2023, 25, 473–481. [Google Scholar] [CrossRef]
- Kannan, B.; Yarra, R.; Ramkumar, T.R.; Dinesh Babu, K.S. Biotechnological Manipulations in Sugarcane for Bioenergy Applications. In Value Addition and Product Diversification in Sugarcane; Suresha, G.S., Krishnappa, G., Palanichamy, M., Mahadeva Swamy, H.K., Kuppusamy, H., Govindakurup, H., Eds.; Springer Nature: Singapore, 2024; pp. 91–107. ISBN 978-981-97-7227-8. [Google Scholar]
- Lu, G.; Liu, P.; Wu, Q.; Zhang, S.; Zhao, P.; Zhang, Y.; Que, Y. Sugarcane Breeding: A Fantastic Past and Promising Future Driven by Technology and Methods. Front. Plant Sci. 2024, 15, 1375934. [Google Scholar] [CrossRef]
- Diniz, A.L.; Ferreira, S.S.; Ten-Caten, F.; Margarido, G.R.A.; Dos Santos, J.M.; Barbosa, G.V.D.S.; Carneiro, M.S.; Souza, G.M. Genomic Resources for Energy Cane Breeding in the Post Genomics Era. Comput. Struct. Biotechnol. J. 2019, 17, 1404–1414. [Google Scholar] [CrossRef]
- Waclawovsky, A.J.; Sato, P.M.; Lembke, C.G.; Moore, P.H.; Souza, G.M. Sugarcane for Bioenergy Production: An Assessment of Yield and Regulation of Sucrose Content. Plant Biotechnol. J. 2010, 8, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Daioglou, V.; Woltjer, G.; Strengers, B.; Elbersen, B.; Barberena Ibañez, G.; Sánchez Gonzalez, D.; Gil Barno, J.; Van Vuuren, D.P. Progress and Barriers in Understanding and Preventing Indirect Land-use Change. Biofuels Bioprod. Biorefin. 2020, 14, 924–934. [Google Scholar] [CrossRef]
- Heck, V.; Gerten, D.; Lucht, W.; Popp, A. Biomass-Based Negative Emissions Difficult to Reconcile with Planetary Boundaries. Nat. Clim. Change 2018, 8, 151–155. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, 1st ed.; Shukla, P.R., Skeg, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.O., Roberts, D.C., Malley, J., Eds.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-009-15798-8. [Google Scholar]
- Jeswani, H.K.; Chilvers, A.; Azapagic, A. Environmental Sustainability of Biofuels: A Review. Proc. R. Soc. A 2020, 476, 20200351. [Google Scholar] [CrossRef] [PubMed]
- Puricelli, S.; Cardellini, G.; Casadei, S.; Faedo, D.; Van Den Oever, A.E.M.; Grosso, M. A Review on Biofuels for Light-Duty Vehicles in Europe. Renew. Sustain. Energy Rev. 2021, 137, 110398. [Google Scholar] [CrossRef]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J.; Hogeboom, R.J.; Mekonnen, M.M. Limits to the World’s Green Water Resources for Food, Feed, Fiber, Timber, and Bioenergy. Proc. Natl. Acad. Sci. USA 2019, 116, 4893–4898. [Google Scholar] [CrossRef]
- Valin, H.; Peters, D.; van den Berg, M.; Frank, S.; Havlik, P.; Forsell, N.; Hamelinck, C.; Pirker, J.; Mosnier, A.; Balkovic, J.; et al. The Land Use Change Impact of Biofuels Consumed in the EU: Quantification of Area and Greenhouse Gas Impacts; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2015; Available online: https://pure.iiasa.ac.at/id/eprint/12310/1/Final%20Report_GLOBIOM_publication.pdf (accessed on 27 January 2024).
