Gender and Anthropometric Effects on Seat-to-Head Transmissibility Responses to Vertical Whole-Body Vibration of Humans Seated on an Elastic Seat
Abstract
:1. Introduction
2. Measurement and Analysis Methods
2.1. Subjects and Seat Characteristics
2.2. Experimental Setup and Measurement Methods
2.3. Data Analysis
3. Results
3.1. Gender Effect
3.2. Gender and Mass-Related Anthropometry
3.3. Gender and Build-Related Anthropometry
3.4. Gender and Stature-Related Anthropometry
4. Discussions
4.1. STHT Response Characteristics and Gender Effect
4.2. Effect of Gender Coupled with Mass-Related Anthropometry
4.3. Effect of Gender and Build-Related Anthropometry
4.4. Effect of Gender and Stature-Related Anthropometry
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paddan, G.S.; Griffin, M.J. The transmission of translational seat vibration to the head—I. Vertical seat vibration. J. Biomech. 1988, 21, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Boileau, P.-É.; Wu, X.; Rakheja, S. Definition of a range of idealized values to characterize seated body biodynamic response under vertical vibration. J. Sound Vib. 1998, 215, 841–862. [Google Scholar] [CrossRef]
- Rakheja, S.; Dong, R.G.; Patra, S.; Boileau, P.-É.; Marcotte, P.; Warren, C. Biodynamics of the human body under whole-body vibration: Synthesis of the reported data. Int. J. Ind. Ergon. 2010, 40, 710–732. [Google Scholar] [CrossRef]
- Rahmatalla, S.; DeShaw, J. Effective seat-to-head transmissibility in whole-body vibration: Effects of posture and arm position. J. Sound Vib. 2011, 330, 6277–6286. [Google Scholar] [CrossRef]
- Wu, X.; Rakheja, S.; Boileau, P.-É. Study of human–seat interface pressure distribution under vertical vibration. Int. J. Ind. Ergon. 1998, 21, 433–449. [Google Scholar] [CrossRef]
- Akgunduz, A.; Rakheja, S.; Tarczay, A. Distributed occupant-seat interactions as an objective measure of seating comfort. Int. J. Veh. Des. 2014, 65, 293. [Google Scholar] [CrossRef]
- Koo, T.K.K.; Mak, A.F.T.; Lee, Y.L. Posture effect on seating interface biomechanics: Comparison between two seating cushions. Arch. Phys. Med. Rehabil. 1996, 77, 40–47. [Google Scholar] [CrossRef]
- Hinz, B.; Seidel, H.; Menzel, G.; Blüthner, R. Effects related to random whole-body vibration and posture on a suspended seatwith and without backrest. J. Sound Vib. 2002, 253, 265–282. [Google Scholar] [CrossRef]
- Dewangan, K.N.; Rakheja, S.; Marcotte, P.; Shahmir, A.; Patra, S.K. Comparisons of apparent mass responses of human subjects seated on rigid and elastic seats under vertical vibration. Ergonomics 2013, 56, 1806–1822. [Google Scholar] [CrossRef]
- Pope, M.H.; Wilder, D.G.; Jorneus, L.; Broman, H.; Svensson, M.; Andersson, G. The Response of the Seated Human to Sinusoidal Vibration and Impact. J. Biomech. Eng. 1987, 109, 279–284. [Google Scholar] [CrossRef]
