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Abstract: This study aimed to further explore the adsorption properties of different gases (CO2, O2,
and CH4) on the coking coal surface by establishing a molecular model. Changes in the absolute
adsorption capacity and the isosteric heat of adsorption of gases under different temperatures,
pressures, and compositions were simulated using grand canonical Monte Carlo (GCMC) and
molecular dynamics simulations. Interaction energy and energy distribution were used to analyze
the adsorption behavior of gases, and the diffusion properties were investigated using the diffusion
coefficient and diffusion activation energy. The absolute adsorption results fit well with the Langmuir–
Freundlich model. The absolute adsorption capacity had a significant positive correlation with
pressure and the corresponding mole fraction, and a significant negative correlation with temperature.
The competitiveness, based on binary adsorption selectivity, was in the order of CO2 > O2 > CH4.
The isosteric heat of adsorption of CH4 was slightly higher than that of O2, and that of CO2 was
1.49–1.64 times that of O2 and CH4. The isosteric heat of the adsorption of gases was also barely
influenced by temperature and pressure. The interaction energy between CO2 and coal was greater
than that of O2 or CH4, but the high pressure and high content were not conducive to the adsorption
of O2 by CO2. The preferred adsorption site for CO2 was stronger than that for O2 and CH4, and
its peak value negatively correlated with the molar fraction. The diffusion coefficient for single
component gases initially increased and then decreased with increased pressure, showing a positive
correlation with temperature. A close inverse correlation existed between diffusion activation energy
and pressure. These results revealed the microscopic adsorption and diffusion regularities of CO2,
O2, and CH4 in the coal model, indicating great significance in accurately predicting coal fires.

Keywords: coal spontaneous combustion; competitive adsorption; molecular simulation

1. Introduction

Under the influence of the national characteristics of “poor oil, less gas, and rich coal”,
coal dominates the energy system in China [1]. However, the complex geohydrological
structure of mines and other disaster-inducing factors have conferred 56% of recoverable
coal seams with self-combustion tendency [2], of which about 49% are affected by combined
disasters [3]. Thus, preventing and controlling coal’s spontaneous combustion has become
a research hotspot in coal mine safety [4].

The initiation of coal autoignition is an extremely intricate process of coal–oxygen
physicochemical adsorption. The coal first physically adsorbs oxygen to saturation, at
which point the functional groups on the coal surface chemically react with the oxygen
to change the molecular structure and release heat. Heat build-up leads to an increase
in temperature, triggering coal’s spontaneous combustion [5]. Coal–oxygen adsorption
provides the early basis for coal self-ignition, a process of significant importance in revealing
the theory of coal spontaneous combustion. However, the influence of CH4 and CO2 in the
coal seam on coal–oxygen adsorption cannot be ignored. To this end, scholars have used
molecular simulations to investigate the competitive adsorption regularity for CO2 and CH4
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in coal. Lu et al. [6] studied the physisorption process of oxygen by functional groups in coal.
Their results show that physisorption begins to change into chemisorption as the adsorption
amount increases. Zhou et al. [7], Yang et al. [8], Zhang et al. [9], and Ren et al. [10] used a
coal macromolecular model to adsorb CH4 and CO2 and found that the adsorption capacity
of CO2 was stronger than that of CH4 [11]. Yu et al. [12], Liu X et al. [13], and Dang et al. [14]
investigated the impact of oxygenic groups on the competitive adsorption of CO2, CH4, and
N2 in coal using GCMC and density functional theory (DFT) simulations. They found that
the strong quadrupole moment and polarization capacity of CO2 makes it more selectively
adsorbed by functional groups than CH4 and N2. Cheng et al. [15], Xiang et al. [16], and
Ding et al. [17] revealed the different adsorption and diffusion mechanisms of CH4, CO2,
and N2 gases from three aspects: adsorption isotherms, adsorption heat, and diffusion
coefficients using molecular simulation and quantum chemistry methods. They showed
that the order of adsorption capacity for the three gases is CO2 > CH4 > N2, whereas the
diffusion capacity follows the opposite sequence. Yu et al. [18] and Tang et al. [19] conducted
experimental studies on the competitive adsorption of mixed gases under different volume
fractions. They found that the adsorption amount in multicomponent gases was affected
by the adsorption power, molecular properties, and the partial pressure. Wang et al. [20]
and Zhang et al. [21] studied the adsorption of CH4, CO2, N2, O2, and their mixed gases
on a coal surface model. The presence of CO2 was found to greatly reduce the adsorption
amount of CH4 in the binary system, and the adsorption of oxygen was more likely to be
affected by the volume fraction of methane.

