Toward Efficient Recycling of Vanadium Phosphate-Based Sodium-Ion Batteries: A Review
Abstract
:1. Introduction
2. Overview of Metal-Ion Battery Recycling Methods
3. Vanadium: Occurrence in Nature, Industrial Production and Toxicity
4. Sodium-Vanadium Oxo- and Polyanions: Prospective Electrode Materials for SIBs
5. Hydrometallurgical Processing of Vanadium Compounds and Phosphates
5.1. Case 1: Direct Recycling of NASICON-Based Cell
5.2. Case 2: Acidic Leaching of LiFePO4
5.3. Case 3: Mining Industry: Vanadium as a By-Product
5.4. Case 4: Study of Vanadium-Phosphorus Separation from Slag
5.5. Leaching of Vanadium-Phosphates: Identifying the Strategy
5.6. Management of Phosphorus-Containing Sewage
6. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meyer, D.C.; Leisegang, T.; Zschornak, M.; Stöcker, H. Electrochemical Storage Materials: From Crystallography to Manufacturing Technology; De Gruyter: Berlin, Germany, 2018; ISBN 978-3-11-049398-6. [Google Scholar]
- Arutyunov, V.S.; Lisichkin, G.V. Energy resources of the 21st century: Problems and forecasts. Can renewable energy sources replace fossil fuels? Russ. Chem. Rev. 2017, 86, 777. [Google Scholar] [CrossRef]
- Arutyunov, V. Is it Possible to Stabilize the Earth Climate by Transition to Renewable Energy? Eurasian Chem.-Technol. J. 2021, 23, 67–75. [Google Scholar] [CrossRef]
- Antipov, E.V.; Abakumov, A.M.; Drozhzhin, O.A.; Pogozhev, D.V. Lithium-Ion Electrochemical Energy Storage: The Current State, Problems, and Development Trends in Russia. Therm. Eng. 2019, 66, 219–224. [Google Scholar] [CrossRef]
- Baum, Z.J.; Bird, R.E.; Yu, X.; Ma, J. Lithium-Ion Battery Recycling—Overview of Techniques and Trends. ACS Energy Lett. 2022, 7, 712–719. [Google Scholar] [CrossRef]
- Martin, G.; Rentsch, L.; Höck, M.; Bertau, M. Lithium market research—Global supply, future demand and price development. Energy Storage Mater. 2017, 6, 171–179. [Google Scholar] [CrossRef]
- Fröhlich, P.; Lorenz, T.; Martin, G.; Brett, B.; Bertau, M. Valuable Metals-Recovery Processes, Current Trends, and Recycling Strategies. Angew. Chem. Int. Ed. 2016, 56, 2544–2580. [Google Scholar] [CrossRef]
- Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al. Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. [Google Scholar] [CrossRef]
- Winter, M.; Barnett, B.; Xu, K. Before Li Ion Batteries. Chem. Rev. 2018, 118, 11433–11456. [Google Scholar] [CrossRef]
- Tarascon, J.-M. Na-ion versus Li-ion Batteries: Complementarity Rather than Competitiveness. Joule 2020, 4, 1616–1620. [Google Scholar] [CrossRef]
- Hasa, I.; Mariyappan, S.; Saurel, D.; Adelhelm, P.; Koposov, A.Y.; Masquelier, C.; Croguennec, L.; Casas-Cabanas, M. Challenges of today for Na-based batteries of the future: From materials to cell metrics. J. Power Sources 2021, 482, 228872. [Google Scholar] [CrossRef]
- Rudola, A.; Rennie, A.J.R.; Heap, R.; Meysami, S.S.; Lowbridge, A.; Mazzali, F.; Sayers, R.; Wright, C.J.; Barker, J. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem. A 2021, 9, 8279–8302. [Google Scholar] [CrossRef]
- Komaba, S. Sodium-driven Rechargeable Batteries: An Effort towards Future Energy Storage. Chem. Lett. 2020, 49, 1507–1516. [Google Scholar] [CrossRef]
- Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J.D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of Lithium-Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Adv. Energy Mater. 2022, 12, 2102917. [Google Scholar] [CrossRef]
- Bird, R.; Baum, Z.J.; Yu, X.; Ma, J. The Regulatory Environment for Lithium-Ion Battery Recycling. ACS Energy Lett. 2022, 7, 736–740. [Google Scholar] [CrossRef]
- Sommerville, R.; Stewart, J.-S.; Goodship, V.; Rowson, N.; Kendrick, E. A review of physical processes used in the safe recycling of lithium ion batteries. Sustain. Mater. Technol. 2020, 25, e00197. [Google Scholar] [CrossRef]
- Bai, Y.; Muralidharan, N.; Sun, Y.-K.; Passerini, S.; Whittingham, M.S.; Belharouak, I. Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport. Mater. Today 2020, 41, 304–315. [Google Scholar] [CrossRef]
- Khasanova, N.R.; Drozhzhin, O.A.; Yakubovich, O.V.; Antipov, E.V. Mineral inspired electrode materials for metal-ion batteries. In Comprehensive Inorganic Chemistry III; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Samarin, A.S.; Trussov, I.A.; Fedotov, S.S. Electrode Materials for Reversible Sodium Ions de/Intercalation. In Comprehensive Inorganic Chemistry III; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Fedotov, S.S.; Samarin, A.S.; Antipov, E.V. KTiOPO4-structured electrode materials for metal-ion batteries: A review. J. Power Sources 2020, 480, 228840. [Google Scholar] [CrossRef]
- Fedotov, S.S.; Samarin, A.S.; Nikitina, V.A.; Stevenson, K.J.; Abakumov, A.M.; Antipov, E.V. α-VPO4: A Novel Many Monovalent Ion Intercalation Anode Material for Metal-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 12431–12440. [Google Scholar] [CrossRef]
- Fedotov, S.S.; Khasanova, N.R.; Samarin, A.S.; Drozhzhin, O.A.; Batuk, D.; Karakulina, O.M.; Hadermann, J.; Abakumov, A.M.; Antipov, E.V. AVPO4F (A = Li, K): A 4 V Cathode Material for High-Power Rechargeable Batteries. Chem. Mater. 2016, 28, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Nikitina, V.A.; Fedotov, S.S.; Vassiliev, S.Y.; Samarin, A.S.; Khasanova, N.R.; Antipov, E.V. Transport and Kinetic Aspects of Alkali Metal Ions Intercalation into AVPO4F Framework. J. Electrochem. Soc. 2017, 164, A6373–A6380. [Google Scholar] [CrossRef]
- Moskalyk, R.; Alfantazi, A. Processing of vanadium: A review. Miner. Eng. 2003, 16, 793–805. [Google Scholar] [CrossRef]
- Petranikova, M.; Tkaczyk, A.; Bartl, A.; Amato, A.; Lapkovskis, V.; Tunsu, C. Vanadium sustainability in the context of innovative recycling and sourcing development. Waste Manag. 2020, 113, 521–544. [Google Scholar] [CrossRef]
- Shalavina, E.L.; Tarasenko, V.; Tyurekhodzhaeva, T.S.; Zazubin, A.I. Patent, of Vanadium-Bearing Solution from Phosphorus Purification. Available online: https://yandex.ru/patents/doc/SU206089A1_19671202 (accessed on 6 June 2023). (In Russian).
- Zhang, W.; Zhang, T.; Lv, G.; Cao, X.; Zhu, H. Thermodynamic study on the V(V)-P(V)-H2O system in acidic leaching solution of vanadium-bearing converter slag. Sep. Purif. Technol. 2019, 218, 164–172. [Google Scholar] [CrossRef]
- Tarabrin, G.K.; Biryukova, V.A.; Rabinovich, E.M.; Chekalin, V.V.; Merzlyakov, N.E.; Kuz’michev, S.E.; Tartakovskij, I.M.; Frolov, A.T.; Tarabrina, V.P.; Chutchikov, V.N. Method of Vanadium Exctration. 1998. Available online: https://yandex.ru/patents/doc/RU2102511C1_19980120 (accessed on 6 June 2023). (In Russian).
