The Spatial–Temporal Emission of Air Pollutants from Biomass Burning during Haze Episodes in Northern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Framework
2.2. Study Area
2.3. Google Earth Engine Platform (GEE)
2.4. Data Collection
2.5. Estimation of Burned Area
2.5.1. Random Forest (RF)
2.5.2. Burned Reference Data
2.5.3. Accuracy Assessment
2.6. Estimation of Air Emission from Biomass Burning
2.6.1. Forest Fire
2.6.2. Agriculture Residues
Type | Pollutants | |||||||
---|---|---|---|---|---|---|---|---|
PM1 | PM2.5 | PM10 | NOX | SO2 | CO | BC | OC | |
Forest | 0.74 a | 3.4 a | 7.95 a | 2.55 b | 0.40 b | 93 b | 0.52 b | 4.71 b |
Total Rice | 0.48 a | 2.13 a | 5.5 a | 0.21 c | 1.53 c | 25.80 c | 0.58 f | 3.5 f |
Corn | 0.86 a | 4.71 a | 7.69 a | 0.07 c | 1.50 c | 29.79 c | 0.75 f | 3.71 f |
Sugarcane | 0.59 a | 2.04 a | 8.07 a | 1.5 g | 0.53 g | 40.1 g | 0.73 g | 1.25 g |
Bagasse | 1.06 a | 5 a | 9.2 a | 3.3 h | 0.76 h | 8.14 h | - | - |
Parameters | Crops | |||
---|---|---|---|---|
Total Rice | Corn | Sugarcane | Forest | |
Burn Efficiency Ratio (nj) | 0.95 a | 0.92 a | 0.95 a | 0.79 b |
Biomass Density (g/m2) (B) | - | - | - | 3.76 × 105 a |
Biomass Load (BL) (t/ha) | 7.62 c | 5.26 d | 9.40 e | - |
Combustion Completeness (CC) | 0.34 c | 0.85 d | 0.64 e | - |
2.6.3. Agro-Industries
3. Results
3.1. The Spatial Distribution of Burned Area in Northern, Thailand
3.2. The Accuracy Assessment of Burned Area
3.3. Total Emissions from Open Biomass Burning
3.4. Total Emissions from Agro-Industries (Sugar Factory)
3.5. Correlation between Emission Inventory, AOD, and Air Monitoring Pollutant
3.5.1. Particulate Matter
3.5.2. NOX and SO2
4. Discussion
4.1. The Assessment of Burned Areas by Using the GEE Platform
4.2. The Emissions from Open Biomass Burning
4.3. The Emissions from Indoor Biomass Burning
4.4. Uncertainty
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviations | Full Name |
AOD | Aerosol Optical Depth |
API | Application Programming Interface |
B | Biomass Density |
BC | Black Carbon |
BL | Biomass Load |
CART | Classification and Regression Trees algorithm |
CC | Combustion Completeness |
CO | Carbon Monoxide |
DT | Decision Tree Algorithm |
EF | Emission Factor |
EI | Emission Inventory |
GEE | Google Earth Engine |
GIS | Geographic Information System |
GISTDA | Geo-Informatics and Space Technology Development Agency |
ML | Machine Learning |
NB | Naive Bayes |
NIR | Near-Infrared |
NMVOCs | Non-Methane Volatile Organic Compound |
NOX | Nitrogen Oxides |
OA | Overall Accuracy |
OC | Organic Carbon |
OCSB | Office of the Cane and Sugar Board’s |
PM | Particulate Matter |
PM0.1 | Ultrafine Particulate Matter |
PM10-2.5 | Coarse Particulate Matter |
PM2.5 | Fine Particulate Matter |
RF | Random Forest Algorithm |
SO2 | Sulfur Dioxide |
SVM | Support Vector Machine |
SWIR | Shortwave Infrared |
References
- Boongla, Y.; Chanonmuang, P.; Hata, M.; Furuuchi, M.; Phairuang, W. The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand. Environ. Pollut. 2021, 272, 115940. [Google Scholar] [CrossRef] [PubMed]
- Suriyawong, P.; Chuetor, S.; Samae, H.; Piriyakarnsakul, S.; Amin, M.; Furuuchi, M.; Hata, M.; Inerb, M.; Phairuang, W. Airborne particulate matter from biomass burning in Thailand: Recent issues, challenges, and options. Heliyon 2023, 9, e14261. [Google Scholar] [CrossRef] [PubMed]
- Janta, R.; Sekiguchi, K.; Yamaguchi, R.; Sopajaree, K.; Plubin, B.; Chetiyanukornkul, T. Spatial and Temporal Variations of Atmospheric PM10 and Air Pollutants Concentration in Upper Northern Thailand During 2006–2016. Appl. Sci. Eng. Prog. 2020, 13, 2604. [Google Scholar] [CrossRef]
- Pasukphun, N. Environmental health burden of open burning in northern thailand: A review. PSRU J. Sci. Technol. 2018, 3, 11–28. [Google Scholar]