In summarizing the competitive adsorption among multicomponent gases in coal,
previous studies have primarily focused on improving the efficiency of CBM extraction,
and most of them made comparisons with N2. Only a few studies have investigated
the influence of the competitive adsorption behaviors of CH4, CO2, and O2 on coal’s
spontaneous combustion. However, O2 is an essential gas for the spontaneous combustion
of coal, so the study of its competitive relationship with CH4 and CO2 in coal is an essential
prerequisite for ensuring the safe operation of coal mines and preventing the occurrence of
fire accidents due to the spontaneous combustion of coal. Therefore, taking CO2, O2, and
CH4 as the research objects, the present study used GCMC to simulate and analyze the
adsorption behaviors of these gases in the molecular structure of coking coal. This research
aimed to provide a theoretical basis for coal mine fire prevention at the microscopic level.

2. Construction and Simulation Method of the Coal Molecular Model
2.1. Coal Molecular Configuration

The coking coal was obtained from the 12th Coal Mine of Pingdingshan, Henan
Province. For this research, elemental and industrial tests were used to analyze the coking
coal, and the results are shown in Table 1. According to 13C-NMR, XRD, XPS, and other
experiments, we obtained information on the distribution of hydrocarbon atoms, the
arrangement of aromatic structures, and the presence of functional groups containing
nitrogen, oxygen, and sulfur. By combining the results of the industrial analysis with the
results of the elemental analysis, the molecular formula of coking coal was determined to be
C209H140O17N4, which was derived from modeling methods described in the literature [22].
The two-dimensional structure diagram and the structural parameters are displayed in
Figure 1 and Table 2, respectively.

Table 1. The basic parameters of the coal sample.

Proximate Analysis (%) Ultimate Analysis (%)

Mad Aad Vdaf FCad C H O N S

1.68 22.64 17.3 62.58 84.02 4.70 9.33 1.88 0.07
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Table 2. The structural parameters of the coking coal.

Molecular Molecular Weight
Element Content (%)

C H O N

C209H140O17N4 2982 84.02 4.7 9.1 1.8
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Figure 1. The molecular configuration diagram of coal (two-dimensional).

2.2. Optimization of the Coal Macromolecule Model

Since only the structural model with the lowest energy represented the optimal con-
figuration under study, the two-dimensional structure of coking coal was imported into
Materials Studio software and the Forcite module was used to calculate MM and MD. The
main purpose of MD calculation was to avoid excessive calculation of adsorption simula-
tion due to the complex macromolecular structure. The MM parameters were [23] that the
calculation method was a smart minimizer, the maximum number of iteration steps was set
to 5000 steps, and the charge distribution and the force field were the charge equilibrium
method and Dreiding. The electrostatic and Van der Waals values were calculated using
the atom-based method. The MM calculation overcomes the disadvantage of only the local
minimum value being obtained via MD. The minimum value of the whole potential energy
surface was found using the annealing dynamics simulation. The MD parameters were the
following [24]: the NVT ensemble (constant particle number N, volume V, and temperature
T in the simulation system remain unchanged) was selected, the temperature range was
300–600 K, and it was heated up 60 K each time and cycled ten times. The temperature
control program selected Nose, and the step size was 1 fs. The MM calculations were
performed on the output configuration at the end of each cycle, and the parameters were
set as described above. The optimized results of MM and MD are shown in Figure 2a,b,
respectively. The adsorbent configuration after molecular optimization is shown in Figure 3.