- Dewangan, K.N.; Yao, Y.; Rakheja, S. Seat-to-head transmissibility responses of seated human body coupled with visco-elastic seats. Vibration 2022, 5, 860–882. [Google Scholar] [CrossRef]
- Paddan, G.S.; Griffin, M.J. A review of the transmission of translational seat vibration to the head. J. Sound Vib. 1998, 215, 863–882. [Google Scholar] [CrossRef]
- Bontrager, K.; Lampignano, J. Textbook of Radiographic Positioning and Related Anatomy; Elsevier: St. Louis, MO, USA, 2014. [Google Scholar]
- Dewangan, K.N.; Shahmir, A.; Rakheja, S.; Marcotte, P. Vertical and Fore-Aft Seat-to-Head Transmissibility Response to Vertical Whole Body Vibration: Gender and Anthropometric Effects. J. Low Freq. Noise Vib. Act. Control 2013, 32, 11–40. [Google Scholar] [CrossRef]
- Whittaker, R.L.; Vidt, M.E.; Lockley, R.M.E.; Mourtzakis, M.; Dickerson, C.R. Upper extremity and trunk body segment parameters are affected by BMI and sex. J. Biomech. 2021, 117, 110230. [Google Scholar] [CrossRef]
- Lois Zlolniski, S.; Torres-Tamayo, N.; García-Martínez, D.; Blanco-Pérez, E.; Mata-Escolano, F.; Barash, A.; Nalla, S.; Martelli, S.; Sanchis-Gimeno, J.A.; Bastir, M. 3D geometric morphometric analysis of variation in the human lumbar spine. Am. J. Phys. Anthropol. 2019, 170, 361–372. [Google Scholar] [CrossRef]
- Wang, W.; Rakheja, S.; Boileau, P.-É. Relationship between measured apparent mass and seat-to-head transmissibility responses of seated occupants exposed to vertical vibration. J. Sound Vib. 2008, 314, 907–922. [Google Scholar] [CrossRef]
- Bhiwapurkar, M.; Saran, V.; Harsha, S. Effects of posture and vibration magnitude on seat to head transmissibility during exposure to fore-and-aft vibration. J. Low Freq. Noise Vib. Act. Control 2019, 38, 826–838. [Google Scholar] [CrossRef]
- Goggins, K.A.; Kelly, E.A.; Thompson, T.J.; Eger, T.R. Examining the Impact of Rotated Neck and Trunk Postures on Vertical Seat-to-Head Vibration Transmissibility and Self-Reported Discomfort. Vibration 2022, 5, 306–325. [Google Scholar] [CrossRef]
- Rakheja, S.; Dewangan, K.N.; Dong, R.G.; Marcotte, P. Whole-body vibration biodynamics—A critical review: I. Experimental biodynamics. Int. J. Veh. Perform. 2020, 6, 1. [Google Scholar] [CrossRef]
- Donati, P.M.; Bonthoux, C. Biodynamic response of the human body in the sitting position when subjected to vertical vibration. J. Sound Vib. 1983, 90, 423–442. [Google Scholar] [CrossRef]
- Hodgdon, J.A.; Beckett, M.B. Prediction of Percent Body Fat for U.S. Navy Men and Women from Body Circumferences and Height; Reports No. 84–29 and 84–11; Naval Health Research Center: San Diego, CA, USA, 1984. [Google Scholar]
