Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes
Abstract
:1. Introduction
2. Methodology
2.1. Web of Science-Based Trend Analysis
2.2. VOS Viewer-Based Strength Analysis
3. Hydrogen Production Process Analysis
3.1. Photo-Fermentation (PF)
3.1.1. Description of the Process
3.1.2. Important Process Parameters
3.1.3. Strengths, Weakness and H2 Production Enhancement
3.2. Photocatalysis
3.2.1. Description of the Process
3.2.2. Important Process Parameters
3.2.3. Strengths, Weaknesses and H2 Production Enhancement
3.3. Microbial Photo Electrochemical Cells (MPEC)
3.3.1. Description of the Process
3.3.2. Important Process Parameters
3.3.3. Strengths, Weakness and H2 Enhancement
3.4. Dark Fermentation (DF)
3.4.1. Description of the Process
3.4.2. Important Process Parameters
3.4.3. Strengths, Weaknesses and H2 Enhancement Strategy
3.5. Microbial Electrolysis Cell (MEC)
3.5.1. Description of the Process
3.5.2. Important Process Parameters for MEC
3.5.3. Strengths, Weaknesses and H2 Performance Strategy
4. Discussion
4.1. General Comparison
4.2. Strategy to Enhance H2 Production from Wastewater
4.2.1. Optimising Process Parameters
4.2.2. The Reactor Design
4.2.3. Identification and Enrichment of Effective Microorganisms and Catalysts
4.2.4. Integrated Approaches Using Two or More Processes
5. Conclusions
Informed Consent Statement Not applicable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC) Special Report on Global Warming of 1.5 °C. Available online: https://www.ipcc.ch (accessed on 18 March 2018).
- International Energy Association (IEA) Key Energy World Energy Statistics. Available online: https://webstore.iea.org/key-world-energy-statistics-2018 (accessed on 20 March 2018).
- Environment Agency (EA) Report on Transforming wastewater treatment to reduce carbon emissions. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachmentdata/file/291634/scho1209broaee.pdf (accessed on 18 March 2018).
- Dai, Z.; Heidrich, E.S.; Dolfing, J.; Jarvis, A.P. Determination of the Relationship between the Energy Content of Municipal Wastewater and Its Chemical Oxygen Demand. Environ. Sci. Technol. Lett. 2019, 6, 396–400. [Google Scholar] [CrossRef]
- Puyol, D.; Batstone, D.J.; Hülsen, T.; Astals, S.; Peces, M.; Krömer, J.O. Resource recovery from wastewater by biological technologies: Opportunities, challenges, and prospects. Front. Microbiol. 2017, 7, 2106. [Google Scholar] [CrossRef] [Green Version]
- Kalamaras, C.M.; Efstathiou, A.M. Hydrogen Production Technologies: Current State and Future Developments. Conf. Pap. Energy 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yasri, N.; Roberts, E.P.L.; Gunasekaran, S. The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Rep. 2019, 5, 1116–1136. [Google Scholar] [CrossRef]
- Preethi; Mohamed Usman, T.M.; Rajesh Banu, J.; Gunasekaran, M.; Kumar, G. Biohydrogen production from industrial wastewater: An overview. Bioresour. Technol. Rep. 2019, 7, 100287. [Google Scholar] [CrossRef]
- Rajesh Banu, J.; Kavitha, S.; Yukesh Kannah, R.; Bhosale, R.R.; Kumar, G. Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route. Bioresour. Technol. 2020, 298, 122378. [Google Scholar] [CrossRef] [PubMed]
- Hay, J.X.W.; Wu, T.Y.; Juan, J.C.; Md. Jahim, J. Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage. Biofuels Bioprod. Biorefining 2013, 7, 334–352. [Google Scholar] [CrossRef]
- Sharmila, V.G.; Banu, J.R.; Kim, S.H.; Kumar, G. A review on evaluation of applied pretreatment methods of wastewater towards sustainable H2 generation: Energy efficiency analysis. Int. J. Hydrog. Energy 2020, 45, 8329–8345. [Google Scholar] [CrossRef]
- Rioja-Cabanillas, A.; Valdesueiro, D.; Fernández-Ibáñez, P.; Anthony Byrne, J. Hydrogen from wastewater by photocatalytic and photoelectrochemical treatment. J. Phys. Energy 2021, 3, 12006. [Google Scholar] [CrossRef]
- Capson-Tojo, G.; Batstone, D.J.; Grassino, M.; Vlaeminck, S.E.; Puyol, D.; Verstraete, W.; Kleerebezem, R.; Oehmen, A.; Ghimire, A.; Pikaar, I.; et al. Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnol. Adv. 2020, 43. [Google Scholar] [CrossRef]
- Tian, H.; Li, J.; Yan, M.; Tong, Y.W.; Wang, C.H.; Wang, X. Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective. Appl. Energy 2019, 256, 113961. [Google Scholar] [CrossRef]
- Kadier, A.; Jain, P.; Lai, B.; Kalil, M.S.; Kondaveeti, S.; Alabbosh, K.F.S.; Abu-Reesh, I.M.; Mohanakrishna, G. Biorefinery perspectives of microbial electrolysis cells (MECs) for hydrogen and valuable chemicals production through wastewater treatment. Biofuel Res. J. 2020, 7, 1128–1142. [Google Scholar] [CrossRef] [Green Version]
- Web of Science Home Page. Hydrogen Production from Wastewtater. Available online: https://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=E36uOTQSu9KvjD4k7hg&preferencesSaved (accessed on 20 March 2020).