- Boonman, T.; Garivait, S.; Bonnet, S.; Junpen, A. An Inventory of Air Pollutant Emissions from Biomass Open Burning in Thailand Using MODIS Burned Area Product (MCD45A1). J. Sustain. Energy Environ. 2016, 5, 1. [Google Scholar]
- Pani, S.K.; Wang, S.H.; Lin, N.H.; Chantara, S.; Lee, C.T.; Thepnuan, D. Black carbon over an urban atmosphere in northern peninsular Southeast Asia: Characteristics, source apportionment, and associated health risks. Environ. Pollut. 2020, 259, 113871. [Google Scholar] [CrossRef] [PubMed]
- Inerb, M.; Phairuang, W.; Paluang, P.; Hata, M.; Furuuchi, M.; Wangpakapattanawong, P. Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources. Atmosphere 2022, 13, 626. [Google Scholar] [CrossRef]
- Samae, H.; Tekasakul, S.; Tekasakul, P.; Furuuchi, M. Emission factors of ultrafine particulate matter (PM<0.1 mum) and particle-bound polycyclic aromatic hydrocarbons from biomass combustion for source apportionment. Chemosphere 2021, 262, 127846. [Google Scholar] [CrossRef] [PubMed]
- Sritong-aon, C.; Thomya, J.; Kertpromphan, C.; Phosri, A. Estimated effects of meteorological factors and fire hotspots on ambient particulate matter in the northern region of Thailand. Air Qual. Atmos. Health 2021, 14, 1857–1868. [Google Scholar] [CrossRef]
- Othman, M.; Latif, M.T.; Hamid, H.H.A.; Uning, R.; Khumsaeng, T.; Phairuang, W.; Daud, Z.; Idris, J.; Sofwan, N.M.; Lung, S.C. Spatial-temporal variability and heath impact of particulate matter during a 2019-2020 biomass burning event in Southeast Asia. Sci. Rep. 2022, 12, 7630. [Google Scholar] [CrossRef]
- Suan Tial, M.K.; Kyi, N.N.; Amin, M.; Hata, M.; Furuuchi, M.; Putri, R.M.; Paluang, P.; Suriyawong, P.; Phairuang, W. Size-fractionated carbonaceous particles and climate effects in the eastern region of Myanmar. Particuology 2024, 90, 31–40. [Google Scholar] [CrossRef]
- Xiong, R.; Jiang, W.; Li, N.; Liu, B.; He, R.; Wang, B.; Geng, Q. PM2.5-induced lung injury is attenuated in macrophage-specific NLRP3 deficient mice. Ecotoxicol. Environ. Saf. 2021, 221, 112433. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hua, Q.; Shao, Y.; Zeng, H.; Liu, Y.; Diao, Q.; Zhang, H.; Qiu, M.; Zhu, J.; Li, X.; et al. Circular RNA circBbs9 promotes PM (2.5)-induced lung inflammation in mice via NLRP3 inflammasome activation. Environ. Int. 2020, 143, 105976. [Google Scholar] [CrossRef] [PubMed]
- Claverie, M.; Masek, J.G.; Ju, J.; Dungan, J.L. Harmonized Landsat-8 Sentinel-2 (HLS) Product User’s Guide; National Aeronautics and Space Administration (NASA): Washington, DC, USA, 2017.
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Pagano, T.S.; Durham, R.M. Moderate resolution imaging spectroradiometer (MODIS). In Proceedings of the Sensor Systems for the Early Earth Observing System Platforms, Orlando, FL, USA, 13–14 April 1993; pp. 2–17. [Google Scholar]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Buya, S.; Usanavasin, S.; Gokon, H.; Karnjana, J. An Estimation of Daily PM2.5 Concentration in Thailand Using Satellite Data at 1-Kilometer Resolution. Sustainability 2023, 15, 10024. [Google Scholar] [CrossRef]
- Gholamrezaie, H.; Hasanlou, M.; Amani, M.; Mirmazloumi, S.M. Automatic Mapping of Burned Areas Using Landsat 8 Time-Series Images in Google Earth Engine: A Case Study from Iran. Remote Sens. 2022, 14, 6376. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Seydi, S.T.; Akhoondzadeh, M.; Amani, M.; Mahdavi, S. Wildfire Damage Assessment over Australia Using Sentinel-2 Imagery and MODIS Land Cover Product within the Google Earth Engine Cloud Platform. Remote Sens. 2021, 13, 220. [Google Scholar] [CrossRef]
- Sirimongkonlertkun, N. Assessment of Long-range Transport Contribution on Haze Episode in Northern Thailand, Laos and Myanmar. IOP Conf. Ser. Earth Environ. Sci. 2018, 151, 012017. [Google Scholar] [CrossRef]
- Rangcharassaeng, W. Sugar Factory and Sugar Production Process. Available online: https://tms.in.th (accessed on 1 January 2023).