- Society of Automotive Engineers J1013_200711. Measurement of Whole Body Vibration of the Seated Operator of off-Highway Work Machines; SAE Handbook 39.59–39–62; SAE: Pittsburgh, PA, USA, 2007. [Google Scholar]
- M-Pranesh, A.; Rakheja, S.; Demont, R. Influence of Support Conditions on Vertical Whole-body Vibration of the Seated Human Body. Ind. Health 2010, 48, 682–697. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Rakheja, S.; Boileau, P.-É. Effect of Back Support Condition on Seat to Head Transmissibilities of Seated Occupants under Vertical Vibration. J. Low Freq. Noise Vib. Act. Control 2006, 25, 239–259. [Google Scholar] [CrossRef]
- Dewangan, K.N.; Rakheja, S.; Marcotte, P.; Shahmir, A. Effects of elastic seats on seated body apparent mass responses to vertical whole body vibration. Ergonomics 2015, 58, 1175–1190. [Google Scholar] [CrossRef] [PubMed]
- Wilder, D.G.; Woodworth, B.B.; Frymoyer, J.W.; Pope, M.H. Vibration and the Human Spine. Spine 1982, 7, 243–254. [Google Scholar] [CrossRef]
- Lundström, R.; Holmlund, P.; Lindberg, L. Absorption of energy during vertical whole-body vibration exposure. J. Biomech. 1998, 31, 317–326. [Google Scholar] [CrossRef]
- Griffin, M.J.; Whitham, E.M.; Parsons, K.C. Vibration and comfort I. Translational seat vibration. Ergonomics 1982, 25, 603–630. [Google Scholar] [CrossRef]
- Griffin, M.J.; Whitham, E.M. Individual variability and its effect on subjective and biodynamic response to whole-body vibration. J. Sound Vib. 1978, 58, 239–250. [Google Scholar] [CrossRef]
- Marras, W.S.; Jorgensen, M.J.; Granata, K.P.; Wiand, B. Female and male trunk geometry: Size and prediction of the spine loading trunk muscles derived from MRI. Clin. Biomech. 2001, 16, 38–46. [Google Scholar] [CrossRef]
- Cynn, H.-S.; Oh, J.-S.; Kwon, O.-Y.; Yi, C.-H. Effects of Lumbar Stabilization Using a Pressure Biofeedback Unit on Muscle Activity and Lateral Pelvic Tilt During Hip Abduction in Sidelying. Arch. Phys. Med. Rehabil. 2006, 87, 1454–1458. [Google Scholar] [CrossRef]
- Nguyen, A.-D.; Shultz, S.J. Sex Differences in Clinical Measures of Lower Extremity Alignment. J. Orthop. Sports Phys. Ther. 2007, 37, 389–398. [Google Scholar] [CrossRef]
- Medina McKeon, J.M.; Hertel, J. Sex Differences and Representative Values for 6 Lower Extremity Alignment Measures. J. Athl. Train. 2009, 44, 249–255. [Google Scholar] [CrossRef]
- Ebenbichler, G.R.; Oddsson, L.I.E.; Kollmitzer, J.; Erim, Z. Sensory-motor control of the lower back: Implications for rehabilitation. Med. Sci. Sports Exerc. 2001, 33, 1889–1898. [Google Scholar] [CrossRef]
- Kitazaki, S.; Griffin, M.J. Resonance behaviour of the seated human body and effects of posture. J. Biomech. 1997, 31, 143–149. [Google Scholar] [CrossRef]