- Van Eck, N.J.; Waltman, L. Manual for VOSviewer Version 1.6.7. Univeristeit Leiden: Leiden, The Netherlands, 2018; pp. 1–50. [Google Scholar]
- Aydin, M.I.; Karaca, A.E.; Qureshy, A.M.M.I.; Dincer, I. A comparative review on clean hydrogen production from wastewaters. J. Environ. Manage. 2021, 279, 111793. [Google Scholar] [CrossRef]
- Fajrina, N.; Tahir, M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrog. Energy 2019, 44, 540–577. [Google Scholar] [CrossRef]
- Ditzig, J.; Liu, H.; Logan, B.E. Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int. J. Hydrog. Energy 2007, 32, 2296–2304. [Google Scholar] [CrossRef]
- Abo-Hashesh, M.; Ghosh, D.; Tourigny, A.; Taous, A.; Hallenbeck, P.C. Single stage photofermentative hydrogen production from glucose: An attractive alternative to two stage photofermentation or co-culture approaches. Int. J. Hydrog. Energy 2011, 36, 13889–13895. [Google Scholar] [CrossRef]
- Li, R.Y.; Fang, H.H.P. Heterotrophic photo fermentative hydrogen production. Crit. Rev. Environ. Sci. Technol. 2009, 39, 1081–1108. [Google Scholar] [CrossRef] [Green Version]
- Seifert, K.; Waligorska, M.; Laniecki, M. Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides O.U. 001. Int. J. Hydrog. Energy 2010, 35, 4085–4091. [Google Scholar] [CrossRef]
- Eroǧlu, E.; Eroǧlu, I.; Gündüz, U.; Yücel, M. Treatment of olive mill wastewater by different physicochemical methods and utilization of their liquid effluents for biological hydrogen production. Biomass Bioenergy 2009, 33, 701–705. [Google Scholar] [CrossRef]
- Eroǧlu, E.; Gündüz, U.; Yücel, M.; Türker, L.; Eroǧlu, I. Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. Int. J. Hydrog. Energy 2004, 29, 163–171. [Google Scholar] [CrossRef]
- Seifert, K.; Waligorska, M.; Laniecki, M. Hydrogen generation in photobiological process from dairy wastewater. Int. J. Hydrogen Energy 2010, 35, 9624–9629. [Google Scholar] [CrossRef]
- Anam, K.; Habibi, M.S.; Harwati, T.U.; Susilaningsih, D. Photofermentative hydrogen production using Rhodobium marinum from bagasse and soy sauce wastewater. Int. J. Hydrog. Energy 2012, 37, 15436–15442. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Hu, J.; Wu, Q.; Zhang, Q. Influence of mixing method and hydraulic retention time on hydrogen production through photo-fermentation with mixed strains. Int. J. Hydrog. Energy 2015, 40, 6521–6529. [Google Scholar] [CrossRef]
- Androga, D.D.; Özgür, E.; Eroglu, I.; Gündüz, U.; Yücel, M. Significance of carbon to nitrogen ratio on the long-term stability of continuous photofermentative hydrogen production. Int. J. Hydrog. Energy 2011, 36, 15583–15594. [Google Scholar] [CrossRef]
- Akkerman, I.; Janssen, M.; Rocha, J.; Wijffels, R.H. Photobiological hydrogen production: Photochemical efficiency and bioreactor design. Int. J. Hydrog. Energy 2002, 27, 1195–1208. [Google Scholar] [CrossRef]
- Fang, H.H.P.; Liu, H.; Zhang, T. Phototrophic hydrogen production from acetate and butyrate in wastewater. Int. J. Hydrog. Energy 2005, 30, 785–793. [Google Scholar] [CrossRef]
- Kumar Gupta, S.; Kumari, S.; Reddy, K.; Bux, F. Trends in biohydrogen production: Major challenges and state-of-the-art developments. Environ. Technol. 2013, 34, 1653–1670. [Google Scholar] [CrossRef] [PubMed]
- Oey, M.; Sawyer, A.L.; Ross, I.L.; Hankamer, B. Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol. J. 2016, 14, 1487–1499. [Google Scholar] [CrossRef] [Green Version]
- Nath, K.; Das, D. Biohydrogen production as a potential energy resource-Present state-of-art. J. Sci. Ind. Res. 2004, 63, 729–738. [Google Scholar]
- Assawamongkholsiri, T.; Reungsang, A. Photo-fermentational hydrogen production of Rhodobacter sp. KKU-PS1 isolated from an UASB reactor. Electron. J. Biotechnol. 2015, 18, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Mishra, P.; Krishnan, S.; Rana, S.; Singh, L.; Sakinah, M.; Ab Wahid, Z. Outlook of fermentative hydrogen production techniques: An overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strateg. Rev. 2019, 24, 27–37. [Google Scholar] [CrossRef]
- Tiang, M.F.; Fitri Hanipa, M.A.; Abdul, P.M.; Jahim, J.M.; Mahmod, S.S.; Takriff, M.S.; Lay, C.H.; Reungsang, A.; Wu, S.Y. Recent advanced biotechnological strategies to enhance photo-fermentative biohydrogen production by purple non-sulphur bacteria: An overview. Int. J. Hydrog. Energy 2020, 45, 13211–13230. [Google Scholar] [CrossRef]
- Li, X.; Liu, T.; Wu, Y.; Zhao, G.; Zhou, Z. Derepressive effect of NH 4+ on hydrogen production by deleting the glnA1 gene in Rhodobacter sphaeroides. Biotechnol. Bioeng. 2010, 106, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Kamarudin, S.K.; Minggu, L.J.; Kassim, M. Hydrogen from photo-catalytic water splitting process: A review. Renew. Sustain. Energy Rev. 2015, 43, 599–610. [Google Scholar] [CrossRef]
- Puga, A.V. Photocatalytic production of hydrogen from biomass-derived feedstocks. Coord. Chem. Rev. 2016, 315, 1–66. [Google Scholar] [CrossRef]
- Hisatomi, T.; Domen, K. Introductory lecture: Sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 2017, 198, 11–35. [Google Scholar] [CrossRef]
- Clarizia, L.; Russo, D.; Di Somma, I.; Andreozzi, R.; Marotta, R. Hydrogen Generation through Solar Photocatalytic Processes: A Review of the Configuration and the Properties of Effective Metal-Based Semiconductor Nanomaterials. Energies 2017, 10, 1624. [Google Scholar] [CrossRef] [Green Version]