- Sriroth, K.; Wunsuksri, R.; Vititsanti, C.; Piyachomkwan, K. Starch in Thai cane sugar manufacturing process. In Proceedings of the XXV Congress, Guatemala City, Guatemala, 30 January–4 February 2005; pp. 93–98. [Google Scholar]
- Phairuang, W.; Hata, M.; Furuuchi, M. Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand. J. Environ. Sci. 2017, 52, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Junpen, A.; Roemmontri, J.; Boonman, A.; Cheewaphongphan, P.; Thao, P.T.B.; Garivait, S. Spatial and Temporal Distribution of Biomass Open Burning Emissions in the Greater Mekong Subregion. Climate 2020, 8, 90. [Google Scholar] [CrossRef]
- Office of Agricultural Economics. Agricultural Statistics of Thailand 2021; Office of Agricultural Economics: Bangkok, Thailand, 2021.
- Babu, K.V.S.; Vanama, V.S.K. Burn area mapping in Google Earth Engine (GEE) cloud platform: 2019 forest fires in eastern Australia. In Proceedings of the 2020 International Conference on Smart Innovations in Design, Environment, Management, Planning and Computing (ICSIDEMPC), Berkeley, CA, USA, 30–31 October 2020; pp. 109–112. [Google Scholar]
- Linta, N.; Mahavik, N.; Chatsudarat, S.; Seejata, K.; Yodying, A. Analysis of Burning Area from Forest Fire using Sentinel-2 image: A Case Study of Pai, Mae Hong Son Province. J. Appl. Inform. Technol. 2021, 3, 101–121. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Zou, Z.; Hou, L.; Qin, Y.; Dong, J.; Doughty, R.B.; Chen, B.; Zhang, X.; Chen, Y.; et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm Remote Sens. 2020, 163, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Nuthammachot, N.; Phairuang, W. Aerosol Estimation of biomass burning in Northern Thailand. In Proceedings of the 1st Conference on Natural Resources, Geoinformation and Environment, Naresuan University, Phitsanulok, Thailand, 24 November 2016; pp. 1–8. [Google Scholar]
- Phairuang, W. Biomass burning and their impacts on air quality in Thailand. In Biomass Burning in South and Southeast Asia; CRC Press: Boca Raton, FL, USA, 2021; pp. 21–38. [Google Scholar]
- Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [Google Scholar] [CrossRef]
- Tian, H.; Pei, J.; Huang, J.; Li, X.; Wang, J.; Zhou, B.; Qin, Y.; Wang, L. Garlic and Winter Wheat Identification Based on Active and Passive Satellite Imagery and the Google Earth Engine in Northern China. Remote Sens. 2020, 12, 3539. [Google Scholar] [CrossRef]
- Loukika, K.N.; Keesara, V.R.; Sridhar, V. Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India. Sustainability 2021, 13, 3758. [Google Scholar] [CrossRef]
- Roteta, E.; Oliva, P. Optimization Of A Random Forest Classifier For Burned Area Detection In Chile Using Sentinel-2 Data. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 568–573. [Google Scholar]
- Ramo, R.; Chuvieco, E. Developing a Random Forest Algorithm for MODIS Global Burned Area Classification. Remote Sens. 2017, 9, 1193. [Google Scholar] [CrossRef]
- Ramo, R.; García, M.; Rodríguez, D.; Chuvieco, E. A data mining approach for global burned area mapping. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 39–51. [Google Scholar] [CrossRef]
- ÇÖMert, R.; Matci, D.K.; Avdan, U. Object based burned area mapping with random forest algorithm. Int. J. Eng. Geosci. 2019, 4, 78–87. [Google Scholar] [CrossRef]