Density simulation not only added periodic boundary condition to coal molecules,
but also explored the optimal configuration under periodic boundary conditions. Finally,
the reliability of the modeling method was verified by comparing the cell density obtained
after passing the minimum energy point with the actual coal sample density. The periodic
boundary conditions were added to the model using the Amorphous Cell module. The
following parameters were used to simulate the density [25]: the calculation used Medium,
the Dreiding was used to force field, and the charge was calculated using the charge balance
method (QEq). The initial density was 0.6 g/cm3, the final density was 1.8 g/cm3, and
the interval was 0.05 g/cm3. By analyzing the relationship between density and potential
energy, it was found that the structure had the lowest potential energy when the density
was 1.35 g/cm3. The lattice parameters of the optimal configuration are Lx = Ly = Lz =
1.3912 nm, α = β = γ = 90◦, as shown in Figure 2c.
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After the NPT (P = 1 MPa, T = 298 K) ensemble simulation, the final density of the
model was stabilized at 1.39 g/cm3, which was close to the measured value. The effective
pore volume and surface area for the model were determined using the Atom Volumes
and Surfaces tool, and were 2414 m2/g and 0.0209 cm3/g. The Connery surface of the
model [26] is shown in Figure 2d.

To closely approach the real porous state of coal, a supercell molecule comprising 2 ×
2 × 2 original molecules of coking coal was constructed to form pores of different sizes [27].
This paper used the GCMC method to simulate the relationship between the adsorption
capacity of CO2, O2, and CH4 on coal surface and fugacity, wherein fugacity was converted
from pressure using the Peng–Robinson equation [28]. The adsorption characteristics of gas
molecules on the coal surface were investigated using the adsorption module to obtain the
adsorption isotherm, adsorption site, action energy, diffusion coefficient, and adsorption
selectivity. The parameters of the sorption module were set as follows [29]: the task item
was Fix Pressure and the precision was Customized. The Metropolis method was used to
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calculate the energy change in adsorbed gas molecules on the surface of the coal molecular
model. The number of molecules N in the equilibrium state of the simulated system
was obtained using the µVT ensemble (chemical potential µ, volume V, and temperature
T of the model system remained unchanged). To achieve thermodynamic equilibrium
and save on computation time, the total number of simulation steps was determined to
be 2× 107 Monte Carlo steps. The number of equilibrium steps was set as 1× 107 to ensure
adsorption equilibrium and the number of production steps was set as 1 × 107 to sample
the exact average date. The models obtained at different temperatures and pressures
using the Fix pressure method were taken as the initial model, which was optimized using
MD simulation. The Dynamic task was used to calculate the kinetic coefficients, such as
diffusion coefficient and diffusion activation energy.

3. Simulation Result Analysis
3.1. Absolute Adsorption Capacity
3.1.1. Single Component Gas Adsorption Capacity

The simulation data were fitted using Langmuir, Freundlich, and Langmuir–Freundlich
models [30]. The Langmuir–Freundlich model could describe the entire adsorption for
gases very well, and its fitting formula [31] was as follows:

q =
abp1/n

1 + bp1/n

where q is the adsorption amount (mL/g), a is the gas maximum single layer adsorption
amount, p is the adsorption pressure (MPa), b is the adsorption equilibrium constant
(MPa−1), and n is the surface heterogeneity of the adsorbent. The fitting curves of the
adsorption isotherm are shown in Figure 4.
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With increased pressure, the adsorption isotherm for CO2 initially increased quickly
and remained stable, O2 increased slowly at the low pressure stage and then gradually
became saturated, and CH4 increased linearly. These phenomena not only showed that
there was a critical value of the influence of pressure on the adsorption capacity [32], but
the molecular weight of the gas also affected the adsorption amount because coal molecules
had a limited effective adsorption point. Therefore, CO2 had a high adsorption amount
due to its greater molecular weight, compared to CH4 and O2. In comparison with the
simulation results of Qiang [33], the absolute adsorption isotherm for CO2 in this work
was found to be qualitatively in agreement, but quantitatively higher. The reason was
that the hydrogen, oxygen, and nitrogen content in coking coal was higher, indicating
that there were more hydroxyl, carboxyl, and methoxyl groups interacting with CO2.
The relationship between the adsorption amount of gases under the same condition was
CO2 > O2 > CH4. The interaction energy between gases and coal molecules was an
important basis for sequencing. The adsorption capacity decreased with the temperature
increase. This was because the initial stage of adsorption was physisorption caused by
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intermolecular suction, and the increase in temperature reduced the original weak binding
force and led to desorption.

The fitting parameters and correlation coefficient of the Langmuir–Freundlich models
are summarized in Table 3. All R2 values exceeded 0.98, confirming the reliability of
the Langmuir–Freundlich model. The relationship of the parameter was a(CO2) > a(O2) >
a(CH4), which means that CO2 was the first gas to attain stability and had the maximum
adsorption capacity. The parameter b was inversely proportional to the pressure required
for saturation, indicating that the magnitude of the pressure required by the gas was CH4 >
O2 > CO2, so that the adsorption rate for CO2 increased the fastest under a low pressure [34].
With increased temperature, the fitted parameters gradually decreased. This suggests that
the temperature was not favorable to gas adsorption, but provided energy for the gas to
escape from the coal surface.

Table 3. The Langmuir–Freundlich fitting parameters.

Temperature (K) CO2 O2 CH4
a b n R2 a b n R2 a b n R2

288 5.910 1.981 0.881 0.996 5.818 1.417 2.853 0.98 4.671 0.178 3.707 0.999
298 5.793 0.891 0.435 0.985 4.491 0.668 2.005 0.988 2.798 0.181 2.587 0.998
308 5.653 0.831 0.316 0.986 4.424 0.664 1.957 0.989 1.59 0.06 1.35 0.992
318 5.581 0.018 0.010 0.984 4.625 0.099 0.216 0.98 1.146 0.035 0.261 0.996

3.1.2. Multi-Component Gas Adsorption Capacity

To investigate the adsorption capacity between different gases, the adsorption
isotherms for multi-component gases on coal at 298 K were simulated. To analyze the effect
of molar fraction on adsorption behavior in the binary component system and the difference
in competitive adsorption of gases in the ternary component system, the component ratios
were set to 1:4, 2:3, 3:2, 4:1, and 1:1:1. The simulation results are shown in Figure 5a–d.
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Figure 5 shows that the adsorption amount of multi-component gas increased with
increased molar fraction. In the CO2/O2 and CO2/CH4 binary system, the adsorption
amounts of CO2 were always greater than those of O2 and CH4 at different molar fractions,
manifesting that CO2 had a more competitive capacity than O2 and CH4. A comparison
of Figure 5a,b revealed that the maximum values of CO2 in the CO2/O2 and CO2/CH4
systems were 5.32 and 7.57 mmol/g, respectively, demonstrating that O2 was more competi-
tive than CH4 and consistent with Figure 5c. By comparing the adsorption quantities within
the pure-gas system and the CO2/O2/CH4 system, it could be found that the adsorption
amount for O2 dramatically decreased. It has been shown that the presence of CO2 af-
fected the physical adsorption of O2 in coal and reduced the possibility of the spontaneous
combustion of coal from the source.