- Clarizia, L. Hydrogen Production through Photoreforming of Oxygenated Organic Substrates over Cu/TiO 2 catalysts. Ph.D. Thesis, Industrial and Process Engineering, University of Naples “Federico II”, Naples, Italy, 2017. [Google Scholar]
- Chouhan, N.; Ameta, R.; Meena, R.K.; Mandawat, N.; Ghildiyal, R. Visible light harvesting Pt/CdS/Co-doped ZnO nanorods molecular device for hydrogen generation. Int. J. Hydrog. Energy 2016, 41, 2298–2306. [Google Scholar] [CrossRef]
- Imizcoz, M.; Puga, A.V. Assessment of Photocatalytic Hydrogen Production from Biomass or Wastewaters Depending on the Metal Co-Catalyst and Its Deposition Method on TiO2. Catalysts 2019, 9, 584. [Google Scholar] [CrossRef] [Green Version]
- Arzate Salgado, S.Y.; Ramírez Zamora, R.M.; Zanella, R.; Peral, J.; Malato, S.; Maldonado, M.I. Photocatalytic hydrogen production in a solar pilot plant using a Au/TiO2 photo catalyst. Int. J. Hydrog. Energy 2016, 41, 11933–11940. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Wang, C.; Wang, P.; Wang, Q.; Wang, D. Mechanisms of simultaneous hydrogen production and estrogenic activity removal from secondary effluent though solar photocatalysis. Water Res. 2013, 47, 3173–3182. [Google Scholar] [CrossRef] [PubMed]
- Baniasadi, E.; Dincer, I.; Naterer, G.F. Measured effects of light intensity and catalyst concentration on photocatalytic hydrogen and oxygen production with zinc sulfide suspensions. Int. J. Hydrog. Energy 2013, 38, 9158–9168. [Google Scholar] [CrossRef]
- Corredor, J.; Rivero, M.J.; Rangel, C.M.; Gloaguen, F.; Ortiz, I. Comprehensive review and future perspectives on the photocatalytic hydrogen production. J. Chem. Technol. Biotechnol. 2019, 94, 3049–3063. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Liu, J.; Shangguan, W. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chinese J. Catal. 2020, 41, 1440–1450. [Google Scholar] [CrossRef]
- Badawy, M.I.; Ghaly, M.Y.; Ali, M.E.M. Photocatalytic hydrogen production over nanostructured mesoporous titania from olive mill wastewater. Desalination 2011, 267, 250–255. [Google Scholar] [CrossRef]
- Huaxu, L.; Fuqiang, W.; Ziming, C.; Shengpeng, H.; Bing, X.; Xiangtao, G.; Bo, L.; Jianyu, T.; Xiangzheng, L.; Ruiyang, C.; et al. Analyzing the effects of reaction temperature on photo-thermo chemical synergetic catalytic water splitting under full-spectrum solar irradiation: An experimental and thermodynamic investigation. Int. J. Hydrog. Energy 2017, 42, 12133–12142. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Police, A.K.R.; Basavaraju, S.; Valluri, D.K.; Muthukonda, V.S.; Machiraju, S.; Lee, J.S. CaFe2O4 sensitized hierarchical TiO2 photo composite for hydrogen production under solar light irradiation. Chem. Eng. J. 2014, 247, 152–160. [Google Scholar] [CrossRef]
- Nakata, K.; Fujishima, A. TiO 2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13, 169–189. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Rajeshwar, K.; Osugi, M.E.; Chanmanee, W.; Chenthamarakshan, C.R.; Zanoni, M.V.B.; Kajitvichyanukul, P.; Krishnan-Ayer, R. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C Photochem. Rev. 2008, 9, 171–192. [Google Scholar] [CrossRef]
- Daskalaki, V.M.; Antoniadou, M.; Li Puma, G.; Kondarides, D.I.; Lianos, P. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ. Sci. Technol. 2010, 44, 7200–7205. [Google Scholar] [CrossRef]
- Mukherjee, P.S.; Ray, A.K. Major challenges in the design of a large-scale photocatalytic reactor for water treatment. Chem. Eng. Technol. 1999, 22, 253–260. [Google Scholar] [CrossRef]
- Lazar, M.; Varghese, S.; Nair, S. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates. Catalysts 2012, 2, 572–601. [Google Scholar] [CrossRef] [Green Version]
- Tahir, M.; Amin, N.S. Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Convers. Manag. 2013, 76, 194–214. [Google Scholar] [CrossRef]
- Lu, L.; Vakki, W.; Aguiar, J.A.; Xiao, C.; Hurst, K.; Fairchild, M.; Chen, X.; Yang, F.; Gu, J.; Ren, Z.J. Unbiased solar H2 production with current density up to 23 mA cm-2 by Swiss-cheese black Si coupled with wastewater bioanode. Energy Environ. Sci. 2019, 12, 1088–1099. [Google Scholar] [CrossRef]
- Aguiar, J.A.; Anderson, N.C.; Neale, N.R. Revealing the semiconductor-catalyst interface in buried platinum black silicon photocathodes. J. Mater. Chem. A 2016, 4, 8123–8129. [Google Scholar] [CrossRef]
- Peerakiatkhajohn, P.; Yun, J.-H.; Wang, S.; Wang, L. Review of recent progress in unassisted photoelectrochemical water splitting: From material modification to configuration design. J. Photonics Energy 2016, 7, 012006. [Google Scholar] [CrossRef]
- Singh, R.; Dutta, S. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel 2018, 220, 607–620. [Google Scholar] [CrossRef]
- Liang, D.; Han, G.; Zhang, Y.; Rao, S.; Lu, S.; Wang, H.; Xiang, Y. Efficient H2 production in a microbial photoelectrochemical cell with a composite Cu2O/NiOx photocathode under visible light. Appl. Energy 2016, 168, 544–549. [Google Scholar] [CrossRef]
- Lianos, P. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell. The concept of the Photofuelcell: A review of a re-emerging research field. J. Hazard. Mater. 2011, 185, 575–590. [Google Scholar] [CrossRef]
- Chae, K.J.; Choi, M.J.; Kim, K.Y.; Ajayi, F.F.; Chang, I.S.; Kim, I.S. A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen. Environ. Sci. Technol. 2009, 43, 9525–9530. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Huang, Z.; Lee, W. Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 2014, 9, 271–304. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.M.; Chen, P.Y.; Hsu, C.Y.; Huang, J.H.; Ho, W.H.; Chen, H.C.; Ho, K.C. A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells. J. Power Sources 2009, 188, 313–318. [Google Scholar] [CrossRef]