- Liu, T.; Zhang, Y.; Chen, C.; Lin, Z.; Zhang, S.; Lu, J. Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat. Commun. 2019, 10, 1965. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Xue, W.; Wang, L. Extraction of the Rare Element Vanadium from Vanadium-Containing Materials by Chlorination Method: A Critical Review. Metals 2021, 11, 1301. [Google Scholar] [CrossRef]
- Tan, K.; Ren, Y. Practical Application of Room Temperature Na-Ion Batteries. In Sodium-Ion Batteries: Materials, Characterization, and Technology; Wiley: Hoboken, NJ, USA, 2022; ISBN 978-3-527-82576-9. [Google Scholar]
- Rudola, A.; Sayers, R.; Wright, C.J.; Barker, J. Opportunities for moderate-range electric vehicles using sustainable sodium-ion batteries. Nat. Energy 2023, 8, 215–218. [Google Scholar] [CrossRef]
- Bushveld Minerals. Available online: https://www.bushveldminerals.com/ (accessed on 15 April 2023).
- Largo Inc. Available online: https://www.largoinc.com/ (accessed on 15 April 2023).
- Li, L.; Zhang, N.; Su, Y.; Zhao, J.; Song, Z.; Qian, D.; Wu, H.; Tahir, M.; Saeed, A.; Ding, S. Fluorine Dissolution-Induced Capacity Degradation for Fluorophosphate-Based Cathode Materials. ACS Appl. Mater. Interfaces 2021, 13, 23787–23793. [Google Scholar] [CrossRef]
- Desai, P.; Forero-Saboya, J.; Meunier, V.; Rousse, G.; Deschamps, M.; Abakumov, A.M.; Tarascon, J.-M.; Mariyappan, S. Mastering the synergy between Na3V2(PO4)2F3 electrode and electrolyte: A must for Na-ion cells. Energy Storage Mater. 2023, 57, 102–117. [Google Scholar] [CrossRef]
- Tan, D.H.S.; Banerjee, A.; Chen, Z.; Meng, Y.S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 2020, 15, 170–180. [Google Scholar] [CrossRef]
- Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Wang, C.-M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101. [Google Scholar] [CrossRef] [Green Version]
- Beaudet, A.; Larouche, F.; Amouzegar, K.; Bouchard, P.; Zaghib, K. Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials. Sustainability 2020, 12, 5837. [Google Scholar] [CrossRef]
- Larouche, F.; Tedjar, F.; Amouzegar, K.; Houlachi, G.; Bouchard, P.; Demopoulos, G.P.; Zaghib, K. Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond. Materials 2020, 13, 801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- How Batteries Are Recycled in Russia. Available online: https://www.rbc.ru/ (accessed on 15 March 2021). (In Russian).
- Verma, A.; Kore, R.; Corbin, D.R.; Shiflett, M.B. Metal Recovery Using Oxalate Chemistry: A Technical Review. Ind. Eng. Chem. 2019, 58, 15381–15393. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Slater, P.; Abbott, A.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Windisch-Kern, S.; Gerold, E.; Nigl, T.; Jandric, A.; Altendorfer, M.; Rutrecht, B.; Scherhaufer, S.; Raupenstrauch, H.; Pomberger, R.; Antrekowitsch, H.; et al. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies. Waste Manag. 2022, 138, 125–139. [Google Scholar] [CrossRef]
- Wang, M.; Liu, K.; Dutta, S.; Alessi, D.S.; Rinklebe, J.; Ok, Y.S.; Tsang, D.C. Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects. Renew. Sustain. Energy Rev. 2022, 163, 112515. [Google Scholar] [CrossRef]
- Yaroshevsky, A.A. Abundances of chemical elements in the Earth’s crust. Geochem. Int. 2005, 44, 48–55. [Google Scholar] [CrossRef]
- Carmichael, R.S. Practical Handbook of Physical Properties of Rocks and Minerals; CRC Press: Boca Raton, FL, USA, 1989; ISBN 978-0-203-71096-8. [Google Scholar]
- Tret’yakov, Y.D.; Martynenko, L.I.; Grigoriev, A.N.; Tsyvadze, A.Y. Neorganicheskaya Himiya; V 3 Tomah; Akademiya: Chennai, India, 2004; ISBN 5-7695-1437-X. (In Russian) [Google Scholar]
- Lakienko, G.P.; Bobyleva, Z.V.; Apostolova, M.O.; Sultanova, Y.V.; Dyakonov, A.K.; Zakharkin, M.V.; Sobolev, N.A.; Alekseeva, A.M.; Drozhzhin, O.A.; Abakumov, A.M.; et al. Sosnowskyi Hogweed-Based Hard Carbons for Sodium-Ion Batteries. Batteries 2022, 8, 131. [Google Scholar] [CrossRef]
- Bobyleva, Z.V.; Drozhzhin, O.A.; Alekseeva, A.M.; Dosaev, K.A.; Peters, G.S.; Lakienko, G.P.; Perfilyeva, T.I.; Sobolev, N.A.; Maslakov, K.I.; Savilov, S.V.; et al. Caramelization as a Key Stage for the Preparation of Monolithic Hard Carbon with Advanced Performance in Sodium-Ion Batteries. ACS Appl. Energy Mater. 2023, 6, 181–190. [Google Scholar] [CrossRef]
- Yakovleva, E.V. Gidrotermal’nyj Sintez v Boro-Fosfatnyh Sistemah, Soderzhashchih Vanadij i Shchelochnye Kationy, i Issledovanie Produktov Kristallizacii. 2008. Available online: http://cryst.geol.msu.ru/literature/kurs/2008_03_yakovleva.pdf (accessed on 6 June 2023).