- Escobar, N.; Valin, H.; Frank, S.; Galperin, D.; Wade, C.M.; Ringwald, L.; Tanner, D.; Hinkel, N.; Havlík, P.; Baker, J.S.; et al. Understanding Uncertainty in Market-Mediated Responses to US Oilseed Biodiesel Demand: Sensitivity of ILUC Emission Estimates to GLOBIOM Parametric Uncertainty. Environ. Sci. Technol. 2025, 59, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Kanchiralla, F.M.; Brynolf, S.; Mjelde, A. Role of Biofuels, Electro-Fuels, and Blue Fuels for Shipping: Environmental and Economic Life Cycle Considerations. Energy Environ. Sci. 2024, 17, 6393–6418. [Google Scholar] [CrossRef]
- Aakko-Saksa, P.T.; Lehtoranta, K.; Kuittinen, N.; Järvinen, A.; Jalkanen, J.-P.; Johnson, K.; Jung, H.; Ntziachristos, L.; Gagné, S.; Takahashi, C.; et al. Reduction in Greenhouse Gas and Other Emissions from Ship Engines: Current Trends and Future Options. Prog. Energy Combust. Sci. 2023, 94, 101055. [Google Scholar] [CrossRef]
- Guo, Z.; Lu, L.; Song, E.; Luo, Y.; Yang, T.; Yao, C.; Xin, Q.; Niu, Z. Real-Time Simulation of Marine Dual-Fuel Engine: Development of 0-D Full-Engine Model for Methanol-Diesel Mixed Combustion. Appl. Therm. Eng. 2025, 279, 127526. [Google Scholar] [CrossRef]
- Roux, M.; Lodato, C.; Laurent, A.; Astrup, T.F. A Review of Life Cycle Assessment Studies of Maritime Fuels: Critical Insights, Gaps, and Recommendations. Sustain. Prod. Consum. 2024, 50, 69–86. [Google Scholar] [CrossRef]
- Solakivi, T.; Paimander, A.; Ojala, L. Cost Competitiveness of Alternative Maritime Fuels in the New Regulatory Framework. Transp. Res. Part Transp. Environ. 2022, 113, 103500. [Google Scholar] [CrossRef]
- Chalaris, I.; Jeong, B.; Jang, H. Application of Parametric Trend Life Cycle Assessment for Investigating the Carbon Footprint of Ammonia as Marine Fuel. Int. J. Life Cycle Assess. 2022, 27, 1145–1163. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, Y.; Zhen, X.; Liu, Z. The Effect of Methanol Production and Application in Internal Combustion Engines on Emissions in the Context of Carbon Neutrality: A Review. Fuel 2022, 320, 123902. [Google Scholar] [CrossRef]
- Brynolf, S.; Fridell, E.; Andersson, K. Environmental Assessment of Marine Fuels: Liquefied Natural Gas, Liquefied Biogas, Methanol and Bio-Methanol. J. Clean. Prod. 2014, 74, 86–95. [Google Scholar] [CrossRef]
- IRENA. Innovation Outlook: Renewable Methanol; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Heck, V.; Hoff, H.; Wirsenius, S.; Meyer, C.; Kreft, H. Land Use Options for Staying within the Planetary Boundaries—Synergies and Trade-Offs between Global and Local Sustainability Goals. Glob. Environ. Change 2018, 49, 73–84. [Google Scholar] [CrossRef]
- Gray, N.; McDonagh, S.; O’Shea, R.; Smyth, B.; Murphy, J.D. Decarbonising Ships, Planes and Trucks: An Analysis of Suitable Low-Carbon Fuels for the Maritime, Aviation and Haulage Sectors. Adv. Appl. Energy 2021, 1, 100008. [Google Scholar] [CrossRef]
- Deka, T.J.; Osman, A.I.; Baruah, D.C.; Rooney, D.W. Methanol Fuel Production, Utilization, and Techno-Economy: A Review. Environ. Chem. Lett. 2022, 20, 3525–3554. [Google Scholar] [CrossRef]
- Fridell, E.; Salberg, H.; Salo, K. Measurements of Emissions to Air from a Marine Engine Fueled by Methanol. J. Mar. Sci. Appl. 2021, 20, 138–143. [Google Scholar] [CrossRef]
