Evaluation of Properties and Bioactivity of Silver (Ag) Nanoparticles (NPs) Fabricated Using Nixtamalization Wastewater (Nejayote)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Nej Pre-Treatment
Pre-Treatment of the Nej
2.2. Physicochemical Analysis of Nej
2.3. Quantification of FA in Nej
2.4. Biogenic Synthesis of AgNPs
2.5. Characterization of AgNPs
2.6. Evaluation of Antibacterial Activity
Evaluation of the Antibacterial Activity of FA
2.7. Hemolysis Assay
2.8. Toxicity and Cell Viability Assays of AgNPs
2.8.1. Cell Viability Assay (CCK-8)
2.8.2. Cytotoxicity Assay (LDH)
3. Results and Discussion
3.1. Pre-Treatment of the Nej
3.2. Physicochemical Analysis of Nej
3.3. Quantification of FA in Nej
3.4. Biogenic Synthesis of AgNPs
3.5. Characterization of AgNPs
3.5.1. UV-Vis Spectroscopy
3.5.2. XRD
3.5.3. TEM
3.5.4. FTIR
3.5.5. AFM
3.6. Evaluation of Antibacterial Activity
3.6.1. Evaluation of the Antibacterial Activity of FA
3.6.2. Mechanism of Antibacterial Action
3.7. Hemolysis Assay
3.8. Toxicity and Cell Viability Assays of AgNPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ag | silver |
NPs | nanoparticles |
AgNPs | silver nanoparticles |
Ca(OH)2 | calcium hydroxide |
AX | arabinoxylan |
Nej | Nejayote |
COD | Chemical Oxygen Demand |
NiO NPs | nickel oxide nanoparticles |
TiO2 NPs | Titanium Oxide Nanoparticles |
E. coli | Escherichia coli |
AgNO3 | silver nitrate |
BOD5 | Biological Oxygen Demand |
EDTA | ethylenediaminetetraacetic acid |
TSS | total suspended solid |
SSEDs | settleable solid |
TS | total solid |
DNS | dinitrosalicilyc acid |
HCl | hydrochloric acid |
RD | relative density |
HPLC | high-performance liquid chromatography |
S/N | signal–noise |
XRD | X-ray diffraction |
FWHM | full width at half maximum |
TEM | transmission electron microscopy |
HR-TEM | high-resolution transmission electron microscopy |
SAED | selected area electron diffraction |
EDS | energy-dispersive electron |
FTIR | Fourier transform infrared spectroscopy |
KBr | potassium bromide |
AFM | Atomic Force Microscopy |
CFUs | colony-forming units |
MIC | minimum inhibitory concentration |
MBC | minimum bactericide concentration |
PBS | phosphate-buffered saline |
BHI | brain–heart infusion |
RBCs | red blood cells |
NMs | nanomaterials |
FBS | fetal bovine serum |
CCK-8 | Cell counting kit-8 |
LDH | lactate dehydrogenase |
FA | ferulic acid |
Min | Minutes |
ANOVA | analysis of variance |
SPR | surface plasmon resonance |
AgCl | silver chloride |
Cu | copper |
Ca | calcium |
3D | third dimension |
ROS | reactive oxygen species |
DNA | deoxyribonucleic acid |
References
- Joshi, L. Green Synthesis/Biosynthesis of Silver Nanoparticles by Using Orange Peel Extract. Master’s Thesis, The University of Texas Rio Grande Valley, Edinburg, TX, USA, 2018. [Google Scholar]
- Ali, B.M.H. Eco-friendly synthesis of silver nanoparticles from crust of Cucurbita maxima L. (red pumpkin). Eurasia J. Biosci. 2020, 14, 2829–2833. [Google Scholar]
- Alharbi, N.S.; Alsubhi, N.S.; Felimban, A.I. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. J. Radiat. Res. Appl. Sci. 2022, 15, 109–124. [Google Scholar] [CrossRef]
- Aziz, N.; Fatma, T.; Varma, A.; Prasad, R. Biogenic Synthesis of Silver Nanoparticles Using Scenedesmus abundans and Evaluation of Their Antibacterial Activity. J. Nanopart. 2014, 2014, 689419. [Google Scholar] [CrossRef]