- Yashchenko, I.G. Heavy oil of Russia. Izv. TPU 2012, 105–111. Available online: https://earchive.tpu.ru/handle/11683/4325 (accessed on 6 June 2023). (In Russian).
- Navarro, R.; Guzman, J.; Saucedo, I.; Revilla, J.; Guibal, E. Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction processes. Waste Manag. 2007, 27, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Gagné, O.C.; Hawthorne, F.C. Bond-length distributions for ions bonded to oxygen: Results for the transition metals and quantification of the factors underlying bond-length variation in inorganic solids. IUCrJ 2020, 7, 581–629. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–766. [Google Scholar] [CrossRef]
- Goncharov, K.V.; Kashekov, D.Y.; Sadykhov, G.B.; Olyunina, T.V. Processing of fuel oil ash from thermal power plant with extraction of vanadium and nickel. Non-Ferr. Met. 2020, 1, 3–7. [Google Scholar] [CrossRef]
- Pak, J.-J.; Kim, D.-H.; Paek, M.-K.; Kim, Y.-D. Ferroalloy Production from Spent Petroleum Catalysts by Reductive Smelting and Selective Oxidation Processes. In REWAS2019; Springer: Cham, Switzerland, 2019; pp. 167–175. [Google Scholar] [CrossRef]
- Kologrieva, U.; Volkov, A.; Zinoveev, D.; Krasnyanskaya, I.; Stulov, P.; Wainstein, D. Investigation of Vanadium-Containing Sludge Oxidation Roasting Process for Vanadium Extraction. Metals 2021, 11, 100. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, S.M.; Alessi, D.S.; Tack, F.M.; Ok, Y.S.; Kim, K.-H.; Gustafsson, J.P.; Sparks, D.L.; Rinklebe, J. Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications-A review. Adv. Colloid Interface Sci. 2019, 265, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Research and Markets. Vanadium Ore Global Market Report 2023; Research and Markets: Dublin, Ireland, 2023. [Google Scholar]
- Volkov, A.I. Status and perspective of heavy metal use in Russia. ROIN 2020, 11–18. (In Russian) [Google Scholar]
- EVRAZ JSC. Annual Report 2021 EVRAZ JSC. 2021. Available online: https://www.evraz.com/en/investors/reports-and-results/annual-reports/ (accessed on 16 April 2023).
- Savinkova, S.A. Influence of vanadium compound on people health in Tula. Chem. Lett. 2016, 30–35. (In Russian) [Google Scholar]
- Vatolin, N.A.; Halezov, B.D.; Krasheninin, A.G.; Bornovolokov, A.S. Complex Eco-Friendly Technology of Mn-Bearing Vanadium Slags for the Extraction of Vanadium Pentaozide with Higher Purity; Conference Report. 2012, pp. 8–12. Available online: http://www.semikonf.ru/upload/iblock/9ca/Sbornik_Prioritetnye_napravleniya.pdf#page=8 (accessed on 6 June 2023). (In Russian).