- Granata, F.; Di Nunno, F. Artificial Intelligence models for prediction of the tide level in Venice. Stoch. Environ. Res. Risk Assess. 2021, 35, 2537–2548. [Google Scholar] [CrossRef]
- Praticò, S.; Solano, F.; Di Fazio, S.; Modica, G. Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sens. 2021, 13, 586. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.M.; Kim Oanh, N.T.; Shrestha, R.P.; Rupakheti, M.; Rajbhandari, S.; Permadi, D.A.; Kanabkaew, T.; Iyngararasan, M. Atmospheric Brown Clouds: Emission Inventory Manual; United Nations Environment Programme: Nairobi, Kenya, 2013. [Google Scholar]
- Giglio, L.; Werf, G.v.d.; Randerson, J.T.; Collatz, G.J.; Kasibhatla, P. Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 2005, 6, 957–974. [Google Scholar] [CrossRef]
- Houghton, J.; Meira Filho, L.; Lim, B.; Treanton, K.; Mamaty, I.; Bonduki, U.; Griggs, D.; Callender, B. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 3: Greenhouse Gas Inventory Reference Manual; IPCC/OECD/IEA: London, UK, 1996. [Google Scholar]
- Junpen, A.; Pansuk, J.; Garivait, S. Estimation of Reduced Air Emissions as a Result of the Implementation of the Measure to Reduce Burned Sugarcane in Thailand. Atmosphere 2020, 11, 366. [Google Scholar] [CrossRef]
- Punsompong, P.; Pani, S.K.; Wang, S.-H.; Bich Pham, T.T. Assessment of biomass-burning types and transport over Thailand and the associated health risks. Atmos. Environ. 2021, 247, 118176. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y.; Wang, Q.g.; Qian, X. A high-resolution inventory of air pollutant emissions from crop residue burning in China. Atmos. Environ. 2018, 213, 207–214. [Google Scholar] [CrossRef]
- Sahu, S.K.; Ohara, T.; Beig, G.; Kurokawa, J.; Nagashima, T. Rising critical emission of air pollutants from renewable biomass-based cogeneration from the sugar industry in India. Environ. Res. Lett. 2015, 10, 095002. [Google Scholar] [CrossRef]
- Kanabkaew, T.; Kim Oanh, N.T. Development of Spatial and Temporal Emission Inventory for Crop Residue Field Burning. Environ. Model. Assess. 2010, 16, 453–464. [Google Scholar] [CrossRef]
- Cheewaphongphan, P.; Garivait, S. Bottom up approach to estimate air pollution of rice residue open burning in Thailand. Asia-Pac. J. Atmos. Sci. 2013, 49, 139–149. [Google Scholar]
- Kanokkanjana, K.; Garivait, S. Climate Change Effect from Black Carbon Emission: Open Burning of Corn Residues in Thailand. World Academy of Science, Engineering and Technology. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2011, 5, 567–570. [Google Scholar]
- Sornpoon, W.; Bonnet, S.; Kasemsap, P.; Prasertsak, P.; Garivait, S. Estimation of Emissions from Sugarcane Field Burning in Thailand Using Bottom-Up Country-Specific Activity Data. Atmosphere 2014, 5, 669–685. [Google Scholar] [CrossRef]
- Duc, H.N.; Bang, H.Q.; Quan, N.H.; Quang, N.X. Impact of biomass burnings in Southeast Asia on air quality and pollutant transport during the end of the 2019 dry season. Environ. Monit. Assess. 2021, 193, 565. [Google Scholar] [CrossRef] [PubMed]
- Kraisitnitikul, P.; Thepnuan, D.; Chansuebsri, S.; Yabueng, N.; Wiriya, W.; Saksakulkrai, S.; Shi, Z.; Chantara, S. Contrasting compositions of PM(2.5) in Northern Thailand during La Nina (2017) and El Nino (2019) years. J. Environ. Sci. 2024, 135, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Gu, Y.; Yim, S.H. Assessing local and transboundary fine particulate matter pollution and sectoral contributions in Southeast Asia during haze months of 2015–2019. Sci. Total Environ. 2024, 912, 169051. [Google Scholar] [CrossRef] [PubMed]