- Yusuf, M. Silver Nanoparticles: Synthesis and Applications. In Handbook of Ecomaterials, 2nd ed.; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 2343–2356. [Google Scholar] [CrossRef]
- Baghayeri, M.; Mahdavi, B.; Hosseinpor-Mohsen Abadi, Z.; Farhadi, S. Green synthesis of silver nanoparticles using water extract of Salvia leriifolia: Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Appl. Organomet. Chem. 2018, 32, e4057. [Google Scholar] [CrossRef]
- Yaqoob, S.; Cai, D.; Liu, M.; Zheng, M.; Zhao, C.B.; Liu, J.S. Characterization of microstructure, physicochemical and functional properties of corn varieties using different analytical techniques. Int. J. Food Prop. 2019, 22, 572–582. [Google Scholar] [CrossRef]
- Valderrama Bravo, M.D.C.; Cornejo Villegas, M.D.L.A.; Zambrano Zaragoza, M.D.L.L.; Domínguez Hernández, M.E.; Zepeda Bautista, R.; Oaxaca Luna, J.A. Physicochemical characterization of flours and rheological and textural changes of masa and tortillas obtained from maize fertilized with nejayote and ovine manure. Int. Agrophys. 2020, 34, 241–252. [Google Scholar] [CrossRef]
- Díaz-Montes, E.; Castro-Muñoz, R.; Yáñez-Fernández, J. An overview of nejayote, a nixtamalization by product. Ing. Agríc. Biosist. 2016, 8, 41–60. [Google Scholar] [CrossRef]
- Castro, C.J.; Almaraz, M.; Márquez-López, R.E.; Chávez, A.; Estrada-Alvarado, M.I. Tequila vinasses: Generation, composition, pollution, treatment, and valorization. npj Clean. Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Téllez-Pérez, V.; López-Olguín, J.F. Lodos residuales de nejayote como sustratos para la germinación de semillas de maíz azul criollo. Rev. Int. Contam. Ambient. 2018, 34, 395–404. [Google Scholar] [CrossRef]
- Buitimea-Cantúa, N. Effect of Storage Time on the Hydroxycinnamic Acids Profile, Cellular Antioxidant Activity, and Anti-Inflammatory Potential of Roasted Maize Based Beverages Supplemented with Nejayote Solids from Different Maize Genotypes. Food Chem. 2023, 407, 1349–1379. [Google Scholar]
- Rojas-Candelas, L.E.; Diaz-Ramírez, M.; Gonzalez-Vazquez, N.; Rayas-Amor, A.A.; Cruz-Monterrosa, R.G.; Leon-Espinosa, E.B. Physicochemical characterization and antioxidant capacity of popcorn nejayote. Food Res. 2023, 7, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Firdhouse, M.J.; Lalitha, P. Biosynthesis of Silver Nanoparticles and Its Applications. J. Nanotechnol. 2015, 2015, 829526. [Google Scholar] [CrossRef]
- Ramírez-Araujo, H.; Gaytán-Martínez, M.; Reyes-Vega, M.L. Alternative technologies to the traditional nixtamalization process: Review. Trends Food Sci. Technol. 2019, 85, 34–43. [Google Scholar] [CrossRef]
- Román-Escobedo, L.C.; Cristiani-Urbina, E.; Morales-Barrera, L. Bioremediation with an Alkali-Tolerant Yeast of Wastewater (Nejayote) Derived from the Nixtamalization of Maize. Fermentation 2024, 10, 219. [Google Scholar] [CrossRef]
- Téllez, V.F.; López, J.; Aragón, A.; Zayas, T. Application of Nejayote as a Foliar and Edaphic Fertiliser to Native Blue Maize Crops. Am. J. Plant Sci. 2016, 7, 2221–2238. [Google Scholar] [CrossRef]
- Escobar Morales, B.; Lucio-García, M.; Barbosa, R.; Morales-Acosta, D. Synthesis and characterization of NiO nanoparticles using Manihot esculenta aqueous extracts. Preprints 2018, 1–6. [Google Scholar] [CrossRef]
- López-Mercado, J.; González-Domínguez, M.I.; Reynoso-Marin, F.J.; Acosta, B.; Smolentseva, E.; Nambo, A. Green synthesis of TiO2 for furfural production by photohydrolysis of tortilla manufacturing waste. Sci. Rep. 2023, 13, 15355. [Google Scholar] [CrossRef]