- Lee, H.; Lee, J.; Roh, G.; Lee, S.; Choung, C.; Kang, H. Comparative Life Cycle Assessments and Economic Analyses of Alternative Marine Fuels: Insights for Practical Strategies. Sustainability 2024, 16, 2114. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Igathinathane, C.; Archer, D.; McCulloch, R. Energy-Based Break-Even Transportation Distance of Biomass Feedstocks. Front. Energy Res. 2024, 12, 1347581. [Google Scholar] [CrossRef]
- Moretti, L.; Milani, M.; Lozza, G.G.; Manzolini, G. A Detailed MILP Formulation for the Optimal Design of Advanced Biofuel Supply Chains. Renew. Energy 2021, 171, 159–175. [Google Scholar] [CrossRef]
- Pavlenko, N.; Comer, B.; Zhou, Y.; Clark, N.; Rutherford, D. The Climate Implications of Using LNG as a Marine Fuel; Swedish Environmental Protection Agency: Stockholm, Sweden, 2020. [Google Scholar]
- Seland, Ø.; Bentsen, M.; Olivié, D.; Toniazzo, T.; Gjermundsen, A.; Graff, L.S.; Debernard, J.B.; Gupta, A.K.; He, Y.-C.; Kirkevåg, A.; et al. Overview of the Norwegian Earth System Model (NorESM2) and Key Climate Response of CMIP6 DECK, Historical, and Scenario Simulations. Geosci. Model. Dev. 2020, 13, 6165–6200. [Google Scholar] [CrossRef]
- Kramel, D.; Muri, H.; Kim, Y.; Lonka, R.; Nielsen, J.B.; Ringvold, A.L.; Bouman, E.A.; Steen, S.; Strømman, A.H. Global Shipping Emissions from a Well-to-Wake Perspective: The MariTEAM Model. Environ. Sci. Technol. 2021, 55, 15040–15050. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C.; Bonan, G.; Collier, N.; Ghimire, B.; Van Kampenhout, L.; Kennedy, D.; et al. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. J. Adv. Model. Earth Syst. 2019, 11, 4245–4287. [Google Scholar] [CrossRef]
- Val Martin, M.; Blanc-Betes, E.; Fung, K.M.; Kantzas, E.P.; Kantola, I.B.; Chiaravalloti, I.; Taylor, L.L.; Emmons, L.K.; Wieder, W.R.; Planavsky, N.J.; et al. Improving Nitrogen Cycling in a Land Surface Model (CLM5) to Quantify Soil N2O, NO, and NH3 Emissions from Enhanced Rock Weathering with Croplands. Geosci. Model. Dev. 2023, 16, 5783–5801. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Carvalho, J.L.N.; Cerri, C.E.P.; Nogueira, L.A.H.; Souza, G.M.; Cantarella, H. Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy. Land 2021, 10, 72. [Google Scholar] [CrossRef]
- Ferchaud, F.; Marsac, S.; Mary, B. Conversion of Arable Land to Perennial Bioenergy Crops Increases Soil Organic Carbon Stocks on the Long Term. Agric. Ecosyst. Environ. 2025, 388, 109637. [Google Scholar] [CrossRef]
- Mello, F.F.C.; Cerri, C.E.P.; Davies, C.A.; Holbrook, N.M.; Paustian, K.; Maia, S.M.F.; Galdos, M.V.; Bernoux, M.; Cerri, C.C. Payback Time for Soil Carbon and Sugar-Cane Ethanol. Nat. Clim. Change 2014, 4, 605–609. [Google Scholar] [CrossRef]
- Qin, Z.; Dunn, J.B.; Kwon, H.; Mueller, S.; Wander, M.M. Soil Carbon Sequestration and Land Use Change Associated with Biofuel Production: Empirical Evidence. GCB Bioenergy 2016, 8, 66–80. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Pagani, F.; Schiavina, M.; Melchiorri, M.; Pisoni, E.; Graziosi, F.; Muntean, M.; Maes, J.; Dijkstra, L.; et al. Insights into the Spatial Distribution of Global, National, and Subnational Greenhouse Gas Emissions in the Emissions Database for Global Atmospheric Research (EDGAR v8.0). Earth Syst. Sci. Data 2024, 16, 2811–2830. [Google Scholar] [CrossRef]