- Bendix, T.; Poulsen, V.; Klausen, K.; Jensen, C.V. What does a backrest actually do to the lumbar spine? Ergonomics 1996, 39, 533–542. [Google Scholar] [CrossRef]
- Andersson, G.B.J. Biomechanical aspects of sitting: An application to VDT terminals. Behav. Inf. Technol. 1987, 6, 257–269. [Google Scholar] [CrossRef]
- Plagenhoef, S.; Evans, F.G.; Abdelnour, T. Anatomical Data for Analyzing Human Motion. Res. Q. Exerc. Sport 1983, 54, 169–178. [Google Scholar] [CrossRef]
- Hinz, B.; Seidel, H. The nonlinearity of the human body’s dynamic response during sinusoidal whole body vibration. Ind. Health 1987, 25, 169–181. [Google Scholar] [CrossRef]
- Bhiwapurkar, M.K.; Saran, V.H.; Harsha, S.P. Seat to head transmissibility during exposure to vertical seat vibration: Effects of posture and vibration magnitude. Int. J. Acoust. Vib. 2019, 24, 3–11. [Google Scholar] [CrossRef]
- Geerligs, M.; Peters, G.W.M.; Ackermans, P.A.J.; Oomens, C.W.J.; Baaijens, F.P.T. Does subcutaneous adipose tissue behave as an (anti-)thixotropic material? J. Biomech. 2010, 43, 1153–1159. [Google Scholar] [CrossRef]
- Fairley, T.E.; Griffin, M.J. The apparent mass of the seated human body: Vertical vibration. J. Biomech. 1989, 22, 81–94. [Google Scholar] [CrossRef]
- Rakheja, S.; Haru, I.; Boileau, P.-É. Seated occupant apparent mass characteristics under automotive postures and vertical vibration. J. Sound Vib. 2002, 253, 57–75. [Google Scholar] [CrossRef]
- Kumar, S. Theories of musculoskeletal injury causation. Ergonomics 2001, 44, 17–47. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Rakheja, S.; Boileau, P.-É. Distribution of human–seat interface pressure on a soft automotive seat under vertical vibration. Int. J. Ind. Ergon. 1999, 24, 545–557. [Google Scholar] [CrossRef]
- Gyi, D.E.; Porter, J.M. Interface pressure and the prediction of car seat discomfort. Appl. Ergon. 1999, 30, 99–107. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Griffin, M.J. Movement of the upper-body of seated subjects exposed to vertical whole-body vibration at the principal resonance frequency. J. Sound Vib. 1998, 215, 743–762. [Google Scholar] [CrossRef]
- Sandover, J.; Dupuis, H. A reanalysis of spinal motion during vibration. Ergonomics 1987, 30, 975–985. [Google Scholar] [CrossRef]
- Cooper, R.G.; Holli, S.; Jayson, M.I.V. Gender variation of human spinal and paraspinal structures. Clin. Biomech. 1992, 7, 120–124. [Google Scholar] [CrossRef]
Particulars | Minimum, Maximum, Mean (Standard Deviation) | ||
---|---|---|---|
Male (n = 31) | Female (n = 27) | ||
Age (years) | 23.0, 58.0, 31.2 (7.2) | 19.0, 49.0, 36.0 (7.1) | |
Mass-related | Body mass (kg) | 55.0, 106.0, 79.8 (15.7) | 45.5, 72.5, 60.1 (8.3) |
Body mass index (kg/m2) | 19.96, 34.99, 26.12 (4.24) | 15.78, 26.31, 22.52 (2.73) | |