- Lamuela-Raventós, R.M. Folin-Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In Measurement of Antioxidant Activity & Capacity; Apak, R., Capanoglu, E., Shahidi, F., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2017; pp. 7–15. [Google Scholar] [CrossRef]
- Ávila-Núñez, R. Contenido de azúcares totales, reductores y no reductores en Agave cocui Trelease. Multiciencias 2012, 12, 129–135. [Google Scholar]
- Jimenez-Chavez, A.; Pedroza-Herrera, G.; Betancourt-Reyes, I.; De Vizcaya Ruiz, A.; Masuoka-Ito, D.; Zapien, J.A. Aluminum enhances the oxidative damage of ZnO NMs in the human neuroblastoma SH-SY5Y cell line. Discov. Nano 2024, 19, 36. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Yáñez-Fernández, J. Valorization of Nixtamalization wastewaters (Nejayote) by integrated membrane process. Food Bioprod. Process. 2015, 95, 7–18. [Google Scholar] [CrossRef]
- Aarabi, A.; Mizani, M.; Honarvar, M.; Faghihian, H.; Gerami, A. Extraction of ferulic acid from sugar beet pulp by alkaline hydrolysis and organic solvent methods. J. Food Meas. Charact. 2016, 10, 42–47. [Google Scholar] [CrossRef]
- Antunes Ricardo, M.; Romero Robles, L.E.; Carrizales Rabadán, F. Aislamiento de Ácido Ferúlico a Partir de Nejayote Usando Cromatografía de Partición Centrífuga (CPC). In Leveraging Emerging Technologies to Construct the Future; Latin American and Caribbean Consortium of Engineering Institutions: Boca Raton, FL, USA, 2021. [Google Scholar] [CrossRef]
- Vacío-Muro, K.J.; Lozano-Álvarez, J.A.; Sánchez-González, M.N.; Chávez Vela, N.A.; Torres-Ramírez, E.; Jáuregui-Rincón, J. Remoción de contaminantes del nejayote con alginato y quitosano. Rev. Int. Contam. Ambient. 2020, 36, 245–252. [Google Scholar] [CrossRef]
- Vázquez-López, M.; Jiménez-Ocampo, U.E.; Moreno-Andrade, I. Tratamiento anaerobio y valorización energética de las aguas residuales del proceso de nixtamalización del maíz: Una revisión. Rev. AIDIS Ing. Cienc. Ambient. Investig. Desarro Pract. 2023, 16, 309–325. [Google Scholar] [CrossRef]
- Arias, A.; Torres, E.; García-Zamora, J.L.; Pacheco-Aguirre, F.M.; Feijoo, G.; Moreira, M.T. Environmental prospective of valorizing corn processing effluent to produce ferulic acid grafted chitosan polymer. J. Environ. Manag. 2024, 360, 121210. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Antioxidant Properties, Metabolism, Application and Mechanism of Ferulic Acid in Medicine, Food, Cosmetics, Livestock and Poultry. Antioxidants 2024, 13, 853. [Google Scholar] [CrossRef]
- Abbasi, Z.; Feizi, S.; Taghipour, E.; Ghadam, P. Green synthesis of silver nanoparticles using aqueous extract of dried Juglans regia green husk and examination of its biological properties. Green Process. Synth. 2017, 6, 477–485. [Google Scholar] [CrossRef]
- Choukade, R.; Jaiswal, A.; Kango, N. Characterization of biogenically synthesized silver nanoparticles for therapeutic applications and enzyme nanocomplex generation. 3 Biotech. 2020, 10, 462. [Google Scholar] [CrossRef]
- Rodríguez-Serrano, C.; Guzmán-Moreno, J.; Ángeles-Chávez, C.; Rodríguez-González, V.; Ortega-Sigala, J.J.; Ramírez-Santoyo, R.M. Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms. PLoS ONE 2020, 15, e0230275. [Google Scholar] [CrossRef]
- Fahim, M.; Shahzaib, A.; Nishat, N.; Jahan, A.; Bhat, T.A.; Inam, A. Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications. JCIS Open 2024, 16, 100125. [Google Scholar] [CrossRef]