- Johansson, L.; Jalkanen, J.-P.; Kukkonen, J. Global Assessment of Shipping Emissions in 2015 on a High Spatial and Temporal Resolution. Atmos. Environ. 2017, 167, 403–415. [Google Scholar] [CrossRef]
- Olmer, N.; Comer, B.; Roy, B.; Mao, X.; Rutherford, D. Greenhouse Gas Emissions from Global Shipping, 2013–2015: Detailed Methodology; International Council on Clean Transportation: Washington, DC, USA, 2017. [Google Scholar]
- Kramel, D.; Franz, S.M.; Klenner, J.; Muri, H.; Münster, M.; Strømman, A.H. Advancing SSP-Aligned Scenarios of Shipping toward 2050. Sci. Rep. 2024, 14, 8965. [Google Scholar] [CrossRef] [PubMed]
- Krey, V.; Havlik, P.; Kishimoto, P.; Fricko, O.; Zilliacus, J.; Gidden, M.; Strubegger, M.; Kartasasmita, G.; Ermolieva, T.; Forsell, N.; et al. MESSAGEix-GLOBIOM Documentation—2020 Release; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2020. [Google Scholar] [CrossRef]
- Hurtt, G.C.; Chini, L.; Sahajpal, R.; Frolking, S.; Bodirsky, B.L.; Calvin, K.; Doelman, J.C.; Fisk, J.; Fujimori, S.; Klein Goldewijk, K.; et al. Harmonization of Global Land Use Change and Management for the Period 850–2100 (LUH2) for CMIP6. Geosci. Model. Dev. 2020, 13, 5425–5464. [Google Scholar] [CrossRef]
- Sathyanadh, A.; Esfandiari, H.; Bourgeois, T.; Schwinger, J.; Partanen, A.-I.; Debolsky, M.; Seifert, M.; Keller, D.; Muri, H. Efficacy of Individual and Combined Terrestrial and Marine Carbon Dioxide Removal. Environ. Res. Lett. 2025; under review. [Google Scholar]
- Nakagawa, H.; Harada, T.; Ichinose, T.; Takeno, K.; Matsumoto, S.; Kobayashi, M.; Sakai, M. Biomethanol Production and CO2 Emission Reduction from Forage Grasses, Trees, and Crop Residues. Jpn. Agric. Res. Q. JARQ 2007, 41, 173–180. [Google Scholar] [CrossRef]
- Alexander, P.; Brown, C.; Arneth, A.; Dias, C.; Finnigan, J.; Moran, D.; Rounsevell, M.D.A. Could Consumption of Insects, Cultured Meat or Imitation Meat Reduce Global Agricultural Land Use? Glob. Food Secur. 2017, 15, 22–32. [Google Scholar] [CrossRef]
- Alexander, P.; Reddy, A.; Brown, C.; Henry, R.C.; Rounsevell, M.D.A. Transforming Agricultural Land Use through Marginal Gains in the Food System. Glob. Environ. Change 2019, 57, 101932. [Google Scholar] [CrossRef]
- Gerten, D.; Heck, V.; Jägermeyr, J.; Bodirsky, B.L.; Fetzer, I.; Jalava, M.; Kummu, M.; Lucht, W.; Rockström, J.; Schaphoff, S.; et al. Feeding Ten Billion People Is Possible within Four Terrestrial Planetary Boundaries. Nat. Sustain. 2020, 3, 200–208. [Google Scholar] [CrossRef]
- Read, Q.D.; Brown, S.; Cuéllar, A.D.; Finn, S.M.; Gephart, J.A.; Marston, L.T.; Meyer, E.; Weitz, K.A.; Muth, M.K. Assessing the Environmental Impacts of Halving Food Loss and Waste along the Food Supply Chain. Sci. Total Environ. 2020, 712, 136255. [Google Scholar] [CrossRef] [PubMed]
- Folberth, C.; Khabarov, N.; Balkovič, J.; Skalský, R.; Visconti, P.; Ciais, P.; Janssens, I.A.; Peñuelas, J.; Obersteiner, M. The Global Cropland-Sparing Potential of High-Yield Farming. Nat. Sustain. 2020, 3, 281–289. [Google Scholar] [CrossRef]