Body fat (%) | 16.10, 37.72, 23.59 (5.93) | 19.26, 39.06, 30.53 (4.83) | |
Body fat (kg) | 10.5, 39.0, 19.8 (8.2) | 8.8, 25.3, 18.6 (4.7) | |
Lean body mass (kg) | 43.3, 77.5, 61.6 (9.0) | 34.1, 49.5, 41.6 (4.8) | |
Build-related | Hip circumference (cm) | 88.0,116.0, 103.6 (7.4) | 89.5, 109.0, 99.9 (5.5) |
Stature-related | Stature (m) | 1.59, 1.92, 1.75 (0.08) | 1.48, 1.73, 1.63 (0.07) |
Sitting height (cm) | 81.3, 96.7, 88.8 (6.2) | 63.2, 88.3, 81.0 (7.7) | |
C-7 height (cm) | 59.4, 74.4, 66.2 (4.6) | 56.5, 70.4, 61.4 (4.2) |
Gender | Male | Female | |||||
---|---|---|---|---|---|---|---|
Anthropometric Parameters | Mean (n, Standard Deviation) | Range | n | Mean (n, Standard Deviation) | Range | n | |
Mass-related | Body mass (kg) | 61.0 (9, 4.3); 81.6 (9, 4.1); 96.7 (9, 6.4) | 55–65 | 9 | 50.4 (9, 3.3); 61.0 (9, 2.8); 69.1 (9, 2.7) | 45–55 | 9 |
75–85 | 9 | 55–65 | 9 | ||||
90–106 | 9 | 66–72 | 9 | ||||
Body mass (kg)—G60 | - | 55.0–65.0 | 7 | - | 57.0–65.0 | 7 | |
Body mass (kg)—G70 | - | 66.0–75.0 | 7 | - | 66.0–72.5 | 7 | |
BMI (kg/m2) | 21.6 (11, 1.0); 25.4 (11, 1.6); 31.4 (8, 2.0) | 23.3–27.5 | 11 | 19.4 (9, 1.5); 22.6 (8, 0.8); 25.3 (10, 0.7) | 24.4–26.3 | 10 | |
Body fat (kg) | 11.0 (11, 1.6); 16.6 (10, 2.2); 26.2 (7, 3.3) | 19.0–29.0 | 7 | 13.5 (8, 1.1); 19.1 (9, 1.5); 23.7 (9, 1.3) | 21.5–25.3 | 9 | |
Body fat (%) | 16.6 (9, 2.4); 21.9 (10, 1.0); 28.9 (6, 1.6) | 26.9–31.2 | 6 | 25.9 (9, 0.8); 30.8 (9, 2.1); 35.7 (9, 1.7) | 27.9–33.8 | 9 | |
Lean body mass (kg) | 50.1 (9, 4.7); 61.5 (10, 2.4); 68.8 (11, 3.8) | 43.3–54.5 | 6 | 36.0 (8, 1.2); 41.4 (11, 2.1); 47.3 (8, 1.8) | 45.4–49.5 | 8 | |
Build-related | Hip circumference (cm) | 95.5 (9, 2.0); 102.8 (11, 2.8); 110.7 (9, 4.0) | 98.3–106.4 | 11 | 92.6 (8, 1.9); 100.4 (9, 2.2); 105.2 (10, 1.6) | 97.0–103.0 | 9 |
Contact area (cm2) | 362 (10, 69); 556 (8, 34); 666 (8, 30) | 615–695 | 8 | 350 (9, 63); 510 (9, 48); 682 (6, 68) | 600–760 | 6 | |
Mean peak pressure (kPa) | 9.1 (11, 0.9); 13.2 (10, 1.0); 17.1 (8, 1.9) | 8.1–10.4 | 11 | 7.2 (9, 1.0); 9.3 (9, 0.5); 12.3 (8, 1.4) | 8.7–10.2 | 9 | |
Stature-related | Stature (m) | 1.70 (9, 0.02); 1.75 (10, 0.02); 1.81 (8, 0.02) | 1.60–1.72 | 10 | 1.56 (9, 0.05); 1.64 (9, 0.02); 1.71 (9, 0.01) | 1.61–1.67 | 9 |
Sitting height (cm) | 86.1 (8, 1.5); 91.2 (10, 1.6); 95.2 (8, 1.1) | 83.0–87.5 | 8 | 80.4 (8, 1.7); 84.4 (8, 1.0); 88.3 (8, 1.2) | 83.0–85.5 | 8 | |
C7 height (cm) | 61.9 (9, 1.7); 67.4 (10, 1.0); 71.0 (8, 1.5) | 65.8–68.7 | 10 | 58.0 (8, 1.2); 61.4 (8, 0.9); 65.1 (8, 1.7) | 63–67.6 | 8 |
Excitation (m/s2) | Male | Female | ||
---|---|---|---|---|
NB | WB | NB | WB | |
Peak vertical STHT | ||||
0.25 | 2.45 (0.41) | 2.17 (0.29) | 2.33 (0.27) | 2.06 (0.20) |