- Medina-Ramirez, I.; Bashir, S.; Luo, Z.; Liu, J.L. Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids Surf. B Biointerfaces 2009, 73, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Miu, B.A.; Dinischiotu, A. New Green Approaches in Nanoparticles Synthesis: An Overview. Molecules 2022, 27, 6472. [Google Scholar] [CrossRef]
- Traiwatcharanon, P.; Timsorn, K.; Wongchoosuk, C. Effect of pH on the Green Synthesis of Silver Nanoparticles through Reduction with Pistiastratiotes L. Extract. Adv. Mater. Res. 2015, 1131, 223–226. [Google Scholar] [CrossRef]
- Vanaja, M.; Paulkumar, K.; Baburaja, M.; Rajeshkumar, S.; Gnanajobitha, G.; Malarkodi, C. Degradation of Methylene Blue Using Biologically Synthesized Silver Nanoparticles. Bioinorg. Chem. 2014, 2014, 742346. [Google Scholar] [CrossRef]
- Sharma, N.K.; Vishwakarma, J.; Rai, S.; Alomar, T.S.; AlMasoud, N.; Bhattarai, A. Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS Omega 2022, 7, 27004–27020. [Google Scholar] [CrossRef]
- Srikhao, N.; Ounkaew, A.; Kasemsiri, P.; Theerakulpisut, S.; Okhawilai, M.; Hiziroglu, S. Green synthesis of silver nanoparticles using the extract of spent coffee used for paper-based hydrogen peroxide sensing device. Sci. Rep. 2022, 12, 20099. [Google Scholar] [CrossRef] [PubMed]
- Tam, K.T.; Thanh, D.V.; Van, H.T.; Mai, N.T.P.; Hai, C.T.; Phuong, T.M. Green synthesis of silver nanoparticles using extract of Disporopsis longifolia for photocatalytic degradation of methylene blue. Am. J. Environ. Sci. 2022, 18, 116–124. [Google Scholar] [CrossRef]
- Rahman, S.; Rahman, L.; Khalil, A.T.; Ali, N.; Zia, D.; Ali, M. Endophyte-mediated synthesis of silver nanoparticles and their biological applications. Appl. Microbiol. Biotechnol. 2019, 103, 2551–2569. [Google Scholar] [CrossRef]
- Al Aboody, M.S. Silver/silver chloride (Ag/AgCl) nanoparticles synthesized from Azadirachta indica lalex and its antibiofilm activity against fluconazole resistant Candida tropicalis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2107–2113. [Google Scholar] [CrossRef]
- Küünal, S.; Visnapuu, M.; Volubujeva, O.; Soares Rosario, M.; Rauwel, P.; Rauwel, E. Optimisation of plant mediated synthesis of silver nanoparticles by common weed Plantago major and their antimicrobial properties. IOP Conf. Ser. Mater. Sci. Eng. 2019, 613, 012003. [Google Scholar] [CrossRef]
- Ghiuta, I.; Croitoru, C.; Kost, J.; Wenkert, R.; Munteanu, D. Bacteria-Mediated Synthesis of Silver and Silver Chloride Nanoparticles and Their Antimicrobial Activity. Appl. Sci. 2021, 11, 3134. [Google Scholar] [CrossRef]
- Huo, Y.; Han, Y.X.; Singh, P.; Kang, J.P.; Pu, J.Y.; Piao, C.H. Antimicrobial, antioxidant, and anticancer potentials of AgCl nanoparticles biosynthesized by Flavobacterium panacis. Appl. Phys. A 2021, 127, 227. [Google Scholar] [CrossRef]
- Kubasheva, Z.; Sprynskyy, M.; Railean-Plugaru, V.; Pomastowski, P.; Ospanova, A.; Buszewski, B. Synthesis and Antibacterial Activity of (AgCl, Ag) NPs/Diatomite Hybrid Composite. Materials 2020, 13, 3409. [Google Scholar] [CrossRef]
- Muthusamy, G.; Praburaman, L.; Thangasamy, S.; Jong-Hoon, K.; Seralathan, K.K.; Adithan, A. Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects. Int. J. Nanomed. 2015, 10, 1977–1983. [Google Scholar] [CrossRef]
