Molecular Simulation Study Based on Adsorption of Gas (CO2,O2,CH4) on Coal
Abstract
:1. Introduction
2. Construction and Simulation Method of the Coal Molecular Model
2.1. Coal Molecular Configuration
2.2. Optimization of the Coal Macromolecule Model
3. Simulation Result Analysis
3.1. Absolute Adsorption Capacity
3.1.1. Single Component Gas Adsorption Capacity
3.1.2. Multi-Component Gas Adsorption Capacity
3.1.3. Adsorptive Selectivity
3.2. Isosteric Heat of Adsorption
3.2.1. Single Component Gas Adsorption Heat
3.2.2. Multi-Component Gas Adsorption Heat
3.3. Interaction Energy
3.4. Energy Distribution
3.5. Diffusion Property
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, K. Simulation of Characteristics of Coal and Oxygen Adsorption with Quantum Chemistry Methods. Master’s Thesis, Xi’an University of Science and Technology, Xi’an, China, 2011. [Google Scholar]
- Cui, L. Present Status and Countermeasure Consideration on Comprehensive Utilization of China Coal Resources. Coal Econ. Res. 2013, 33, 46–47+66. [Google Scholar]
- Yuan, S. Gas Management Concept and Coal and Gas Co-mining Technology. Energy Energy Conserv. 2018, 10, 151–152. [Google Scholar]
- Xu, Y. Research on Macro Featured Parameters and Test Methods of Coal Spontaneous Combustion Character. Master’s Thesis, Xi’an University of Science and Technology, Xi’an, China, 2014. [Google Scholar]
- Chen, L.; Zhang, Y. Study on influence laws of oxygen concentration on thermal effect of coal low-temperature oxidation. J. Saf. Sci. Technol. 2020, 16, 49–54. [Google Scholar]
- Lu, J.; He, Y.; Cheng, G. Construction of Lignite Macromolecular Model and its Analysis on Physisorption Oxygen at Low Temperatures. Min. Res. Dev. 2021, 41, 58–66. [Google Scholar]
- Zhou, W.; Wang, H.; Zhang, Z.; Chen, H.; Liu, X. Molecular simulation of CO2/CH4/H2O competitive adsorption and diffusion in brown coal. RSC Adv. 2019, 9, 3004–3011. [Google Scholar] [CrossRef]
- Yang, S. Study on the Microstructure of Water-Bearing Tectonic Coal and Its Adsorption Characteristics of CH4 and CO2. Master’s Thesis, Qingdao University of Technology, Qingdao, China, 2021. [Google Scholar]
- Zhang, J.; Liu, K.; Clennell, M.; Dewhurst, D.; Pervukhina, M. Molecular simulation of CO2–CH4 competitive adsorption and induced coal swelling. Fuel 2015, 160, 309–317. [Google Scholar] [CrossRef]
- Ren, Z. The Studies on Adsorption of CH4, CO2 Gas on the Antracite Coal of Yang Quan. Master’s Thesis, Henan Polytechnic University, Jiaozuo, China, 2010. [Google Scholar]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Yu, S.; Bo, J.; Fengjuan, L. Competitive adsorption of CO2/N2/CH4 onto coal vitrinite macromolecular: Effects of electrostatic interactions and oxygen functionalities. Fuel 2019, 235, 23–38. [Google Scholar] [CrossRef]
- Liu, X.-Q.; He, X.; Qiu, N.-X.; Yang, X.; Tian, Z.-Y.; Li, M.-J.; Xue, Y. Molecular simulation of CH4, CO2, H2O and N2 molecules adsorption on heterogeneous surface models of coal. Appl. Surf. Sci. 2016, 389, 894–905. [Google Scholar] [CrossRef]
- Dang, Y.; Zhao, L.; Lu, X.; Xu, J.; Sang, P.; Guo, S.; Zhu, H.; Guo, W. Molecular simulation of CO2/CH4 adsorption in brown coal: Effect of oxygen-, nitrogen-, and sulfur-containing functional groups. Appl. Surf. Sci. 2017, 423, 33–42. [Google Scholar] [CrossRef]
- Cheng, G.; Li, Y.; Zhang, M.; Cao, Y. Simulation of the adsorption behavior of CO2/N2/O2 and H2O molecules in lignite. J. China Coal Soc. 2021, 46, 960–969. [Google Scholar]
- Xiang, J.; Zheng, F.; Liang, H. Molecular simulation of the CH4/CO2/H2O adsorption onto the molecular structure of coal. Sci. China Earth Sci. 2014, 44, 1418–1428. [Google Scholar] [CrossRef]
- Yi, D. Research on the Mechanism of CH4, CO2, H2O and O2 Adsorption on Coal Molecule. Master’s Thesis, School of Energy, Power and Mechanical Engineering, Beijing, China, 2018. [Google Scholar]