- Goncharov, K.V. Odnostadijnyj Process Pryamogo Polucheniya Zheleza i Titanovanadievogo Shlaka iz Titanomagnetitovyh Koncentratov i Gidrometallurgicheskoe Izvlechenie Vanadiya iz Shlaka. Ph.D. Thesis, Baikov Institute RAS, Moscow, Russia, 2015. (In Russian). [Google Scholar]
- Tripathi, D.; Mani, V.; Pal, R.P. Vanadium in Biosphere and Its Role in Biological Processes. Biol. Trace Element Res. 2018, 186, 52–67. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.N. Standards for the contents of heavy metals and metalloids in soils. Eurasian Soil Sci. 2012, 45, 321–328. [Google Scholar] [CrossRef]
- Contaminant Candidate List 4-CCL 4. Available online: https://www.epa.gov/ccl/contaminant-candidate-list-4-ccl-4-0 (accessed on 15 April 2023).
- The Sodium-ion Battery Boom: The Perfect (and Sustainable) Complement to Lithium-Ion Batteries. Available online: https://cicenergigune.com/en/blog (accessed on 19 July 2022).
- Yakubovich, O.; Khasanova, N.; Antipov, E. Mineral-Inspired Materials: Synthetic Phosphate Analogues for Battery Applications. Minerals 2020, 10, 524. [Google Scholar] [CrossRef]
- D’Yvoire, F.; Pintard-Scrépel, M.; Bretey, E.; de la Rochère, M. Phase transitions and ionic conduction in 3D skeleton phosphates A3M2(PO4)3: A = Li, Na, Ag, K; M = Cr, Fe. Solid State Ion. 1983, 9–10, 851–857. [Google Scholar] [CrossRef]
- Gopalakrishnan, J.; Rangan, K.K. Vanadium Phosphate (V2(PO4)3): A Novel NASICON-Type Vanadium Phosphate Synthesized by Oxidative Deintercalation of Sodium from Sodium Vanadium Phosphate (Na3V2(PO4)3)). Chem. Mater. 1992, 4, 745–747. [Google Scholar] [CrossRef]
- Samigullin, R.R.; Zakharkin, M.V.; Drozhzhin, O.A.; Antipov, E.V. Thermal Stability of NASICON-Type Na3V2(PO4)3 and Na4VMn(PO4)3 as Cathode Materials for Sodium-ion Batteries. Energies 2023, 16, 3051. [Google Scholar] [CrossRef]
- Zakharkin, M.V.; Drozhzhin, O.A.; Ryazantsev, S.V.; Chernyshov, D.; Kirsanova, M.A.; Mikheev, I.V.; Pazhetnov, E.M.; Antipov, E.V.; Stevenson, K.J. Electrochemical properties and evolution of the phase transformation behavior in the NASICON-type Na3+xMnxV2−x(PO4)3 (0 ≤ x ≤ 1) cathodes for Na-ion batteries. J. Power Sources 2020, 470, 228231. [Google Scholar] [CrossRef]
- Zakharkin, M.V.; Drozhzhin, O.A.; Tereshchenko, I.V.; Chernyshov, D.; Abakumov, A.M.; Antipov, E.V.; Stevenson, K.J. Enhancing Na+ Extraction Limit through High Voltage Activation of the NASICON-Type Na4MnV(PO4)3 Cathode. Appl. Energy Mater. 2018, 1, 5842–5846. [Google Scholar] [CrossRef]
- Drozhzhin, O.A.; Tertov, I.V.; Alekseeva, A.M.; Aksyonov, D.A.; Stevenson, K.J.; Abakumov, A.M.; Antipov, E.V. β-NaVP2O7 as a Superior Electrode Material for Na-Ion Batteries. Chem. Mater. 2019, 31, 7463–7469. [Google Scholar] [CrossRef]
- Tertov, I.V.; Drozhzhin, O.A.; Alekseeva, A.M.; Kirsanova, M.A.; Mironov, A.V.; Abakumov, A.M.; Antipov, E.V. β-LiVP2O7 as a positive electrode material for Li-ion batteries. Electrochim. Acta 2021, 389, 138759. [Google Scholar] [CrossRef]
- Alekseeva, A.M.; Tertov, I.V.; Mironov, A.V.; Mikheev, I.V.; Drozhzhin, O.A.; Zharikova, E.V.; Rozova, M.G.; Antipov, E.V. Exploring Route for Pyrophosphate-based Electrode Materials: Interplay between Synthesis and Structure. Z. Für Anorg. Und Allg. Chem. 2020, 646, 1260–1266. [Google Scholar] [CrossRef]