- Qayyum, S.; Oves, M.; Khan, A.U. Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS ONE 2017, 12, e0181363. [Google Scholar] [CrossRef]
- Raza, M.A.; Saeed, F.; Afzaal, M.; Imran, A.; Niaz, B.; Hussain, H. Comparative study of cross- and uncross-linked arabinoxylans extracted from maize bran with special reference to their structural and antioxidant potential. Int. J. Food Prop. 2022, 25, 2495–2504. [Google Scholar] [CrossRef]
- Panja, S.; Chaudhuri, I.; Khanra, K.; Bhattacharyya, N. Biological application of green silver nanoparticle synthesized from leaf extract of Rauvolfia serpentina Benth. Asian Pac. J. Trop. Dis. 2016, 6, 549–556. [Google Scholar] [CrossRef]
- Fafal, T.; Taştan, P.; Tüzün, B.S.; Ozyazici, M.; Kivcak, B. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Asphodelus aestivus Brot. aerial part extract. S. Afr. J. Bot. 2017, 112, 346–353. [Google Scholar] [CrossRef]
- Girma, A.; Alamnie, G.; Bekele, T.; Mebratie, G.; Mekuye, B.; Abera, B. Green-synthesised silver nanoparticles: Antibacterial activity and alternative mechanisms of action to combat multidrug-resistant bacterial pathogens: A systematic literature review. Green Chem. Lett. Rev. 2024, 17, 2412601. [Google Scholar] [CrossRef]
- Urnukhsaikhan, E.; Bold, B.E.; Gunbileg, A.; Sukhbaatar, N.; Mishig-Ochir, T. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci. Rep. 2021, 11, 21047. [Google Scholar] [CrossRef] [PubMed]
- Ameen, F.; Alsamhary, K.; Alabdullatif, J.A.; ALNadhari, S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol. Environ. Saf. 2021, 213, 112027. [Google Scholar] [CrossRef] [PubMed]
- Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.A.R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M. In Vitro Antimicrobial Activity of Green Synthesized Silver Nanoparticles Against Selected Gram-negative Foodborne Pathogens. Front. Microbiol. 2018, 9, 555. [Google Scholar] [CrossRef]
- Swarnalatha, K.; Rajkumar, K.; Karthiga, P.; Shankar, T. Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E. coli. Resour. Effic. Technol. 2017, 3, 303–308. [Google Scholar] [CrossRef]
- Pernas-Pleite, C.; Conejo-Martínez, A.M.; Fernández-Freire, P.; Hazen, M.J.; Marín, I.; Abad, J.P. Microalga Broths Synthesize Antibacterial and Non-Cytotoxic Silver Nanoparticles Showing Synergy with Antibiotics and Bacterial ROS Induction and Can Be Reused for Successive AgNP Batches. Int. J. Mol. Sci. 2023, 24, 16183. [Google Scholar] [CrossRef]
- Nie, P.; Zhao, Y.; Xu, H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicol. Environ. Saf. 2023, 253, 114636. [Google Scholar] [CrossRef]
- Tareq, M.; Khadrawy, Y.A.; Rageh, M.M.; Mohammed, H.S. Dose-dependent biological toxicity of green synthesized silver nanoparticles in rat’s brain. Sci. Rep. 2022, 12, 22642. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Jalab, J.; Abdelwahed, W.; Kitaz, A.; Al-Kayali, R. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon 2021, 7, e08033. [Google Scholar] [CrossRef]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef] [PubMed]
- Ashokraja, C.; Sakar, M.; Balakumar, S. A perspective on the hemolytic activity of chemical and green-synthesized silver and silver oxide nanoparticles. Mater. Res. Express 2017, 4, 105406. [Google Scholar] [CrossRef]
- F04 Committee. Practice for Assessment of Hemolytic Properties of Materials; ASTM International: West Conshohocken, PA, USA, 2013; Available online: http://www.astm.org/cgi-bin/resolver.cgi?F756-17 (accessed on 15 February 2025).