- Van Ginkel, S.; Logan, B.E. Inhibition of Biohydrogen Production by Undissociated Acetic and Butyric Acids. Environ. Sci. Technol. 2005, 39, 9351–9356. [Google Scholar] [CrossRef]
- Ortigueira, J.; Alves, L.; Gouveia, L.; Moura, P. Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel 2015, 153, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Won, S.G.; Lau, A.K. Effects of key operational parameters on biohydrogen production via anaerobic fermentation in a sequencing batch reactor. Bioresour. Technol. 2011, 102, 6876–6883. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Sivagurunathan, P.; Park, J.H.; Park, J.H.; Park, H.D.; Yoon, J.J.; Kim, S.H. HRT dependent performance and bacterial community population of granular hydrogen-producing mixed cultures fed with galactose. Bioresour. Technol. 2016, 206, 188–194. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Lalit Babu, V.; Sarma, P.N. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate. Enzym. Microb. Technol. 2007, 41, 506–515. [Google Scholar] [CrossRef]
- Azbar, N.; Çetinkaya Dokgöz, F.T.; Keskin, T.; Korkmaz, K.S.; Syed, H.M. Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int. J. Hydrog. Energy 2009, 34, 7441–7447. [Google Scholar] [CrossRef]
- Kumar, G.; Sivagurunathan, P.; Pugazhendhi, A.; Thi, N.B.D.; Zhen, G.; Chandrasekhar, K.; Kadier, A. A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options. Energy Convers. Manag. 2017, 141, 390–402. [Google Scholar] [CrossRef]
- Kumar, G.; Bakonyi, P.; Sivagurunathan, P.; Kim, S.H.; Nemestóthy, N.; Bélafi-Bakó, K.; Lin, C.Y. Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains. J. Biosci. Bioeng. 2015, 120, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Zhang, R.; McGarvey, J.A.; Benemann, J.R. Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int. J. Hydrog. Energy 2007, 32, 4761–4771. [Google Scholar] [CrossRef]
- Wicher, E.; Seifert, K.; Zagrodnik, R.; Pietrzyk, B.; Laniecki, M. Hydrogen gas production from distillery wastewater by dark fermentation. Int. J. Hydrog. Energy 2013, 38, 7767–7773. [Google Scholar] [CrossRef]
- Moreno-Andrade, I.; Moreno, G.; Kumar, G.; Buitrón, G. Biohydrogen production from industrial wastewaters. Water Sci. Technol. 2015, 71, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.R.; Costa, J.C.; Pereira, M.A.; Abreu, A.A.; Alves, M.M. On the independence of hydrogen production from methanogenic suppressor in olive mill wastewater. Int. J. Hydrog. Energy 2014, 39, 6402–6406. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.C.; Chu, C.Y.; Wu, S.Y.; Tsai, C.Y.; Wang, C.C.; Hung, C.H.; Lin, C.Y. Feasible pretreatment of textile wastewater for dark fermentative hydrogen production. Int. J. Hydrog. Energy 2012, 37, 15511–15517. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Ren, N. Biohydrogen from molasses with ethanol-type fermentation: Effect of hydraulic retention time. Int. J. Hydrog. Energy 2013, 38, 4361–4367. [Google Scholar] [CrossRef]
- Wang, J.; Wan, W. Factors influencing fermentative hydrogen production: A review. Int. J. Hydrog. Energy 2009, 34, 799–811. [Google Scholar] [CrossRef]
- Leaño, E.P.; Babel, S. Effects of pretreatment methods on cassava wastewater for biohydrogen production optimization. Renew. Energy 2012, 39, 339–346. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Sun, Y.; He, J.; Yang, G.; Sun, G.; Sage, V. A review of the enhancement of bio-hydrogen generation by chemicals addition. Catalysts 2019, 9, 353. [Google Scholar] [CrossRef] [Green Version]
- Rambabu, K.; Bharath, G.; Thanigaivelan, A.; Das, D.B.; Show, P.L.; Banat, F. Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation. Bioresour. Technol. 2021, 319, 124243. [Google Scholar] [CrossRef]
- Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 2008, 42, 8630–8640. [Google Scholar] [CrossRef] [PubMed]
- Rago, L.; Baeza, J.A.; Guisasola, A. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions. Bioelectrochemistry 2016, 109, 57–62. [Google Scholar] [CrossRef]
- Montpart, N.; Rago, L.; Baeza, J.A.; Guisasola, A. Hydrogen production in single chamber microbial electrolysis cells with different complex substrates. Water Res. 2015, 68, 601–615. [Google Scholar] [CrossRef]
- Lu, L.; Ren, Z.J. Microbial electrolysis cells for waste biorefinery: A state of the art review. Bioresour. Technol. 2016, 215. [Google Scholar] [CrossRef] [Green Version]
- Kadier, A.; Kalil, M.S.; Abdeshahian, P.; Chandrasekhar, K.; Mohamed, A.; Azman, N.F.; Logroño, W.; Simayi, Y.; Hamid, A.A. Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew. Sustain. Energy Rev. 2016, 61, 501–525. [Google Scholar] [CrossRef]
- Heidrich, E.S.; Dolfing, J.; Scott, K.; Edwards, S.R.; Jones, C.; Curtis, T.P. Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Appl. Microbiol. Biotechnol. 2013, 97, 6979–6989. [Google Scholar] [CrossRef]
- Heidrich, E.S.; Edwards, S.R.; Dolfing, J.; Cotterill, S.E.; Curtis, T.P. Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period. Bioresour. Technol. 2014, 173, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escapa, A.; San Martin, M.I.; Moran, A. Potential Use of Microbial Electrolysis Cells in Domestic Wastewater Treatment Plants for Energy Recovery. Front. Energy Res. 2014, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Escapa, A.; San-Martín, M.I.; Mateos, R.; Morán, A. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations. Bioresour. Technol. 2015, 180, 72–78. [Google Scholar] [CrossRef]