- Semykina, D.O.; Sharafutdinov, M.R.; Kosova, N.V. Understanding of the Mechanism and Kinetics of the Fast Solid-State Reaction between NaF and VPO4 to Form Na3V2(PO4)2F3. Inorg. Chem. 2022, 61, 10023–10035. [Google Scholar] [CrossRef]
- Broux, T.; Fauth, F.; Hall, N.; Chatillon, Y.; Bianchini, M.; Bamine, T.; Leriche, J.; Suard, E.; Carlier, D.; Reynier, Y.; et al. High Rate Performance for Carbon-Coated Na3V2(PO4)2F3 in Na-Ion Batteries. Small Methods 2019, 3, 1800215. [Google Scholar] [CrossRef]
- Boivin, E.; Chotard, J.-N.; Masquelier, C.; Croguennec, L. Towards Reversible High-Voltage Multi-Electron Reactions in Alkali-Ion Batteries Using Vanadium Phosphate Positive Electrode Materials. Molecules 2021, 26, 1428. [Google Scholar] [CrossRef]
- Chayambuka, K.; Mulder, G.; Danilov, D.L.; Notten, P.H.L. From Li-Ion Batteries toward Na-Ion Chemistries: Challenges and Opportunities. Adv. Energy Mater. 2020, 10, 2001310. [Google Scholar] [CrossRef]
- Barker, J.; Saidi, M.Y.; Swoyer, J.L. A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4F. Electrochem. Solid-State Lett. 2003, 6, A1–A4. [Google Scholar] [CrossRef]
- Xu, S.; Yang, Y.; Tang, F.; Yao, Y.; Lv, X.; Liu, L.; Xu, C.; Feng, Y.; Rui, X.; Yu, Y. Vanadium fluorophosphates: Advanced cathode materials for next-generation secondary batteries. Mater. Horiz. 2023, 10, 1901–1923. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xu, Y.; Sun, X.; Chang, R.; Zhang, Y.; Zhang, X.; Li, J. Fluorophosphates from Solid-State Synthesis and Electrochemical Ion Exchange: NaVPO4F or Na3V2(PO4)2F3 ? Adv. Energy Mater. 2018, 8, 1801064. [Google Scholar] [CrossRef]
- Boivin, E.; Chotard, J.-N.; Bamine, T.; Carlier, D.; Serras, P.; Palomares, V.; Rojo, T.; Iadecola, A.; Dupont, L.; Bourgeois, L.; et al. Vanadyl-type defects in Tavorite-like NaVPO4F: From the average long range structure to local environments. J. Mater. Chem. A 2017, 5, 25044–25055. [Google Scholar] [CrossRef]
- Kosova, N.; Semykina, D. Mechanochemically assisted solid-state synthesis of sodium vanadium fluorophosphates. Solid State Ion. 2019, 343, 115119. [Google Scholar] [CrossRef]
- Semykina, D.O.; Yakovlev, I.V.; Lapina, O.B.; Kabanov, A.A.; Kosova, N.V. Crystal structure and migration paths of alkaline ions in NaVPO4F. Phys. Chem. Chem. Phys. 2020, 22, 15876–15884. [Google Scholar] [CrossRef]
- Shraer, S.D.; Luchinin, N.D.; Trussov, I.A.; Aksyonov, D.A.; Morozov, A.V.; Ryazantsev, S.V.; Iarchuk, A.R.; Morozova, P.A.; Nikitina, V.A.; Stevenson, K.J.; et al. Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries. Nat. Commun. 2022, 13, 4097. [Google Scholar] [CrossRef] [PubMed]
- Dembitskiy, A.D.; Aksyonov, D.A.; Abakumov, A.M.; Fedotov, S.S. NH+-based frameworks as a platform for designing electrodes and solid electrolytes for Na-ion batteries: A screening approach. Solid State Ion. 2022, 374, 115810. [Google Scholar] [CrossRef]
- Tedjar, F.; Foudraz, J.C. Method for the Mixed Recycling of Lithium-Based Anode Batteries and Cells. U.S. Patent No. 7,820,317, 23 August 2007. [Google Scholar]
- Lesher, D.; Brown, R.A.; Norris, R.D. The Use of Hydrogen Peroxide in the Recovery of By-Product Vanadium at Cotter Corportation Canon City Plant. In Proceedings of the 11th Annual Meeting AIME, Dallas, TX, USA, 14–18 February 1982. [Google Scholar]