- Garcidueñas-Piña, C.; Medina-Ramírez, I.E.; Guzmán, P.; Rico-Martínez, R.; Morales-Domínguez, J.F.; Rubio-Franchini, I. Evaluation of the Antimicrobial Activity of Nanostructured Materials of Titanium Dioxide Doped with Silver and/or Copper and Their Effects on Arabidopsis thaliana. Int. J. Photoenergy 2016, 2016, 8060847. [Google Scholar] [CrossRef]
- Chahardoli, A.; Qalekhani, F.; Hajmomeni, P.; Shokoohinia, Y.; Fattahi, A. Enhanced hemocompatibility, antimicrobial and anti-inflammatory properties of biomolecules stabilized AgNPs with cytotoxic effects on cancer cells. Sci. Rep. 2025, 15, 1186. [Google Scholar] [CrossRef]
- Korolev, D.; Shumilo, M.; Shulmeyster, G.; Krutikov, A.; Golovkin, A.; Mishanin, A. Hemolytic Activity, Cytotoxicity, and Antimicrobial Effects of Human Albumin- and Polysorbate-80-Coated Silver Nanoparticles. Nanomaterials 2021, 11, 1484. [Google Scholar] [CrossRef]
- Chen, L.Q.; Fang, L.; Ling, J.; Ding, C.Z.; Kang, B.; Huang, C.Z. Nanotoxicity of Silver Nanoparticles to Red Blood Cells: Size Dependent Adsorption, Uptake, and Hemolytic Activity. Chem. Res. Toxicol. 2015, 28, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, N.; Jahan, N.; Khalil, R.; Anwar, T.; Qureshi, H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front. Chem. 2022, 10, 952006. [Google Scholar] [CrossRef]
- Tamayo, L.A.; Zapata, P.A.; Rabagliati, F.M.; Azócar, M.I.; Muñoz, L.A.; Zhou, X. Antibacterial and non-cytotoxic effect of nanocomposites based in polyethylene and copper nanoparticles. J. Mater. Sci. Mater. Med. 2015, 26, 129. [Google Scholar] [CrossRef] [PubMed]
- Biswal, A.K.; Misra, P.K. Biosynthesis and characterization of silver nanoparticles for prospective application in food packaging and biomedical fields. Mater. Chem. Phys. 2020, 250, 123014. [Google Scholar] [CrossRef]
- Al-Nazhan, S.; Al-Nasser, A. Viability of human periodontal ligament fibroblasts in tissue culture after exposure to different contact lens solutions. J. Contemp. Dent. Pract. 2006, 7, 37–44. [Google Scholar] [CrossRef]
- Travan, A.; Pelillo, C.; Donati, I.; Marsich, E.; Benincasa, M.; Scarpa, T. Non-cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites with Antimicrobial Activity. Biomacromolecules 2009, 10, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Joris, F.; Manshian, B.B.; Peynshaert, K.; De Smedt, S.C.; Braeckmans, K.; Soenen, S.J. Assessing nanoparticle toxicity in cell-based assays: Influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chem. Soc. Rev. 2013, 42, 8339. [Google Scholar] [CrossRef] [PubMed]
- Medina-Ramírez, I.E.; Díaz De León Olmos, M.A.; Muñoz Ortega, M.H.; Zapien, J.A.; Betancourt, I.; Santoyo-Elvira, N. Development and Assessment oNano-technologieses for Cancer Treatment: Cytotoxicity and Hyperthermia Laboratory Studies. Cancer Investig. 2020, 38, 61–84. [Google Scholar] [CrossRef] [PubMed]