- Gil-Carrera, L.; Escapa, A.; Moreno, R.; Morán, A. Reduced energy consumption during low strength domestic wastewater treatment in a semi-pilot tubular microbial electrolysis cell. J. Environ. Manage. 2013, 122, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Escapa, A.; Gil-Carrera, L.; García, V.; Morán, A. Performance of a continuous flow microbial electrolysis cell (MEC) fed with domestic wastewater. Bioresour. Technol. 2012, 117, 55–62. [Google Scholar] [CrossRef]
- Cotterill, S.E.; Dolfing, J.; Jones, C.; Curtis, T.P.; Heidrich, E.S. Low Temperature Domestic Wastewater Treatment in a Microbial Electrolysis Cell with 1 m 2 Anodes: Towards System Scale-Up. Fuel Cells 2017, 17, 584–592. [Google Scholar] [CrossRef] [Green Version]
- Baeza, J.A.; Martínez-Miró, À.; Guerrero, J.; Ruiz, Y.; Guisasola, A. Bioelectrochemical hydrogen production from urban wastewater on a pilot scale. J. Power Sources 2017, 356, 500–509. [Google Scholar] [CrossRef]
- Ullery, M.L.; Logan, B.E. Comparison of complex effluent treatability in different bench scale microbial electrolysis cells. Bioresour. Technol. 2014, 170, 530–537. [Google Scholar] [CrossRef] [Green Version]
- Tenca, A.; Cusick, R.D.; Schievano, A.; Oberti, R.; Logan, B.E. Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells. Int. J. Hydrog. Energy 2013, 38, 1859–1865. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, W.Q.; Xing, D.F.; Chang, J.S.; Ren, N.Q. Hydrogen production using biocathode single-chamber microbial electrolysis cells fed by molasses wastewater at low temperature. Int. J. Hydrogen Energy 2014, 39, 19369–19375. [Google Scholar] [CrossRef]
- Jia, Y.H.; Choi, J.Y.; Ryu, J.H.; Kim, C.H.; Lee, W.K.; Tran, H.T.; Zhang, R.H.; Ahn, D.H. Hydrogen production from wastewater using a microbial electrolysis cell. Korean J. Chem. Eng. 2010, 27, 1854–1859. [Google Scholar] [CrossRef]
- Wagner, R.C.; Regan, J.M.; Oh, S.E.; Zuo, Y.; Logan, B.E. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res. 2009, 43, 1480–1488. [Google Scholar] [CrossRef]
- Kadier, A.; Simayi, Y.; Abdeshahian, P.; Azman, N.F.; Chandrasekhar, K.; Kalil, M.S. A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex. Eng. J. 2016, 55, 427–443. [Google Scholar] [CrossRef] [Green Version]
- Kokko, M.; Epple, S.; Gescher, J.; Kerzenmacher, S. Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems. Bioresour. Technol. 2018, 258, 376–389. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, G. Factors affecting the effectiveness of bioelectrochemical system applications: Data synthesis and meta-analysis. Batteries 2018, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Gil-Carrera, L.; Escapa, A.; Carracedo, B.; Morán, A.; Gómez, X. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages. Bioresour. Technol. 2013, 146, 63–69. [Google Scholar] [CrossRef]
- Saravanan, A.; Karishma, S.; Kumar, P.S.; Yaashikaa, P.R.; Jeevanantham, S.; Gayathri, B. Microbial electrolysis cells and microbial fuel cells for biohydrogen production: Current advances and emerging challenges. Biomass Convers. Biorefinery 2020. [Google Scholar] [CrossRef]
- Escapa, A.; Lobato, A.; García, D.M.; Morán, A. Hydrogen production and COD elimination rate in a continuous microbial electrolysis cell: The influence of hydraulic retention time and applied voltage. Environ. Prog. Sustain. Energy 2013. [Google Scholar] [CrossRef]
- Pant, D.; Singh, A.; Van Bogaert, G.; Gallego, Y.A.; Diels, L.; Vanbroekhoven, K. An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: Relevance and key aspects. Renew. Sustain. Energy Rev. 2011, 15, 1305–1313. [Google Scholar] [CrossRef]
- Aiken, D.C.; Curtis, T.P.; Heidrich, E.S. Avenues to the financial viability of microbial electrolysis cells [MEC] for domestic wastewater treatment and hydrogen production. Int. J. Hydrog. Energy 2019, 44, 2426–2434. [Google Scholar] [CrossRef]
- Zhang, X.; Li, R. Electrodes bioaugmentation promotes the removal of antibiotics from concentrated sludge in microbial electrolysis cells. Sci. Total Environ. 2020, 715, 136997. [Google Scholar] [CrossRef]
- Rozendal, R.A.; Hamelers, H.V.M.; Rabaey, K.; Keller, J.; Buisman, C.J.N. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 2008, 26, 450–459. [Google Scholar] [CrossRef]
- Mohan, S.V.; Chandrasekhar, K.; Chiranjeevi, P.; Babu, P.S. Biohydrogen Production from Wastewater. Biohydrogen 2013, 223–257. [Google Scholar] [CrossRef]
- Sujatha, G.; Shanthakumar, S.; Chiampo, F. UV Light-Irradiated Photocatalytic Degradation of Coffee Processing Wastewater Using TiO2 as a Catalyst. Environments 2020, 7, 47. [Google Scholar] [CrossRef]
- Cheng, S.; Logan, B.E. Sustainable and efficient biohydrogen production via electrohydrogenesis. PNAS 2007, 104, 18871–18873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; He, W.; Zhang, F.; Hickner, M.A.; Logan, B.E. Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells. Environ. Sci. Technol. Lett. 2014, 1, 416–420. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.; Studer, S. H2 Production Status & Threshold Costs Plot. Available online: https://www.hydrogen.energy.gov/pdfs/12002_h2_prod_status_cost_plots.pdf (accessed on 10 January 2019).