0.50 | 2.31 (0.35) | 2.07 (0.31) | 2.32 (0.29) | 2.01 (0.22) |
0.75 | 2.31 (0.34) | 2.06 (0.30) | 2.36 (0.32) | 2.09 (0.24) |
Frequency corresponding to peak vertical STHT | ||||
0.25 | 5.60 (0.57) | 5.48 (0.58) | 5.08 (0.53) | 4.79 (0.33) |
0.50 | 5.08 (0.54) | 4.99 (0.52) | 4.78 (0.37) | 4.48 (0.34) |
0.75 | 4.76 (0.48) | 4.65 (0.42) | 4.60 (0.38) | 4.36 (0.27) |
Peak fore-aft STHT | ||||
0.25 | 3.14 (0.64) | 2.35 (0.45) | 2.57 (0.72) | 2.35 (0.48) |
0.50 | 2.95 (0.70) | 2.17 (0.41) | 2.35 (0.75) | 2.18 (0.46) |
0.75 | 2.86 (0.80) | 2.16 (0.46) | 2.22 (0.73) | 2.07 (0.44) |
Frequency corresponding to peak fore-aft STHT | ||||
0.25 | 5.06 (0.75) | 5.05 (0.80) | 4.90 (0.54) | 4.87 (0.46) |
0.50 | 4.85 (0.60) | 4.62 (0.70) | 4.54 (0.55) | 4.52 (0.45) |
0.75 | 4.74 (0.57) | 4.50 (0.50) | 4.48 (0.49) | 4.34 (0.52) |
Measure | G | BS | E | G × BS | G × E | BS × E | G × BS × E |
---|---|---|---|---|---|---|---|
Vertical resonance frequency | <0.001 | <0.001 | <0.001 | 0.132 | <0.05 | 0.968 | 0.976 |
Vertical peak magnitude | 0.262 | <0.001 | 0.168 | 0.694 | 0.181 | 0.980 | 0.913 |
Fore-aft resonance frequency | <0.05 | 0.489 | <0.001 | 0.171 | 0.741 | 0.116 | 0.886 |
Fore-aft peak magnitude | <0.001 | <0.001 | <0.01 | <0.001 | 0.882 | 0.875 | 0.974 |
Sitting Condition | Measures | Male | Female | ||||
60.0 kg | 81.6 kg | 96.7 kg | 50.4 kg | 61.0 kg | 68.2 kg | ||
NB | Vertical peak magnitude | 2.29 (0.31) | 2.31 (0.30) | 2.35 (0.39) | 2.29 (0.22) | 2.32 (0.25) | 2.27 (0.26) |
Vertical resonance frequency | 5.52 (0.36) | 4.82 (0.28) | 4.70 (0.35) | 4.98 (0.28) | 4.68 (0.47) | 4.67 (0.27) | |
WB | Vertical peak magnitude | 2.15 (0.22) | 2.13 (0.24) | 2.02 (0.40) | 2.08 (0.26) | 2.02 (0.23) | 1.89 (0.13) |
Vertical resonance frequency | 5.50 (0.40) | 4.77 (0.44) | 4.75 (0.39) | 4.71 (0.30) | 4.48 (0.16) | 4.43 (0.19) | |
NB | Fore-aft peak magnitude | 2.65 (0.57) | 3.02 (0.68) | 3.19 (0.74) | 2.40 (0.89) | 2.32 (0.82) | 2.32 (0.49) |
Fore-aft resonance frequency | 5.31 (0.57) | 4.63 (0.45) | 4.52 (0.43) | 4.59 (0.45) | 4.51 (0.70) | 4.47 (0.49) | |
WB | Fore-aft peak magnitude | 2.14 (0.47) | 2.25 (0.30) | 2.24 (0.39) | 2.08 (0.45) | 2.11 (0.50) | 2.34 (0.39) |
Fore-aft resonance frequency | 5.13 (0.50) | 4.49 (0.36) | 4.29 (0.82) | 4.72 (0.50) | 4.47 (0.39) | 4.42 (0.40) |
Body Mass | Measure | Without Back Support | With Back Support | ||||
---|---|---|---|---|---|---|---|
0.25 m/s2 | 0.50 m/s2 | 0.75 m/s2 | 0.25 m/s2 | 0.50 m/s2 | 0.75 m/s2 | ||
G60 | Vertical resonance frequency | <0.001 | <0.05 | 0.135 | <0.001 | <0.001 | <0.05 |
Vertical peak magnitude | 0.536 | 0.486 | 0.475 | 0.291 | 0.614 | 0.921 | |
G70 | Vertical resonance frequency | <0.05 | <0.05 | 0.123 | <0.05 | <0.01 | 0.120 |