- Gregorioa, G.B.; Ancog, R.C. Assessing the Impact of the COVID-19 Pandemic on Agricultural Production in Southeast Asia: Toward Transformative Change in Agricultural Food Systems. Asian J. Agric. Dev. 2020, 17, 1–13. [Google Scholar] [CrossRef]
- Sapbamrer, R.; Chittrakul, J.; Sirikul, W.; Kitro, A.; Chaiut, W.; Panya, P.; Amput, P.; Chaipin, E.; Sutalangka, C.; Sidthilaw, S.; et al. Impact of COVID-19 Pandemic on Daily Lives, Agricultural Working Lives, and Mental Health of Farmers in Northern Thailand. Sustainability 2022, 14, 1189. [Google Scholar] [CrossRef]
- Sinha, S.; Swain, M. Response and resilience of agricultural value chain to COVID-19 pandemic in India and Thailand. In Pandemic Risk, Response, and Resilience; Elsevier: Amsterdam, The Netherlands, 2022; pp. 363–381. [Google Scholar]
- Tansuchat, R.; Suriyankietkaew, S.; Petison, P.; Punjaisri, K.; Nimsai, S. Impacts of COVID-19 on Sustainable Agriculture Value Chain Development in Thailand and ASEAN. Sustainability 2022, 14, 12985. [Google Scholar] [CrossRef]
- Thammachote, P.; Trochim, J.I. The Impact of the COVID-19 Pandemic on Thailand’s Agricultural Export Flows; MSU: East Lansing, MI, USA, 2021. [Google Scholar]
- Juntakut, P.; Buntap, I.; Bunnayaphukkan, P.; Jantakut, Y.; Chansuk, P. Guideline of the application of Google Earth Engine for monitoring and damage assessment of natural disater. In Proceedings of the 26th National Convention on Civil Engineering, Online, 23–25 June 2021. [Google Scholar]
- Juntakut, P. Near Real Time Wildfire Monitoring using Google Earth Engine: A Case Study of Amphoe Pai, Mae Hong Son Province. Nkrafa J. Sci. Technol. 2022, 18, 1–14. [Google Scholar]
- Ruthamnong, S. Burned area extraction using multitemporal difference of spectral indices from Landsat 8 data: A case study of Khlong Wang Chao, Klong Lan and Mae Wong National Park. Gold. Teak Humanit. Soc. Sci. J. GTHJ 2019, 25, 49–65. [Google Scholar]
- Geo-Informatics and Space Technology Development Agency. Summary Report on Forest Fire and Smog Situation Year 2019 Using Geo-Informatics Technology (During 1 January–31 May 2019); Geo-Informatics and Space Technology Development Agency: Bangkok, Thailand, 2019. [Google Scholar]
- Geo-Informatics and Space Technology Development Agency. Summary Report on Forest Fire and Smog Situation Year 2020 Using Geo-Informatics Technology (During 1 January–31 May 2020); Geo-Informatics and Space Technology Development Agency: Bangkok, Thailand, 2020. [Google Scholar]
- Geo-Informatics and Space Technology Development Agency. Summary Report on Forest Fire and Smog Situation Year 2021 Using Geo-Informatics Technology (During 1 January–31 May 2021); Geo-Informatics and Space Technology Development Agency: Bangkok, Thailand, 2021. [Google Scholar]
- Climate Center. Weather Conditions of Thailand 2019; Thai Meteorological Department: Bangkok, Thailand, 2019. [Google Scholar]
- Jansakoo, T.; Surapipith, V.; Macatangay, R. 2019 Emission Inventory Development in the Northern Part of Thailand. Environ. Asia 2022, 15, 26–32. [Google Scholar] [CrossRef]
- Arunrat, N.; Pumijumnong, N.; Sereenonchai, S. Air-Pollutant Emissions from Agricultural Burning in Mae Chaem Basin, Chiang Mai Province, Thailand. Atmosphere 2018, 9, 145. [Google Scholar] [CrossRef]