- James, B.D.; DeSantis, D.A.; Saur, G. Final Report: Hydrogen Production Pathways Cost Analysis (2013–2016). 2016; 1–55. [Google Scholar]
- IEA (International Energy Agency) H2 Implementing Agreement (HIA) 2013 Anual Report Background TASK 21. 2013; 1–13.
- Pinaud, B.A.; Benck, J.D.; Seitz, L.C.; Forman, A.J.; Chen, Z.; Deutsch, T.G.; James, B.D.; Baum, K.N.; Baum, G.N.; Ardo, S.; et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983–2002. [Google Scholar] [CrossRef] [Green Version]
- Cusick, R.D.; Kiely, P.D.; Logan, B.E. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int. J. Hydrog. Energy 2010, 35, 8855–8861. [Google Scholar] [CrossRef]
- Jung, K.W.; Kim, D.H.; Kim, S.H.; Shin, H.S. Bioreactor design for continuous dark fermentative hydrogen production. Bioresour. Technol. 2011, 102, 8612–8620. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Guo, J.-B.; Zhao, L.-J.; Chang, C.-C.; Cui, D. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresour. Technol. 2009, 100, 597–602. [Google Scholar] [CrossRef]
- Wang, J.; Yin, Y. Principle and application of different pretreatment methods for enriching hydrogen-producing bacteria from mixed cultures. Int. J. Hydrog. Energy 2017, 42, 4804–4823. [Google Scholar] [CrossRef]
- Kuppam, C.; Pandit, S.; Kadier, A.; Dasagrandhi, C.; Velpuri, J. Biohydrogen production: Integrated approaches to improve the process efficiency. In Microbial Applications; Springer: Berlin, Germany, 2017; Volume 1, pp. 189–210. [Google Scholar]
- Wang, A.; Sun, D.; Cao, G.; Wang, H.; Ren, N.; Wu, W.M.; Logan, B.E. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour. Technol. 2011, 102, 4137–4143. [Google Scholar] [CrossRef]
- Gude, V.G. Integrating bioelectrochemical systems for sustainable wastewater treatment. Clean Technol. Env. Policy 2018, 20, 911–924. [Google Scholar] [CrossRef]
- Chen, S.; Liu, G.; Zhang, R.; Qin, B.; Luo, Y. Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environ. Sci. Technol. 2012, 46, 2467–2472. [Google Scholar] [CrossRef]
Set# | Query String | No of Publication |
---|---|---|
1 | TS = (Hydrogen* production processes * from wastewater) | 1030 |
2 | #1 AND TS = (reactor) | 397 |
3 | #1 AND TS = (material* OR fabrication*) | 160 |
4 | #1 AND TS = (energy generation*) | 152 |
5 | # 1 AND TS = (dark fermentation) | 125 |
6 | #1 AND TS = (microorganism*) | 85 |
7 | #1 AND TS = (COD reduction rate*) | 72 |
8 | # 1 AND TS = (microbial electrolysis cell*) | 64 |
9 | #1 AND TS = (biofilm) | 63 |
10 | #1 AND TS = (photocatalysis) | 43 |
11 | #1 AND TS = (photocatalyst*) | 41 |
12 | #1 AND TS = (configuration*) | 38 |
13 | # 1 AND TS = (photo-fermentation) | 28 |
14 | #1 AND TS = (Microbial photo* electrochemical cell) | 08 |
Effluent Type | Microorganism | Pre-Treatment | Light Intensity Source | Temp (°C) | pH | H2 Production Rate (L/L/d) | Reference |
---|---|---|---|---|---|---|---|
Brewery wastewater | Rhodobacter sphaeroides | Sterilised at 120°C for 20 min | 9000 lux/Hg-W lamp | 28 ± 2 | 7–7.2 | 0.045 | [23] |
Dairy wastewater | Rhodobacter sphaeroides | Sterilised at 120°C for 20 min | 9000 lux/Hg-W lamp | 28 ± 2 | 7–7.2 | 0.057 | [26] |
Olive oil wastewater | Rhodobacter sphaeroides | - | 200 W/m2 | 32 | 6.8–7 | 0.009 | [25] |
Palm oil mill effluent | Rhodopseudomonas sp | - | 2500 lux | 30 ± 2 | 7 | 0.01 | [27] |
Tofu wastewater | Rhodobacter sphaeroides | - | 8000 lux | 30 | 7.9 | 0.015 | [27] |
Parameter | Value Range | Reference |
---|---|---|
Wavelength | Visible radiation (400–950 nm) | [30] |
Temperature | 30 to 40 °C | [28] |
pH | 7.0–8.0 for mixed culture and 8.0–9.0 for acetate and butyrate | [31] |
C/N ratio | Less than 2/3 with 25:1 optimal for batch reactor processing | [29] |
Reactor | High surface area to volume ratio aids light capture and distribution | [30] |
HRT | Dependent on the reactor configuration and type; for baffle photobioreactor an HRT >24 h was reported to be optimal | [28] |
Effluent Source | Catalyst | Irradiation Source | Duration (h) | H2 Production Rate (μmol/g_cat/h) | Reference | |
---|---|---|---|---|---|---|
Max | SD | |||||
Municipal wastewater | Au/TiO2 | 1 kW/m2 | 2 | 0.1 | 0.030 | [45] |
Municipal wastewater | Cu/TiO2 | 1 kW/m2 | 2 | 0.1 | 0.030 | [45] |
Municipal wastewater | Au/TiO2 | Solar (305–550 nm) | 5 | 22 | 7.025 | [46] |
Industrial wastewater | Au/TiO2 | Solar (305–550 nm) | 5 | 12 | 3.646 | [46] |
Juice production wastewater | Au/TiO2 | 1 kW/m2 | 2 | 115.2 | 20.341 | [45] |
Juice production wastewater | Cu/TiO2 | 1 kW/m2 | 2 | 10.27 | 1.646 | [45] |
Secondary effluent | Pt-TiO2 | Xe-arc lamp (400–700 nm) | 3.3 | 0.60 | 0.158 | [47] |
Parameter | Description | Reference |
---|---|---|