- Mauser, W.; Klepper, G.; Zabel, F.; Delzeit, R.; Hank, T.; Putzenlechner, B.; Calzadilla, A. Global Biomass Production Potentials Exceed Expected Future Demand without the Need for Cropland Expansion. Nat. Commun. 2015, 6, 8946. [Google Scholar] [CrossRef]
- Waha, K.; Dietrich, J.P.; Portmann, F.T.; Siebert, S.; Thornton, P.K.; Bondeau, A.; Herrero, M. Multiple Cropping Systems of the World and the Potential for Increasing Cropping Intensity. Glob. Environ. Change 2020, 64, 102131. [Google Scholar] [CrossRef]
- Kummu, M.; De Moel, H.; Porkka, M.; Siebert, S.; Varis, O.; Ward, P.J. Lost Food, Wasted Resources: Global Food Supply Chain Losses and Their Impacts on Freshwater, Cropland, and Fertiliser Use. Sci. Total Environ. 2012, 438, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Gatto, A.; Chepeliev, M. Reducing Global Food Loss and Waste Could Improve Air Quality and Lower the Risk of Premature Mortality. Environ. Res. Lett. 2024, 19, 014080. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Doelman, J.C.; Schmidt Tagomori, I.; Beusen, A.H.W.; Cornell, S.E.; Röckstrom, J.; Schipper, A.M.; Stehfest, E.; Ambrosio, G.; Van Den Berg, M.; et al. Exploring Pathways for World Development within Planetary Boundaries. Nature 2025, 641, 910–916. [Google Scholar] [CrossRef]
- Muri, H. The Role of Large—Scale BECCS in the Pursuit of the 1.5 °C Target: An Earth System Model Perspective. Environ. Res. Lett. 2018, 13, 044010. [Google Scholar] [CrossRef]
- Malins, C. Understanding the Indirect Land Use Change Analysis for CORSIA; International Civil Aviation Organization (ICAO): Montréal, QC, Canada, 2019. [Google Scholar]
- Douglas, C.M.; Lai, H.; Ostadi, M.; Shin, W.; Bromberg, L.; Zang, G. Techno-Economic Analysis and Life-Cycle Assessment of Methanol Synthesis Plants Using Renewable Hydrogen and Carbon Dioxide Feedstocks. Energy Convers. Manag. 2026, 347, 120374. [Google Scholar] [CrossRef]
- Blaine, M.; Webley, P.; Honnery, D. CO2 e Emissions of Renewable Methanol from Forestry Residues and Conventional Natural Gas-Based Methanol: A Comparative Analysis. Energy Environ. Sci. 2025, 18, 6325–6343. [Google Scholar] [CrossRef]
- Tan, E.C.D.; Hawkins, T.R.; Lee, U.; Tao, L.; Meyer, P.A.; Wang, M.; Thompson, T. Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses. Environ. Sci. Technol. 2021, 55, 7561–7570. [Google Scholar] [CrossRef]
- Wu, P.-C.; Lin, C.-Y. Feasibility and Cost-Benefit Analysis of Methanol as a Sustainable Alternative Fuel for Ships. J. Mar. Sci. Eng. 2025, 13, 973. [Google Scholar] [CrossRef]
- Harahap, F.; Nurdiawati, A.; Conti, D.; Leduc, S.; Urban, F. Renewable Marine Fuel Production for Decarbonised Maritime Shipping: Pathways, Policy Measures and Transition Dynamics. J. Clean. Prod. 2023, 415, 137906. [Google Scholar] [CrossRef]
- Flodén, J.; Zetterberg, L.; Christodoulou, A.; Parsmo, R.; Fridell, E.; Hansson, J.; Rootzén, J.; Woxenius, J. Shipping in the EU Emissions Trading System: Implications for Mitigation, Costs and Modal Split. Clim. Policy 2024, 24, 969–987. [Google Scholar] [CrossRef]
- FuelEU Maritime: Regulation Insights & Support. Available online: https://www.dnv.com/maritime/insights/topics/fueleu-maritime/ (accessed on 15 October 2025).
