- Article
Rate-Based Modeling and Sensitivity Analysis of Potassium Carbonate Systems for Carbon Dioxide Capture from Industrial Flue Gases
- Giannis Pachakis,
- Sofia Mai and
- Dimitris Malamis
- + 1 author
The increasing atmospheric concentration of carbon dioxide (CO2) poses a critical threat to global climate stability, highlighting the need for efficient carbon capture technologies. While amine-based solvents such as monoethanolamine (MEA) are widely used for industrial CO2 capture, they are subject to limitations such as high energy requirements for regeneration, solvent degradation, and environmental concerns. This study investigates potassium carbonate/bicarbonate system as an alternative solution for CO2 absorption. The absorption mechanism and reaction kinetics of potassium carbonate in the presence of bicarbonates were reviewed. A rate-based model was developed in Aspen Plus, using literature kinetics, to simulate CO2 absorption using 20 wt% potassium carbonate (K2CO3) solution with 10% carbonate-to-bicarbonate conversion under different industrial conditions. Three flue gas compositions were evaluated: cement industry, biomass combustion, and anaerobic digestion, each at 3000 m3/h flow rate. The simulation was conducted to determine minimum column height and solvent loading requirements with a target output of 90% CO2 removal from the gas streams. Results demonstrated that potassium carbonate systems successfully achieved the target removal efficiency across all scenarios. Column heights ranged from 18 to 25 m, with molar K2CO3/CO2 ratios between 1.41 and 4.00. The biomass combustion scenario proved most favorable due to lower CO2 concentration and effective heat integration. While requiring higher column heights (18–25 m) compared to MEA systems (6–12 m) and greater solvent mass flow rates, potassium carbonate demonstrated technical feasibility for CO2 capture. The findings of this study provide a foundation for technoeconomic evaluation of potassium carbonate systems versus amine-based technologies for industrial carbon capture applications.
19 January 2026


![Surface atmospheric CO2 concentration. Adapted from [3].](https://mdpi-res.com/cleantechnol/cleantechnol-08-00014/article_deploy/html/images/cleantechnol-08-00014-g001-550.jpg)