3.1.3. Adsorptive Selectivity

To further research the preferential adsorption ability of the gases on coal, adsorp-
tion selectivity was used to describe the competition hierarchy for multicomponent gas.
Sm/n could be defined as follows:

Sm/n =
xm/xn

ym/yn

where xm (or xn) and ym (or yn) are the mole fraction of species m (or n) in the adsorbed
phase and bulk phase, respectively. The adsorption selectivity was larger than 1, indicating
that the competitive adsorption of adsorbate m in the multi-component was stronger than
that of adsorbate n, and greater selectivity corresponded with stronger adsorption.

SCO2/O2 decreased with the increased pressure and molar fraction of CO2, as shown
in Figure 6a, indicating that high pressure and high content reduced the competitiveness
of CO2. This finding was primarily due to the CO2 saturation being reached during the
high-pressure phase, whereas O2 was always on the rise. Figure 6b showed that SCO2/CH4
was inversely proportional to pressure and positively proportional to the molar fraction of
CO2, indicating that a higher CO2 content corresponded with a stronger the competitive
adsorption. As shown in Figure 6c, SO2/CH4 was proportional to the pressure and the molar
fraction of O2 because the amount and rate of adsorption for O2 was far beyond that of
CH4. The analysis of adsorption selectivity revealed that the competitiveness remained at
CO2 > O2 > CH4, and this conclusion was confirmed by the tri-component system shown
in Figure 6d.

3.2. Isosteric Heat of Adsorption
3.2.1. Single Component Gas Adsorption Heat

To some extent, the adsorption capacity could be reflected by the magnitude of the
isosteric heat of adsorption. A stronger interaction energy between the gas and coal
corresponded with greater isosteric heat [35]. The relationship between the adsorption
heat and pressure of CO2, O2, and CH4 at different temperatures is shown in Figure 7. The
adsorption heat of each gas was only slightly affected by temperature and pressure. The
adsorption heat of CO2 initially decreased and then increased at around 8.625 kcal/mol.
This finding may be due to the energy of the adsorbate–adsorbent interaction dominating
at low pressure, whereas the adsorbate–adsorbate interaction contributed more at high
pressure. Conversely, the isosteric heat for O2 and CH4 showed an overall decreasing
trend of about 0.5–1 kcal/mol, indicating that adsorption was dominated by adsorbate–
adsorbent interaction. The isosteric heat of CH4 was a little superior to that of O2, and that
of CO2 (8.44–8.73 kcal/mol) was about 1.49–1.56 and 1.55–1.64 times that of O2 and CH4,
respectively. Thus, the order of adsorption heat was CO2 > CH4 > O2, inconsistent with the
order of the adsorption amount. This indicated that the isosteric heat of adsorption was
only one of many factors affecting the adsorption capacity, which reflected the adsorption
capacity to a certain extent. Because the heat levels of CO2, O2, and CH4 were less than
10 kcal/mol, the adsorption on the coal surface was a physical process [36].
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Henry’s law of adsorption describes the linear relationship between adsorption
amount and equilibrium pressure at low pressure, and the formula was as follows:

n = KH P

where n is the adsorbing capacity, KH is the Henry constant, and P is the adsorption
pressure. The Henry constant could characterize the adsorbate affinity, and it decreased
with decreased KH . The relationship of adsorption affinity for three gases was CO2 > O2
> CH4, as shown in Figure 8. This result was due to the permanent quadrupole moment
of the CO2 molecule, which created a stronger electrostatic force on the surface of coal
molecules [37]. The negative correlation showed that the affinity of these gases could
be reduced by the creasing temperature. The KH values of CO2 were more sensitive to
temperature changes, and that of CH4 slowly decreased with increased temperature.
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3.2.2. Multi-Component Gas Adsorption Heat