- Richstein, J.C.; Neuhoff, K. Carbon Contracts-for-Difference: How to de-Risk Innovative Investments for a Low-Carbon Industry? iScience 2022, 25, 104700. [Google Scholar] [CrossRef]
- Khodadadi, A.; Poudineh, R. Contracts for Difference—CfDs—In the Energy Transition: Balancing Market Efficiency and Risk Mitigation; Oxford Institute for Energy Studies (OIES): Oxford, UK, 2024. [Google Scholar]
- Anisie, A.; Navarro, J.P.J.; Antic, T.; Pasimeni, F.; Blanco, H. Innovation Landscape for Smart Electrification: Decarbonising End-Use Sectors with Renewable Power; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2023. [Google Scholar]
- Lombardelli, G.; Scaccabarozzi, R.; Conversano, A.; Gatti, M. Bio-Methanol with Negative CO2 Emissions from Residual Forestry Biomass Gasification: Modelling and Techno-Economic Assessment of Different Process Configurations. Biomass Bioenergy 2024, 188, 107315. [Google Scholar] [CrossRef]
- Savelli, I.; Hardy, J.; Hepburn, C.; Morstyn, T. Putting Wind and Solar in Their Place: Internalising Congestion and Other System-Wide Costs with Enhanced Contracts for Difference in Great Britain. Energy Econ. 2022, 113, 106218. [Google Scholar] [CrossRef]
- Schlecht, I.; Maurer, C.; Hirth, L. Financial Contracts for Differences: The Problems with Conventional CfDs in Electricity Markets and How Forward Contracts Can Help Solve Them. Energy Policy 2024, 186, 113981. [Google Scholar] [CrossRef]
- Zhao, X.; Mignone, B.K.; Wise, M.A.; McJeon, H.C. Trade-Offs in Land-Based Carbon Removal Measures under 1.5 °C and 2 °C Futures. Nat. Commun. 2024, 15, 2297. [Google Scholar] [CrossRef] [PubMed]
- Artz, J.; Müller, T.E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem. Rev. 2018, 118, 434–504. [Google Scholar] [CrossRef]
- Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on Methanation —From Fundamentals to Current Projects. Fuel 2016, 166, 276–296. [Google Scholar] [CrossRef]
- Tabibian, S.S.; Sharifzadeh, M. Statistical and Analytical Investigation of Methanol Applications, Production Technologies, Value-Chain and Economy with a Special Focus on Renewable Methanol. Renew. Sustain. Energy Rev. 2023, 179, 113281. [Google Scholar] [CrossRef]
- Lonis, F.; Tola, V.; Cau, G. Assessment of Integrated Energy Systems for the Production and Use of Renewable Methanol by Water Electrolysis and CO2 Hydrogenation. Fuel 2021, 285, 119160. [Google Scholar] [CrossRef]
- Malmgren, E.; Brynolf, S.; Fridell, E.; Grahn, M.; Andersson, K. The Environmental Performance of a Fossil-Free Ship Propulsion System with Onboard Carbon Capture—A Life Cycle Assessment of the HyMethShip Concept. Sustain. Energy Fuels 2021, 5, 2753–2770. [Google Scholar] [CrossRef]
- Svanberg, M.; Ellis, J.; Lundgren, J.; Landälv, I. Renewable Methanol as a Fuel for the Shipping Industry. Renew. Sustain. Energy Rev. 2018, 94, 1217–1228. [Google Scholar] [CrossRef]