- Norris, R.D.; Brown, R.A. Separation and Recovery of By-Product and Secondary Metals with Hydrogen Peroxide Chemicals. In Proceedings of the 11th Annual Meeting AIME, Dallas, TX, USA, 14–18 February 1982. [Google Scholar]
- Briggs, S.J. Vanadium—A brief review of world production and trade 1976–1980. Met. Technol. 1982, 10, 150–158. [Google Scholar] [CrossRef]
- Vol’nov, I. Peroxo Complexes of Vanadium, Niobium and Tantalum; Nauka: Moscow, Russia, 1987. (In Russian) [Google Scholar]
- Lozano, L.; Godınez, C. Comparative study of solvent extraction of vanadium from sulphate solutions by primene 81R and alamine 336. Miner. Eng. 2003, 16, 291–294. [Google Scholar] [CrossRef]
- An, Y.; Ma, B.; Li, X.; Chen, Y.; Wang, C.; Wang, B.; Gao, M.; Feng, G. A review on the roasting-assisted leaching and recovery of V from vanadium slag. Process. Saf. Environ. Prot. 2023, 173, 263–276. [Google Scholar] [CrossRef]
- Moskalyuk, E.V.; Blokhin, A.A.; Murashkin, Y.V.; Mikhaylenko, M.A. Adsorption recovery of vanadium from sulphate solutions with complex composition. Tsvetnye Met. 2017, 41–46. [Google Scholar] [CrossRef]
- Predtechenskiy, M.R.; Khasin, A.A.; Bezrodny, A.E.; Bobrenok, O.F.; Dubov, D.Y.; Muradyan, V.E.; Saik, V.O.; Smirnov, S.N. New perspectives in SWCNT applications: Tuball SWCNTs. Part 1. Tuball by itself—All you need to know about it. Carbon Trends 2022, 8, 100175. [Google Scholar] [CrossRef]
- Mamakhel, A.; Gjørup, F.H.; Kløve, M.; Borup, K.; Iversen, B.B. Synthesis of Phase-Pure Thermochromic VO2 (M1). Inorg. Chem. 2022, 61, 8760–8766. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Makarevich, O.N.; Boytsova, O.V.; Tsymbarenko, D.M.; Eliseev, A.A.; Amelichev, V.A.; Makarevich, A.M. Citrate-assisted hydrothermal synthesis of vanadium dioxide textured films with metal-insulator transition and infrared thermochromic properties. Ceram. Int. 2020, 46, 19919–19927. [Google Scholar] [CrossRef]
- Makarevich, A.M.; Makarevich, O.; Ivanov, A.; Sharovarov, D.; Eliseev, A.A.; Amelichev, V.; Boytsova, O.; Gorodetsky, A.; Navarro-Cia, M.; Kaul, A. Hydrothermal epitaxy growth of self-organized vanadium dioxide 3D structures with metal–insulator transition and THz transmission switch properties. CrystEngComm 2020, 22, 2612–2620. [Google Scholar] [CrossRef]
- Tsaramyrsi, M.; Kaliva, M.; Salifoglou, A.; Raptopoulou, C.P.; Terzis, A.; Tangoulis, V.; Giapintzakis, J. Vanadium(IV)−Citrate Complex Interconversions in Aqueous Solutions. A pH-Dependent Synthetic, Structural, Spectroscopic, and Magnetic Study. Inorg. Chem. 2001, 40, 5772–5779. [Google Scholar] [CrossRef] [PubMed]
- Conte, V.; Di Furia, F.; Moro, S. The Versatile Chemistry of Peroxo Complexes of Vanadium, Molybdenum and Tungsten as Oxidants of Organic Compounds. J. Phys. Org. Chem. 1996, 9, 329–336. [Google Scholar] [CrossRef]
- Mohapatra, M.; Anand, S.; Mishra, B.; Giles, D.E.; Singh, P. Review of fluoride removal from drinking water. J. Environ. Manag. 2009, 91, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Denzanov, G.A.; Tapekhin, A.; Kozlova, Z.A. Method of Sodium Phosphate Synthesis. S.U. Patent No. 1,133,230, 1985. Available online: https://i.moscow/patents/su1133230a1_19850107 (accessed on 6 June 2023). (In Russian).