- Junpen, A.; Pansuk, J.; Kamnoet, O.; Cheewaphongphan, P.; Garivait, S. Emission of Air Pollutants from Rice Residue Open Burning in Thailand, 2018. Atmosphere 2018, 9, 449. [Google Scholar] [CrossRef]
- Amezcua-Allieri, M.A.; Martínez-Hernández, E.; Anaya-Reza, O.; Magdaleno-Molina, M.; Melgarejo-Flores, L.A.; Palmerín-Ruiz, M.E.; Eguía-Lis, J.A.Z.; Rosas-Molina, A.; Enríquez-Poy, M.; Aburto, J. Techno-economic analysis and life cycle assessment for energy generation from sugarcane bagasse: Case study for a sugar mill in Mexico. Food Bioprod. Process. 2019, 118, 281–292. [Google Scholar] [CrossRef]
- Janghathaikul, D.; Gheewala, S.H. Environmental Assessment of Power Generation From Bagasse at a Sugar Factory in Thailand. Int. Energy J. 2005, 6, 105. [Google Scholar]
- de Figueiredo, E.B.; Panosso, A.R.; Romão, R.; La Scala, N.J. Greenhouse gas emission associated with sugar production in southern Brazil. Carbon Balance Manag. 2010, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, A.B.; de Morais, M.V.B.; Martins, L.D.; Urbina, V.; Rafee, S.A.A.; Capucim, M.N.; Martins, J.A. Estimates and Spatial Distribution of Emissions from Sugar Cane Bagasse Fired Thermal Power Plants in Brazil. J. Geosci. Environ. Prot. 2015, 3, 72–76. [Google Scholar] [CrossRef]
- Kongboon, R.; Sampattagul, S. Water Footprint of Bioethanol Production from Sugarcane in Thailand. J. Environ. Earth Sci. 2012, 2, 61–67. [Google Scholar]
- Kongboon, R.; Sampattagul, S. The water footprint of sugarcane and cassava in northern Thailand. Procedia-Soc. Behav. Sci. 2012, 40, 451–460. [Google Scholar] [CrossRef]
- Yuttitham, M.; Gheewala, S.H.; Chidthaisong, A. Carbon footprint of sugar produced from sugarcane in eastern Thailand. J. Clean. Prod. 2011, 19, 2119–2127. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, W.; Zheng, W.; Innes, J.L.; Wang, G.; Guo, F. Dynamics of pollutant emissions from wildfires in Mainland China. J. Environ. Manag. 2022, 318, 115499. [Google Scholar] [CrossRef] [PubMed]
) Value | ) |
---|---|
0 | No agreement |
0.10–0.20 | Slight agreement |
0.21–0.40 | Fair agreement |
0.41–0.60 | Moderate agreement |
0.61–0.80 | Substantial agreement |
0.81–0.99 | Near-perfect agreement |
1 | Perfect agreement |
Year | Month | The Burnt Area from Assessment (km2) | Total | |||
---|---|---|---|---|---|---|
Forest | Rice | Corn | Sugarcane | |||
2019 | January | 9688.5 | 3719.8 | 1173.1 | 1169.9 | 15,751.3 |
February | 16,233.3 | 2106.1 | 1022.4 | 920.9 | 20,282.7 | |
March | 20,955.3 | 1993.6 | 929.6 | 623.3 | 24,501.8 | |
April | 22,876.9 | 2611.7 | 1495.4 | 945.6 | 27,929.6 | |
Total | 69,753.9 | 10,431.2 | 4620.5 | 3659.7 | 88,465.3 | |
2020 | January | 7484.9 | 3600.4 | 874.7 | 1111.3 | 13,071.4 |
February | 18,089.7 | 2836.6 | 937.6 | 1120.8 | 22,984.7 | |
March | 21,295.0 | 2460.7 | 890.8 | 643.5 | 25,289.9 | |
April | 21,296.8 | 2694.4 | 1034.0 | 961.2 | 25,986.4 | |
Total | 68,166.4 | 11,592.1 | 3737.1 | 3836.8 | 87,332.4 | |
2021 | January | 3434.7 | 2819.5 | 742.2 | 705.6 | 7701.9 |
February | 6233.3 | 1829.4 | 1103.4 | 792.6 | 9958.8 | |
March | 20,955.3 | 1605.2 | 788.4 | 725.4 | 24,074.2 | |
April | 22,876.9 | 1328.6 | 631.4 | 462.2 | 25,299.1 | |
Total | 63,500.2 | 7582.8 | 3265.4 | 2685.8 | 77,034.1 |
Confusion Matrix | Predicted | Performance Metrics | ||||
---|---|---|---|---|---|---|