Catalyst | Reports include chalcogenides (ZnS, CdS, CdSe), metal oxides (TiO2, Cu2O, ZrO2), carbonaceous materials (g-C3N4) and solid solutions [(Ga1-xZnx)(N1-xOx), (AgIn)xZn2(1-x)S2]. Bare and modified TiO2 remains most common. | [49] |
pH | pH plays an important role in photocatalytic hydrogen production from wastewater. Acidic solution (pH < 7) of wastewater is more favorable than basic solution (pH >7). | [51] |
Temperature | Generally ambient, with some exception showing increased H2 production rates between 45 °C and 55 °C and even up to 80 °C. | [52] |
Concentration of catalyst | Concentration should be optimised to the reactor system. At low concentrations, rate is directly proportional to the catalyst concentration; however, high-loading photon scattering dominates. | [53] |
Light Intensity | Increased photon flux typically increased H2 production rate—but dependent on catalyst concentration. | [48] |
Sacrificial reagent | Sacrificial reagents can enhance polarity and absorption, with electron donation providing additional redox capability. | [54] |
Photoreactor | Compound parabolic concentrator reactors (CPC) reported to be effective in harvesting direct and diffuse solar radiation. | [55] |
Effluent Source | Name and Type of Catalyst | Light Intensity/Energy input | Duration (h) | H2 Production Rate (L/L/d) | Reference | |
---|---|---|---|---|---|---|
Max | SD | |||||
Brewery wastewater | b-Si/MoSx-1 | 1 Sun (0.654–9.88 mW/cm2) | 90 | 0.31 | 0.057 | [62] |
b-Si/MoSx-2 | 90 | 0.37 | 0.061 | |||
b-Si/Pt-1 | 90 | 0.42 | 0.063 | |||
b-Si/Pt-2 | 90 | 0.43 | 0.065 | |||
Synthetic wastewater | TiO2 | 30 W mercury lamp | 200 | 0.018 | 0.001 | [65] |
Synthetic wastewater | CuO2/NiOx | Visible light illumination/0 to 0.4 Volt external bias | 2–6 | 0.07 | 0.004 | [66] |
Parameter | Description | Reference |
---|---|---|
Bioanode | High surface area conducting material—typically carbon, e.g., carbon brush, graphite felt. | [67] |
Substrate and Concentration | Versatility in wastewater source; however, conductivity is an important consideration to aid charge carrier transfer and catalyst performance. | [62] |
Photocathode | Photoactive materials can be used as photocathode, or photoactive catalysts can be deposited onto efficient conductive supporting cathode materials. | [68] |
Light intensity | Light intensity varies based on reactor configuration. Wavelength should be matched to or exceed the band-gap of the photocathode material. | [62] |
Catalyst | CuO2/NiOx, TiO2, b-Si/Pt, b-Si/MoSx etc are widely used. | [62] |
pH | pH of the electrolyte varies over the time. Maintaining stable pH can help with consistent production of H2. | [62] |
Effluent Source | Inoculum Source | pH | Temp (°C) | Substrate Concentration (gCOD/L) | Operation Mode | H2 Production Rate (L/L/d) | Reference |
---|---|---|---|---|---|---|---|
Beverage WW | EMC | 6.5 | 37.0 | 5.0 | Batch | 1.75 | [77] |
Beverage WW | AM | 4–6 | 28 | 2.4–4.7 | 0.03 | [78] | |
Cheese processing WW | ADS | 4.8 | 35–38 | 5–7 | 1.0 | [79] | |
Cheese whey WW | ADS | 5.5 | 55 | 21–47 | 1.5 | [76] | |
Distillery WW | AS | 5.5 | 37.0 | 34.8 | 2.88 | [80] | |
Plastic industry WW | AS | 5.5 | 36 | 3 | 0.28 | [81] | |
Olive mill WW | AS | 7.0 | 37 | 50 | 0.42 | [82] | |
Textile WW | - | 7.0 | 37 | 20 | 4.32 | [83] | |
Sugary WW | AS | 4.5 | 35 | 6 | Continuous | 3.45 | [84] |
Molasses WW | AS | 4.4 | 35 | 8 | 7.47 | [84] | |
Olive mill WW | AS | 7.0 | 35 | 39 | 7.00 | [77] | |
Cheese whey WW | ADS | 5.9 | 22–25 | 20 | 8.64 | [76] |
Parameter | Description | Reference |
---|---|---|
Inoculum | The choice of organisms is critical. Soil, wastewater sludge, compost, manure, digester sludge and solid waste can all be used. | [85] |
Pre-treatment | Thermal, mechanical, chemical, microwave and biological pre-treatment enhance the bio-availability of the substrate and the hydrogen yield from both waste and wastewater. | [86] |
Temperature | Typically, mesophilic conditions (25–49 °C) produce a higher H2 yield with mixed cultures. Effective H2 yields are possible with increases in temperature to 60 °C. | [81] |
pH | pH is a critical factor significantly determining the growth and metabolic activities of microbes. Optimum pH ranges from 4.5 to 9. | [85] |
HRT | Depending on reactor conditions and inoculum, the optimum HRT for hydrogen production ranges between hours and days. | [84] |
EFFLUENT SOURCE | Study Duration (days) | MEC Capacity (L) | Columbic Efficiency (%) | COD Removal (%) | Temp (°C) | H2/CH4 Production Rate (L/L/d) | Reference |
---|---|---|---|---|---|---|---|
Domestic WW | ≥365 | 100 | 41.2 | 33 | 1–22 | 0.007 | [96] |
Domestic | ≥730 | 2 | 9–30 | 80 | 20 | 0.006–0.045 | [99] |
Domestic WW | 149 | 120 | 55 | 34 | 16.6 | 0.015 | [95] |
Domestic WW | ≥730 | 2 | 10–94 | 85 | 20 | 0.045 | [97] |
Domestic WW | 35 | 0.2 | 38–65 | 76 | 30 | 0.3 | [100] |