- Zang, G.; Sun, P.; Elgowainy, A.A.; Bafana, A.; Wang, M. Performance and Cost Analysis of Liquid Fuel Production from H2 and CO2 Based on the Fischer-Tropsch Process. J. CO2 Util. 2021, 46, 101459. [Google Scholar] [CrossRef]
- Psathas, F.; Georgiou, P.N.; Rentizelas, A. Optimizing the Design of a Biomass-to-Biofuel Supply Chain Network Using a Decentralized Processing Approach. Energies 2022, 15, 5001. [Google Scholar] [CrossRef]
- Xie, F.; Huang, Y.; Eksioglu, S. Integrating Multimodal Transport into Cellulosic Biofuel Supply Chain Design under Feedstock Seasonality with a Case Study Based on California. Bioresour. Technol. 2014, 152, 15–23. [Google Scholar] [CrossRef]
- Zhang, F.; Johnson, D.M.; Wang, J. Integrating Multimodal Transport into Forest-Delivered Biofuel Supply Chain Design. Renew. Energy 2016, 93, 58–67. [Google Scholar] [CrossRef]
- Blanc-Betes, E.; Gomez-Casanovas, N.; Bernacchi, C.J.; Boughton, E.H.; Yang, W.; DeLucia, E.H. The Carbon Budget of Land Conversion: Sugarcane Expansion and Implications for a Sustainable Bioenergy Landscape in Southeastern United States. GCB Bioenergy 2025, 17, e70058. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Chapter 5: Cropland. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Institute for Global Environmental Strategies (IGES): Hayama, Japan, 2006. [Google Scholar]
- Hamelinck, C.N.; Faaij, A.P.C. Outlook for Advanced Biofuels. Energy Policy 2006, 34, 3268–3283. [Google Scholar] [CrossRef]
- Ming, L.; Chen, L.; Jasmine, L.S.L.; Yin, S.J.; Kiong, K.E.; Mengyao, Y.; Xueni, G. Methanol as a Marine Fuel—Availability and Sea Trial Considerations; Nanyang Technological University: Singapore, 2021. [Google Scholar]
- Greenhouse Gas Reporting: Conversion Factors. 2024. Available online: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2024 (accessed on 15 October 2025).
- Moreira, J.R.; Pacca, S.A.; Goldemberg, J. The Reduction of CO2e Emissions in the Transportation Sector: Plug-in Electric Vehicles and Biofuels. Renew. Sustain. Energy Transit. 2022, 2, 100032. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esfandiari, H.; Muri, H.; Kramel, D. Biomethanol as a Marine Fuel Within Land Use Sustainability Boundaries. Clean Technol. 2025, 7, 101. https://doi.org/10.3390/cleantechnol7040101
Esfandiari H, Muri H, Kramel D. Biomethanol as a Marine Fuel Within Land Use Sustainability Boundaries. Clean Technologies. 2025; 7(4):101. https://doi.org/10.3390/cleantechnol7040101
Chicago/Turabian StyleEsfandiari, Homa, Helene Muri, and Diogo Kramel. 2025. "Biomethanol as a Marine Fuel Within Land Use Sustainability Boundaries" Clean Technologies 7, no. 4: 101. https://doi.org/10.3390/cleantechnol7040101
APA StyleEsfandiari, H., Muri, H., & Kramel, D. (2025). Biomethanol as a Marine Fuel Within Land Use Sustainability Boundaries. Clean Technologies, 7(4), 101. https://doi.org/10.3390/cleantechnol7040101