Sample | pH | AgNO3 Concentration (mM) | Nej Concentration (mg/g) |
---|---|---|---|
1 | 6 | 5 | 21.28 |
2 | 6 | 10 | 2.12 |
3 | 6 | 15 | 1.07 |
4 | 8 | 5 | 2.12 |
5 | 8 | 10 | 1.07 |
6 | 8 | 15 | 21.28 |
7 | 10 | 5 | 1.07 |
8 | 10 | 10 | 21.28 |
9 | 10 | 15 | 2.12 |
Parameter | Average Values |
---|---|
pH | 11.98 ± 0.64 |
Hardness (mg/L CaCO3) | 4150 ± 185.71 |
Density (kg/m3) | 1010.14 ± 10.11 |
Electrical conductivity (mS/cm) | 4.85 ± 0.40 |
Total phenols (mg/L) | 839.64 ± 37.96 |
Reducing sugars (mg/L) | 48.48 ± 8.11 |
COD (mg/L) | 30,500 ± 786.63 |
BOD5 (mg/L) | 3000 ± 443.84 |
SST (mg/L) | 11,400 ± 469.19 |
SSED (mL/L) | 315 ± 51.79 |
ST (mg/L) | 21,500 ± 885.77 |
Chlorides (mg/mL) | 0.02272 ± 0.0029 |
Carbonates (mg/mL) | 0.05040 ± 0.0047 |
Bicarbonates (mg/mL) | 0.16714 ± 0.0124 |
Sample | Concentration, FA mg/mL of Nej |
---|---|
M1 | 0.81607 |
M2 | 0.34481 |
M3 | 0.55771 |
M4 | 0.05181 |
M5 | 0.33595 |
M6 | 0.69290 |
Bacteria | Synthesis Route | MIC (μg/mL) | MBC (μg/mL) |
---|---|---|---|
Escherichia coli | Biogenic synthesis | 0.25 | 0.30 |
Chemical synthesis | 0.75 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-De Lira, A.; Lozano-Álvarez, J.A.; Chávez-Vela, N.A.; Escárcega-González, C.E.; Barriga-Castro, E.D.; Reynel-Ávila, H.E.; Medina-Ramírez, I.E. Evaluation of Properties and Bioactivity of Silver (Ag) Nanoparticles (NPs) Fabricated Using Nixtamalization Wastewater (Nejayote). Clean Technol. 2025, 7, 51. https://doi.org/10.3390/cleantechnol7030051
Ortiz-De Lira A, Lozano-Álvarez JA, Chávez-Vela NA, Escárcega-González CE, Barriga-Castro ED, Reynel-Ávila HE, Medina-Ramírez IE. Evaluation of Properties and Bioactivity of Silver (Ag) Nanoparticles (NPs) Fabricated Using Nixtamalization Wastewater (Nejayote). Clean Technologies. 2025; 7(3):51. https://doi.org/10.3390/cleantechnol7030051
Chicago/Turabian StyleOrtiz-De Lira, Alejandra, J. A. Lozano-Álvarez, N. A. Chávez-Vela, C. E. Escárcega-González, Enrique D. Barriga-Castro, Hilda E. Reynel-Ávila, and Iliana E. Medina-Ramírez. 2025. "Evaluation of Properties and Bioactivity of Silver (Ag) Nanoparticles (NPs) Fabricated Using Nixtamalization Wastewater (Nejayote)" Clean Technologies 7, no. 3: 51. https://doi.org/10.3390/cleantechnol7030051
APA StyleOrtiz-De Lira, A., Lozano-Álvarez, J. A., Chávez-Vela, N. A., Escárcega-González, C. E., Barriga-Castro, E. D., Reynel-Ávila, H. E., & Medina-Ramírez, I. E. (2025). Evaluation of Properties and Bioactivity of Silver (Ag) Nanoparticles (NPs) Fabricated Using Nixtamalization Wastewater (Nejayote). Clean Technologies, 7(3), 51. https://doi.org/10.3390/cleantechnol7030051