Municipal WW | 120 | 120 | 43 | 43.6 | 3.7–19.4 | 0.003–0.004 | [101] |
Municipal WW | >100 | 130 | 28 | 5.9–25.4 | - | 0.031 | [102] |
Substrate/WW | 100 | 0.028 | 15–52 | 73.5–100 | 23 | 0–0.94 | [92] |
Effluent/WW | 28 | 0.028 | 60–90 | - | 25 | 0.1 | [103] |
Industrial WW | - | 0.028 | 7–12 | 85–89 | 30 | 0.8–1.8 | [104] |
Molasses WW | 25 | 0.025 | 83.6–95 | - | 9 | 0.72–1.69 | [105] |
Piggery WW | - | 0.72 | 9–30 | 48 | - | 0.095 | [106] |
Swine WW | 15 | 0.028 | 29–70 | 19–72 | 30 | 0.8–1.0 | [107] |
Parameter | Description | Reference |
---|---|---|
pH | Neutral or slightly acidic pH results in optimal biofilm cultures. | [109] |
Temperature | Majority of MEC research conducted at low/ambient temperatures (8–22 °C). Raising the temperature to 45 oC can increase the growth of some strains of microorganism but H2 production rates drop above 50 °C. | [109] [110] |
Inoculum | MECs frequently inoculated (1) by anodes prepared in MFCs, (2) with treated effluent from MFC/MEC, (3) seeding with real wastewater/anaerobic sludge and (4) using cultured pure bacterial species. | [111] [112] |
HRT | Reactor design specific; however, COD reduction rate typically proportional with HRT. | [111] [112] |
Configuration of MEC | Both single- and double-chamber (H-type, rectangle, cube, cassette type, cylindrical, tubular, etc.) configurations widely used. Cassette-type modular structure preferred for scale-up studies. | [108] |
External bias | In theory MEC requires > = 0.4 V, but 0.8–1.0 V is considered optimum for H2 production. | [111] |
Process Name | Strengths | Technical Challenges | Reference |
---|---|---|---|
Photo-fermentation | PNS bacteria can absorb photonic energy from broad-spectrum solar sources. Various type of wastewater can be used. | Interrupted supply of solar energy due to daylight and night cycle. Poor light conversion efficiency. An exterior power (light source) is needed. H2 production rate is low. | [32] [33] |
Photocatalysis | Photocatalyst can be tuned to capture visible and UV energy. Easy recovery of the photocatalyst. Reasonable H2 production rates and COD reduction rate (67.4%). | Design and configuration of photoreactor for optimum light absorption is challenging. Catalyst fouling is a significant issue. | [49] [119] |
MPEC | Potential to use solar energy. High substrate conversion. | Low H2 production rate. Unstable and complex systems given dependence on catalyst, light energy, microorganism, anode cathode and external bias variability. | [62] |
Dark fermentation | Simple reactor technology. Requires no light and external bias. Stability of anaerobic process. Produces value-added by-products. Utilisation of a wide variety of carbon sources. | Low substrate conversion rate. Gas (H2, CO2) separation required. Thermodynamic limitations. Accumulation of acid-rich intermediate metabolites with need for further treatment before discharge. COD reduction efficiency is low (28.3%). | [118] [87] |
MEC | Complex organic substrate processed to produce H2. High theoretical yield of H2. Light-independent process. Good COD removal. Possibility for value=added by-product production. | High cost of reactor materials. Need for external energy. Energy losses. | [18] [108] |
Process Name | External Energy Source | Efficiency (%) | COD Reduction (%) | TRL | H2 Production Cost (USD/kg) | Cost Calculation Year | Reference |
---|---|---|---|---|---|---|---|
Photo-fermentation | Solar | 10 | 52.2 | 1–3 | 2.83 | 2014 | [122] [123] [124] [87] |
Photocatalysis | Solar | 23–24 a | 50 | 1–3 | 2–4 | 2013 | [122] [125] |
MPEC | Solar and/or external bias | 3–30 b | 90 | 1–3 | >4 | 2019 | [62] [124] |
Dark fermentation | none | 19–28 c | 45 | 7 | 2.57 | 2014 | [122] [124] [87] |
MEC | External bias | 80 c | 80.2 | 2–6 | 5.09 | 2019 | [123] [124] [126] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, A.K.M.K.; Dunlop, P.S.M.; Hewitt, N.J.; Lenihan, R.; Brandoni, C. Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes. Clean Technol. 2021, 3, 156-182. https://doi.org/10.3390/cleantechnol3010010
Islam AKMK, Dunlop PSM, Hewitt NJ, Lenihan R, Brandoni C. Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes. Clean Technologies. 2021; 3(1):156-182. https://doi.org/10.3390/cleantechnol3010010
Chicago/Turabian StyleIslam, A K M Khabirul, Patrick S. M. Dunlop, Neil J. Hewitt, Rose Lenihan, and Caterina Brandoni. 2021. "Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes" Clean Technologies 3, no. 1: 156-182. https://doi.org/10.3390/cleantechnol3010010
APA StyleIslam, A. K. M. K., Dunlop, P. S. M., Hewitt, N. J., Lenihan, R., & Brandoni, C. (2021). Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes. Clean Technologies, 3(1), 156-182. https://doi.org/10.3390/cleantechnol3010010