- Yu, B. Experimental Study of Yang Quan anthracite’s adsorption behavior of binary-component mixtures(N2-CH4); Henan Polytechnic University: Jiaozuo, China, 2010. [Google Scholar]
- Tang, S.; Han, D. Adsorption and desorption of multi element gas by coal. Coal Sci. Technol. 2002, 30, 58–60. [Google Scholar]
- Wang, S.; Hu, Y.; Yang, X.; Liu, G.; He, Y. Examination of adsorption behaviors of carbon dioxide and methane in oxidized coal seams. Fuel 2020, 273, 117599. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, W.; Li, N.; Duan, C. Experimental Study on Adsorption Characteristics of CH4, CO2 and Their Multi-component Gases in Huainan C13 Coal. Saf. Coal Mines 2019, 50, 14–17. [Google Scholar]
- Qu, L.; Liu, L.; Chen, J.; Wang, Z. Molecular Model Construction and Optimization Study of Gas Coal in the Huainan Mining Area. Processes 2022, 11, 73. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Li, P.; Li, H.; Bai, H.; Guo, Q. Macromolecular model construction and quantum chemical calculation of Ningdong Hongshiwan coal. CIESC J. 2018, 69, 2208–2216. [Google Scholar]
- Jianbo, J. Construction of Structural Model and Molecular Simulation of Methane Formation Mechanism during Coal Pyrolysis for Shendong Vitrinite. Ph.D. Dissertation, Taiyuan University of Technology, Taiyuan, China, 2010. [Google Scholar]
- Zhu, H.; He, X.; Huo, Y.; Xie, Y.; Wang, W.; Fang, S. Construction and optimization of lignite molecular structure model. J. Min. Sci. Technol. 2021, 6, 429–437. [Google Scholar]
- Gelb, L.D.; Gubbins, K. Pore size distributions in porous glasses: A computer simulation study. Langmuir 1999, 15, 305–308. [Google Scholar] [CrossRef]
- Gao, D.; Hong, L.; Wang, J.; Zheng, D. Adsorption simulation of methane on coals with different metamorphic grades. AIP Adv. 2019, 9, 095108. [Google Scholar] [CrossRef]
- Gao, D.; Hong, L.; Wang, J.; Zheng, D. Molecular simulation of gas adsorption characteristics and diffusion in micropores of lignite. Fuel 2020, 269, 117443. [Google Scholar] [CrossRef]
- Wu, S.; Jin, Z.; Deng, C. Molecular simulation of coal-fired plant flue gas competitive adsorption and diffusion on coal. Fuel 2019, 239, 87–96. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Q.; Yuan, C.; Tao, Q.; Zhao, Y.; Zhang, G.; Liu, J.; Qi, G. Thermodynamic analysis of high-pressure methane adsorption on coal-based activated carbon. Fuel 2018, 230, 172–184. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Ren, C.; Zhang, Y.; Wang, B. An adsorption model for evaluating methane adsorption capacity in shale under various pressures and moisture. J. Nat. Gas Sci. Eng. 2020, 81, 103426. [Google Scholar] [CrossRef]
- Billemont, P.; Coasne, B.; De Weireld, G. An experimental and molecular simulation study of the adsorption of carbon dioxide and methane in nanoporous carbons in the presence of water. Langmuir 2011, 27, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Q. Study on Competitive Adsorption Mechanism of Pingdingshan Bituminous Coal for Gas under Different Moisture Conditions. Master’s Thesis, Inner Mongolia University of Science and Technology, Baotou, China, 2022. [Google Scholar]
- Li, S.-G.; Bai, Y.; Lin, H.-F.; Shu, C.-M.; Yan, M.; Laiwang, B. Molecular simulation of adsorption of gas in coal slit model under the action of liquid nitrogen. Fuel 2019, 255, 115775. [Google Scholar] [CrossRef]
- Wen, H.; Tang, R.; Zhang, D.; Dai, A.; Fan, S.; Zhai, X. Molecular simulation study on adsorption and diffusion of CO in bituminous coal. J. Saf. Sci. Technol. 2022, 18, 95–101. [Google Scholar]
- Wu, S. Molecular Simulation Research on Mechanism of Coal Spontaneous Combustion Prevention and Storage of Flue Gas. Ph.D. Dissertation, Liaoning Technical University, Jinzhou, China, 2019. [Google Scholar]