The isosteric heat of adsorption in multi-component systems is shown in Figure 9,
and it depended primarily on gas species and the system associated with it. Figure 9a
shows that the adsorption heat for CO2 was proportional to its molar coefficient in the
CO2/CH4 system, but inversely proportional in the CO2/O2 system, consistent with the
trend of adsorption selectivity in binary systems. Influenced by the competition between
CO2 and CH4, the adsorption heat of O2 in the CO2/O2 and O2/CH4 systems differed. The
adsorption heat of O2 decreased with increased molar fraction, which was contrary to that
of CH4, indicating that the high CH4 content was more competitive than that of O2. By
comparison with Figure 9b and c, it could be seen that the adsorption heat of O2 and CH4
in the O2/CH4 system followed the same trend as that of pure gas, whereas it fluctuated
more when CO2 was involved. This phenomenon was due to the adsorption heat of pure
CO2, showing a local minimum that could be found only in strongly adsorbed gas [38]. The
order of adsorption heat of gases in the CO2/O2/CH4 system was compatible with that
of pure gases. The change trends for O2 and CH4 showed more obvious fluctuations than
those of CO2, as shown in Figure 9d. This finding indicated a strong competition between
O2 and CH4 for adsorption heat.

3.3. Interaction Energy

The interaction energies of CO2, O2, and CH4, including van der Waals energy and
electrostatic energy, were analyzed at different molar fractions in multi-component systems
to further investigate the effect of competitive adsorption of gases for the interaction
energy [39]. The results are shown in Figure 10.

As shown in Figure 10a,b, the van der Waals energy accounted for more than 79%
and 77% of the total interaction energy in the CO2/O2 and CO2/CH4 systems, respectively,
whereas the rest of the electrostatic energy originated from CO2. This was because CO2
was electrically charged and generated electrostatic energy when adsorbed. Meanwhile, the
higher molar fraction for CO2 corresponded with stronger interaction energy, indicating
that it was more likely to adsorb than O2 and CH4, and the adsorption system was more
stable. For the CO2/O2 system, the interaction energy was slightly reduced when the
pressure exceeded 8 MPa and the molar fraction of CO2 exceeded 60%, demonstrating that
the high pressure and high content reduced the competitiveness of CO2. For O2/CH4 binary
systems, up to 98% of the total energy of interaction was van der Waals energy, and only a
small amount of energy originated from electrostatic energy. The interaction energy was
proportional to the pressure and the molar fraction of O2, indicating that O2 was more stable
than CH4. The results showed that the relationship of the adsorption stability of the gases
was CO2 > O2 > CH4, which was consistent with the relationship of adsorption amount.
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As shown in Figure 10d, the interaction energy in the CO2/O2/CH4 system decreased
from −2.962 kcal/mol to −122.163 kcal/mol with the pressure from 0.1 MPa to 10 MPa.
The van der Waals energy accounted for more than 73%. The larger the absolute value
of the interaction energy, the more prone it was to adsorb. The van der Waals energy,
electrostatic energy, and total energy initially increased rapidly and then slowly with
increased pressure, which was consistent with the increasing trend of adsorption capacity
under the CO2/O2/CH4 system [40].

3.4. Energy Distribution

The adsorbed sites could be identified using the energy distribution and be used to
analyze competitive adsorption. Larger negative values indicated a stronger interaction
energy and more favorable adsorption sites [41]. The energy distribution of pure CO2, O2,
and CH4 at different temperatures was shown in Figure 11a. The preferential adsorption
site for CO2 was lower than O2 or CH4, and the peak for O2 was almost equal to that for
CH4. This was consistent with the order of equal heat of adsorption. The distinct potential
energy peak was around−10.5 kcal/mol, corresponding with favorable adsorption sites for
CO2. Its peak decreased with increased temperature, which was because the temperature
stimulated the activity of CO2 molecules, so that the adsorbed gas molecules began to
diffuse. Another peak at around −6.5 kcal/mol represented the favorable adsorption sites
for O2 and CH4. The peaks of the preferential adsorption sites for O2 and CH4 moved
toward the lower energy region with increased pressure, and a new peak at −4 kcal/mol
formed at the secondary adsorption site. This finding was primarily due to the increase in
adsorption volume caused by pressure, so that the priority adsorption sites gradually be-
came saturated. Then, a large number of gas molecules shifted to the secondary adsorption
sites, resulting in a movement in the relative importance of the adsorption sites.
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adsorption systems.