- Vlasov, P.P.; Garkun, V.K.; Golubkova, V.N.; Sarkitz, I.A.; Gaidabura, I.P.; Binstein, A.B.; Laktionov, V.N.; Ovechkin, V.F. Method of Sodium Phosphate Synthesis. S.U. Patent No. 1,177,270, 1985. Available online: https://yandex.ru/patents/doc/SU1177270A1_19850907 (accessed on 6 June 2023). (In Russian).
- Pozin, M.E. Technology of Mineral Salts (Fertilizers, Pesticides, Industrial Salts, Oxides and Acids); Khimiya: Leningrad, Russia, 1974. [Google Scholar]
- Ambrosova, G.T.; Matyshenko, E.N.; Sineeva, N.V. Dephosphating Sites of Urban Wastewater and the Effect of Phosphorus Removal by Reagents. Water Ecol. Probl. Solut. 2017, 13–25. (In Russian) [Google Scholar] [CrossRef]
- Kumar, P.S.; Suganya, S.; Srinivas, S.; Priyadharshini, S.; Karthika, M.; Sri, R.K.; Swetha, V.; Naushad, M.; Lichtfouse, E. Treatment of fluoride-contaminated water. A review. Environ. Chem. Lett. 2019, 17, 1707–1726. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, Y.; Gao, X.; Zuo, R.; Song, L.; Jin, C.; Wang, J.; Teng, Y. Vanadium: A Review of Different Extraction Methods to Evaluate Bioavailability and Speciation. Minerals 2022, 12, 642. [Google Scholar] [CrossRef]
Element | Abundance (10–4 wt. % of the Mass of the Upper Continental Crust) | ||
---|---|---|---|
Vinogradov (1962) [46] | Wedepohl (1995) [46] | Carmichael et al. [47] | |
Li | 32 | 22 | 20 |
F | 660 | 611 | 585 |
Na | 25,000 | 25,670 | 23,600 |
Al | 80,500 | 77,440 | 82,300 |
P | 930 | 665 | 1050 |
V | 90 | 53 | 120 |
Cr | 83 | 35 | 102 |
Fe | 46,500 | 30,890 | 56,300 |
Co | 18 | 11.6 | 25 |
Ni | 58 | 18.6 | 84 |
Cu | 47 | 14.3 | 60 |
Name | Formula | Structural Formula | Color | pH Range |
---|---|---|---|---|
Peroxovanadium cation | (VO3)2SO4 | [VO(O–O)(H2O)3]+ | Red | pH < 2 |
Diperoxovanadate | KH2VO6 | [VO(O–O)2(H2O)]– | Yellow | 2 < pH < 8 |
Tetraperoxodivanadate | K4V2O11 | [(O–O)2(O)V–O–V(O)(O–O)2]4– | Yellow | 6 < pH < 9 |
Tetraperoxovanadate | K3VO8 | [V(O–O)4]3– | Blue | pH > 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samarin, A.S.; Ivanov, A.V.; Fedotov, S.S. Toward Efficient Recycling of Vanadium Phosphate-Based Sodium-Ion Batteries: A Review. Clean Technol. 2023, 5, 881-900. https://doi.org/10.3390/cleantechnol5030044
Samarin AS, Ivanov AV, Fedotov SS. Toward Efficient Recycling of Vanadium Phosphate-Based Sodium-Ion Batteries: A Review. Clean Technologies. 2023; 5(3):881-900. https://doi.org/10.3390/cleantechnol5030044
Chicago/Turabian StyleSamarin, Aleksandr Sh., Alexey V. Ivanov, and Stanislav S. Fedotov. 2023. "Toward Efficient Recycling of Vanadium Phosphate-Based Sodium-Ion Batteries: A Review" Clean Technologies 5, no. 3: 881-900. https://doi.org/10.3390/cleantechnol5030044
APA StyleSamarin, A. S., Ivanov, A. V., & Fedotov, S. S. (2023). Toward Efficient Recycling of Vanadium Phosphate-Based Sodium-Ion Batteries: A Review. Clean Technologies, 5(3), 881-900. https://doi.org/10.3390/cleantechnol5030044