Vertical peak magnitude | 0.846 | 0.605 | 0.886 | 0.132 | 0.407 | 0.968 | |
G60 | Fore-and-aft resonance frequency | 0.054 | 0.144 | 0.281 | <0.05 | 0.190 | 0.495 |
Fore-and-aft peak magnitude | 0.161 | 0.454 | 0.242 | 0.176 | 0.749 | 0.528 | |
G70 | Fore-and-aft resonance frequency | 0.175 | 0.153 | 0.198 | 0.831 | 0.595 | 0.607 |
Fore-and-aft peak magnitude | 0.892 | 0.326 | 0.691 | <0.05 | 0.200 | 0.979 |
Anthropometric Parameters | Primary Resonance Frequency | Peak Magnitude | |||||||||||
Without Back Support | With Back Support | Without Back Support | With Back Support | ||||||||||
0.25 m/s2 | 0.50 m/s2 | 0.75 m/s2 | 0.25 m/s2 | 0.50 m/s2 | 0.75 m/s2 | 0.25 m/s2 | 0.50 m/s2 | 0.75 m/s2 | 0.25 m/s2 | 0.50 m/s2 | 0.75 m/s2 | ||
Mass-related | BMI | 0.118 | 0.467 | 0.370 | <0.05 | <0.01 | 0.201 | 0.887 | 0.369 | 0.450 | 0.703 | 0.084 | 0.784 |
Body fat mass | 0.162 | 0.430 | 0.684 | <0.01 | <0.05 | 0.110 | 0.682 | 0.627 | 0.439 | 0.664 | 0.218 | 0.656 | |
Percent body fat | 0.188 | 0.992 | 0.490 | <0.05 | 0.084 | 0.136 | 0.068 | 0.193 | 0.060 | 0.354 | 0.497 | 0.521 | |
Lean body mass | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.05 | 0.356 | 0.927 | 0.631 | 0.192 | 0.057 | 0.800 | |
Build-related | Hip circumference | 0.365 | 0.108 | 0.704 | <0.05 | 0.094 | 0.212 | 0.127 | 0.750 | 0.584 | 0.472 | 0.135 | 0.240 |
Seat–pan contact area | 0.327 | 0.866 | 0.779 | <0.01 | 0.062 | 0.240 | 0.195 | 0.260 | 0.347 | 0.135 | 0.085 | 0.053 | |
Mean contact pressure | 0.260 | 0.055 | 0.995 | <0.05 | <0.05 | 0.089 | 0.395 | 0.348 | 0.738 | 0.286 | 0.093 | 0.190 | |
Stature-related | Stature | <0.01 | <0.05 | <0.01 | <0.01 | <0.01 | <0.01 | 0.553 | 0.058 | 0.182 | 0.458 | 0.805 | 0.104 |
Sitting height | <0.05 | 0.133 | <0.05 | <0.01 | <0.01 | 0.414 | 0.145 | <0.01 | <0.05 | 0.895 | 0.731 | 0.062 | |
C7 height | 0.097 | 0.650 | 0.205 | <0.05 | <0.05 | 0.401 | <0.05 | 0.262 | <0.05 | 0.771 | 0.627 | 0.408 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Dewangan, K.N.; Rakheja, S. Gender and Anthropometric Effects on Seat-to-Head Transmissibility Responses to Vertical Whole-Body Vibration of Humans Seated on an Elastic Seat. Vibration 2023, 6, 165-194. https://doi.org/10.3390/vibration6010012
Yao Y, Dewangan KN, Rakheja S. Gender and Anthropometric Effects on Seat-to-Head Transmissibility Responses to Vertical Whole-Body Vibration of Humans Seated on an Elastic Seat. Vibration. 2023; 6(1):165-194. https://doi.org/10.3390/vibration6010012
Chicago/Turabian StyleYao, Yumeng, Krishna N. Dewangan, and Subhash Rakheja. 2023. "Gender and Anthropometric Effects on Seat-to-Head Transmissibility Responses to Vertical Whole-Body Vibration of Humans Seated on an Elastic Seat" Vibration 6, no. 1: 165-194. https://doi.org/10.3390/vibration6010012