Not Burned (TN) | Burned (FP) | Accuracy | Precision | Recall | F1 Score | |
Actual | ||||||
Not burned | 167 | 6 | 95.14% | 91.89% | 91.89% | 87.48% |
burned | 6 | 68 | 95.14% | 96.53% | 96.53% | 96.53% |
Overall accuracy (%) | 95.14% | |||||
Kappa coefficient | 0.8842 |
Year | Type | Type of Pollutants (tons/year) | ||||||
---|---|---|---|---|---|---|---|---|
PM1 | PM2.5 | PM10 | NOX | SO2 | BC | OC | ||
2019 | Forest fire | 15,332.6 | 70,447.0 | 164,721.7 | 52,835.3 | 8287.9 | 10,774.3 | 97,589.8 |
Total rice | 1297.2 | 5756.4 | 14,863.8 | 567.5 | 4134.8 | 1567.5 | 9458.8 | |
Corn | 1776.6 | 9730.0 | 15,886.1 | 144.6 | 3098.7 | 1549.4 | 7664.2 | |
Sugarcane | 1299.0 | 4491.4 | 17,701.4 | 3302.5 | 1166.9 | 1607.2 | 2752.1 | |
All Type | 19,705.4 | 90,424.7 | 213,173.0 | 56,849.9 | 16,688.3 | 15,498.3 | 117,464.9 | |
2020 | Forest fire | 14,983.6 | 68,843.7 | 160,972.8 | 51,632.8 | 8099.3 | 10,529.0 | 95,368.8 |
Total rice | 1441.6 | 6397.0 | 16,518.0 | 630.7 | 4595.0 | 1741.9 | 10,511.5 | |
Corn | 1436.9 | 7869.6 | 12,848.7 | 116.9 | 2506.3 | 1253.1 | 6198.8 | |
Sugarcane | 1361.9 | 4708.8 | 18,558.1 | 3462.3 | 1223.4 | 1685.0 | 2885.3 | |
All Type | 19,224.0 | 87,819.1 | 208,897.7 | 55,842.8 | 16,423.9 | 15,209.1 | 114,964.3 | |
2021 | Forest fire | 9796.3 | 45,010.2 | 105,244.3 | 33,757.6 | 5295.3 | 6883.9 | 62,352.3 |
Total rice | 943.0 | 4184.5 | 10,805.0 | 412.6 | 3005.8 | 1139.4 | 6875.9 | |
Corn | 1255.6 | 6876.4 | 11,227.0 | 102.2 | 2189.9 | 1095.0 | 5416.4 | |
Sugarcane | 953.3 | 3296.2 | 12,990.9 | 2423.7 | 856.4 | 1179.5 | 2019.7 | |
All Type | 12,948.2 | 59,367.2 | 140,267.2 | 36,696.0 | 11,347.4 | 10,297.8 | 76,664.4 | |
All | 51,877.5 | 237,611.0 | 562,337.8 | 149,388.7 | 44,459.6 | 41,005.2 | 309,093.6 |
Province | Emission of Pollutants (tons/year) | ||||||||
---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | |||||||
SO2 | NOX | PM2.5 | SO2 | NOX | PM2.5 | SO2 | NOX | PM2.5 | |
Nakhon Sawan (2) | 27.1 | 117.7 | 178.3 | 12.6 | 54.9 | 83.1 | 18.5 | 80.4 | 121.8 |
Uttaradit (1) | 7.5 | 32.6 | 49.4 | 6.1 | 26.5 | 40.1 | 4.8 | 20.8 | 31.5 |
Phetchabun (2) | 24.2 | 105.2 | 159.3 | 12.1 | 52.6 | 79.6 | 14.1 | 61.2 | 92.7 |
Kamphaeng Phet (3) | 328.0 | 1424.0 | 2157.6 | 208.9 | 907.0 | 1374.2 | 192.9 | 837.5 | 1269.0 |
Sukhothai (1) | 77.3 | 335.5 | 508.3 | 50.2 | 217.9 | 330.2 | 39.9 | 173.1 | 262.3 |
Phitsanulok (1) | 12.0 | 52.0 | 78.8 | 7.1 | 30.9 | 46.8 | 5.9 | 25.7 | 39.0 |
Uthai Thani (2) | 71.9 | 312.1 | 472.9 | 34.7 | 150.8 | 228.6 | 34.8 | 150.9 | 228.7 |
Total | 547.9 | 2379.1 | 3604.8 | 331.8 | 1440.5 | 2182.6 | 310.8 | 1349.7 | 2045.0 |
Variables | AOD | Open Biomass Burning Emissions | ||||
---|---|---|---|---|---|---|
Forest Fire | Corn Waste | Rice Waste | Sugarcane Waste | Total Biomass Emission | ||
AOD | −1 | |||||
Forest fire | 0.906 | −1 | ||||
Corn waste | −0.320 | −0.689 | −1 | |||
Rice waste | −0.212 | −0.088 | −0.246 | −1 | ||
Sugarcane waste | 0.039 | −0.385 | 0.934 | −0.322 | −1 | |
Total biomass emissions | 0.994 | 0.941 | −0.410 | −0.140 | −0.057 | −1 |
Variables | AOD | Open Biomass Burning Emissions | ||||
---|---|---|---|---|---|---|
Forest Fire | Corn Waste | Rice Waste | Sugarcane Waste | Total Biomass Emission | ||
AOD | −1 | |||||
Forest fire | 0.886 | −1 | ||||
Corn waste | −0.841 | −0.662 | −1 | |||
Rice waste | −0.904 | −0.624 | 0.927 | −1 | ||