- Wang, L.; Wang, Z.; Li, X.; Yang, Y. Molecular dynamics mechanism of CH4 diffusion inhibition by low temperature in anthracite microcrystallites. ACS Omega 2020, 5, 23420–23428. [Google Scholar] [CrossRef]
- Sui, H.; Yao, J. Effect of surface chemistry for CH4/CO2 adsorption in kerogen: A molecular simulation study. J. Nat. Gas Sci. Eng. 2016, 31, 738–746. [Google Scholar] [CrossRef]
- Wiser, W.H. Conversion of bituminous coal to liquids and gases: Chemistry and representative processes. In Magnetic Resonance: Introduction, Advanced Topics and Applications to Fossil Energy; Springer: Dordrecht, The Netherlands, 1984; pp. 325–350. [Google Scholar]
- Zhang, J.; Clennell, M.B.; Liu, K.; Dewhurst, D.N.; Pervukhina, M.; Sherwood, N. Molecular dynamics study of CO2 sorption and transport properties in coal. Fuel 2016, 177, 53–62. [Google Scholar] [CrossRef]
- Düren, T.; Bae, Y.-S.; Snurr, R.Q. Using molecular simulation to characterise metal–organic frameworks for adsorption applications. Chem. Soc. Rev. 2009, 38, 1237–1247. [Google Scholar] [CrossRef]
- Liu, Z.-X.; Feng, Z.-C. Theoretical study on adsorption heat of methane in coal. J. China Coal Soc. 2012, 37, 647–653. [Google Scholar]
- Wang, D. Study on Gas Adsorption and Diffusion of Soft and Hard Coal Based on Molecular Simulation. Master’s Thesis, Henan Polytechnic University, Jiaozuo, China, 2018. [Google Scholar]
- Krishna, R. Diffusion in porous crystalline materials. Chem. Soc. Rev. 2012, 41, 3099–3118. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, S.; Kwiatek, L. Physical properties of selected block Argonne Premium bituminous coal related to CO2, CH4, and N2 adsorption. Int. J. Coal Geol. 2009, 77, 2–9. [Google Scholar] [CrossRef]
- Hu, H.; Du, L.; Xing, Y.; Li, X. Detailed study on self-and multicomponent diffusion of CO2-CH4 gas mixture in coal by molecular simulation. Fuel 2017, 187, 220–228. [Google Scholar] [CrossRef]
Proximate Analysis (%) | Ultimate Analysis (%) | |||||||
---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | FCad | C | H | O | N | S |
1.68 | 22.64 | 17.3 | 62.58 | 84.02 | 4.70 | 9.33 | 1.88 | 0.07 |
Molecular | Molecular Weight | Element Content (%) | |||
---|---|---|---|---|---|
C | H | O | N | ||
C209H140O17N4 | 2982 | 84.02 | 4.7 | 9.1 | 1.8 |
Temperature (K) | CO2 | O2 | CH4 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | n | R2 | a | b | n | R2 | a | b | n | R2 | |
288 | 5.910 | 1.981 | 0.881 | 0.996 | 5.818 | 1.417 | 2.853 | 0.98 | 4.671 | 0.178 | 3.707 | 0.999 |
298 | 5.793 | 0.891 | 0.435 | 0.985 | 4.491 | 0.668 | 2.005 | 0.988 | 2.798 | 0.181 | 2.587 | 0.998 |
308 | 5.653 | 0.831 | 0.316 | 0.986 | 4.424 | 0.664 | 1.957 | 0.989 | 1.59 | 0.06 | 1.35 | 0.992 |
318 | 5.581 | 0.018 | 0.010 | 0.984 | 4.625 | 0.099 | 0.216 | 0.98 | 1.146 | 0.035 | 0.261 | 0.996 |
Pressure | CO2 | O2 | CH4 |
---|---|---|---|
0.1 MPa | 19.65 | 39.60 | 32.29 |
1 MPa | 17.25 | 35.83 | 27.12 |
10 MPa | 10.83 | 29.05 | 27.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, L.; Wang, Z.; Liu, L. Molecular Simulation Study Based on Adsorption of Gas (CO2,O2,CH4) on Coal. Fire 2023, 6, 355. https://doi.org/10.3390/fire6090355
Qu L, Wang Z, Liu L. Molecular Simulation Study Based on Adsorption of Gas (CO2,O2,CH4) on Coal. Fire. 2023; 6(9):355. https://doi.org/10.3390/fire6090355
Chicago/Turabian StyleQu, Lina, Zhenzhen Wang, and Long Liu. 2023. "Molecular Simulation Study Based on Adsorption of Gas (CO2,O2,CH4) on Coal" Fire 6, no. 9: 355. https://doi.org/10.3390/fire6090355
APA StyleQu, L., Wang, Z., & Liu, L. (2023). Molecular Simulation Study Based on Adsorption of Gas (CO2,O2,CH4) on Coal. Fire, 6(9), 355. https://doi.org/10.3390/fire6090355