Sugarcane waste | −0.868 | −0.547 | 0.747 | 0.941 | −1 | |
Total biomass emissions | 0.811 | 0.986 | −0.531 | −0.495 | −0.440 | −1 |
Variables | AOD | Open Biomass Burning Emissions | ||||
---|---|---|---|---|---|---|
Forest Fire | Corn Waste | Rice Waste | Sugarcane Waste | Total Biomass Emission | ||
AOD | −1 | |||||
Forest fire | 0.857 | −1 | ||||
Corn waste | 0.240 | 0.705 | −1 | |||
Rice waste | −0.472 | 0.048 | 0.729 | −1 | ||
Sugarcane waste | 0.270 | 0.653 | 0.821 | 0.639 | −1 | |
Total biomass emissions | 0.756 | 0.985 | 0.816 | 0.216 | 0.734 | −1 |
Variables | Sentinel-5p | Open Biomass Burning Emissions | ||||||
---|---|---|---|---|---|---|---|---|
SO2 | NO2 | Forest Fire | Corn Waste | Rice Waste | Sugarcane Waste | Factories | Total | |
SO2 (Sentinel-5p) | −1 | |||||||
NO2 (Sentinel-5p) | −0.816 | −1 | ||||||
Forest fire | −0.206 | 0.582 | −1 | |||||
Corn waste | −0.507 | 0.028 | −0.737 | −1 | ||||
Rice waste | 0.057 | −0.455 | −0.050 | 0.059 | −1 | |||
Sugarcane waste | −0.160 | −0.041 | −0.807 | 0.793 | −0.463 | −1 | ||
Factories | 0.545 | −0.281 | 0.616 | −0.896 | 0.386 | −0.914 | −1 | |
Total | 0.489 | −0.526 | 0.304 | −0.562 | 0.778 | −0.808 | 0.870 | −1 |
Variables | Sentinel-5p | Open Biomass Burning Emissions | ||||||
---|---|---|---|---|---|---|---|---|
SO2 | NO2 | Forest Fire | Corn Waste | Rice Waste | Sugarcane Waste | Factories | Total | |
SO2 (Sentinel-5p) | −1 | |||||||
NO2 (Sentinel-5p) | −0.236 | −1 | ||||||
Forest fire | 0.115 | 0.099 | −1 | |||||
Corn waste | 0.426 | 0.641 | −0.331 | −1 | ||||
Rice waste | −0.088 | −0.937 | 0.000 | −0.858 | −1 | |||
Sugarcane waste | 0.597 | 0.636 | 0.109 | 0.896 | −0.851 | −1 | ||
Factories | 0.069 | −0.947 | −0.391 | −0.566 | 0.899 | −0.707 | −1 | |
Total | 0.354 | −0.910 | −0.454 | −0.308 | 0.752 | −0.444 | 0.947 | −1 |
Variables | Sentinel-5p | Open Biomass Burning Emissions | ||||||
---|---|---|---|---|---|---|---|---|
SO2 | NO2 | Forest Fire | Corn Waste | Rice Waste | Sugarcane Waste | Factories | Total | |
SO2 (Sentinel-5p) | −1 | |||||||
NO2 (Sentinel-5p) | −0.769 | −1 | ||||||
Forest fire | 0.531 | 0.077 | −1 | |||||
Corn waste | −0.149 | −0.200 | −0.774 | −1 | ||||
Rice waste | −0.299 | −0.325 | −0.967 | 0.811 | −1 | |||
Sugarcane waste | −0.702 | 0.750 | −0.359 | 0.484 | 0.174 | −1 | ||
Factories | 0.474 | −0.290 | 0.667 | −0.877 | −0.589 | −0.846 | −1 | |
Total | 0.345 | −0.120 | 0.698 | −0.944 | −0.662 | −0.742 | 0.985 | −1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paluang, P.; Thavorntam, W.; Phairuang, W. The Spatial–Temporal Emission of Air Pollutants from Biomass Burning during Haze Episodes in Northern Thailand. Fire 2024, 7, 122. https://doi.org/10.3390/fire7040122
Paluang P, Thavorntam W, Phairuang W. The Spatial–Temporal Emission of Air Pollutants from Biomass Burning during Haze Episodes in Northern Thailand. Fire. 2024; 7(4):122. https://doi.org/10.3390/fire7040122
Chicago/Turabian StylePaluang, Phakphum, Watinee Thavorntam, and Worradorn Phairuang. 2024. "The Spatial–Temporal Emission of Air Pollutants from Biomass Burning during Haze Episodes in Northern Thailand" Fire 7, no. 4: 122. https://doi.org/10.3390/fire7040122
APA StylePaluang, P., Thavorntam, W., & Phairuang, W. (2024). The Spatial–Temporal Emission of Air Pollutants from Biomass Burning during Haze Episodes in Northern Thailand. Fire, 7(4), 122. https://doi.org/10.3390/fire7040122