The energy distribution of gases in the multi-component systems was compared at
different molar fractions in order to study competition among adsorption sites, as shown
in Figure 11b–d. In the CO2/O2 system, the peak value of the preferential adsorption
site increased with increased molar fraction, implying that CO2 and O2 gradually reached
saturation with increased adsorption capacity. The potential energy shifted to the right
and the peak decreased with increased molar fraction in the CO2/CH4 system, showing
that the high content did not facilitate the competitive adsorption of gas molecules at
the preferred site. By comparing the energy–distribution curve of O2 in the CO2/O2 and
O2/CH4 systems, we found that adding CH4 increased the peak at the second adsorption
site. This finding indicated that the presence of CH4 forced the O2 molecules to diffuse
away from the preferred adsorption site, thereby inhibiting O2 from reaching saturation.
The molecular proportion of the preferred adsorption site for O2 (−5 kcal/mol) in the
binary components was reduced.

3.5. Diffusion Property

When gas molecules made contact with the coal surface, different pressures and con-
centration gradients were formed by different adsorption capacities. The gas diffused from
high to low under the gradient, which follows the microscopic principle of diffusion [42].
The self-diffusion coefficients of CO2, O2, and CH4 were calculated using MD simulation to
reveal the diffusion regularity of the gas on coal [43]. From the Einstein diffusion equation,
the Ds could be calculated as follows [44]:

Ds =
1

6N
lim
t→∞

d
dt

{
N

∑
i=1

[ri(t)− ri(0)]

}2

=
kMSD

6

where KMSD is the slope of the fitting curve of MSD, and MSD(t) =
N
∑

i=1

〈
|ri(t)− ri(0)|2

〉
;

N is the number of gas molecules; ri(t) is the Cartesian position vector of gas molecule in
the microcrystallite at the time t; and ri(0) is the initial position vector of the gas molecule.
The diffusion coefficient and diffusion activation energy for gases on coal at different
pressures are depicted in Figure 12.
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The self-diffusion coefficient of gases was positively correlated with temperature be-
cause the higher temperature corresponded with the higher internal energy of the molecules.
According to the law of conserving energy, the internal energy between molecules could
be converted into kinetic energy, thereby intensifying the movement of molecules and
making it easier for them to diffuse. The relationship between the self-diffusion coefficients
of the gas was CO2 > O2 > CH4 at the same temperature, consistent with the results of
Kelemen et al. [45]. The self-diffusion coefficient initially increased and then decreased
with pressure. The main reason for the reduction was that gas molecules stacked up more
tightly and interacted more strongly under high pressure.

The diffusion of gas in coal molecules was an activation process. The diffusion
activation energy could be reckoned using the Arrhenius equation [46], and the specific
formula is as follows:

D = D0 exp
(
− Ea

RT

)
where D0 is the pre-exponential factor; Ea is the apparent activation energy, kcal/mol;
R is the ideal gas constant; and T is the temperature, K. InD is fitted well to the reciprocal
of temperature, and the calculated result is listed in Table 4. The activation energy of gas
diffusion was found to be negatively correlated with pressure, and the activation energy of
O2 was approximately twice that of CO2.

Table 4. The diffusion activation energy of CO2, O2, and CH4.

Pressure CO2 O2 CH4

0.1 MPa 19.65 39.60 32.29
1 MPa 17.25 35.83 27.12

10 MPa 10.83 29.05 27.73
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4. Conclusions

To research the microcosm mechanism of CO2, O2, and CH4 adsorption and diffusion
on coal, a realistic macromolecular coal model was established. GCMC and MD molecular
simulations were performed in single, binary, and ternary systems, considering the effect
of temperature, pressure, and molar fraction.

(1) Adsorption isotherms were well fitted with the Langmuir–Freundlich model. The
absolute adsorption amount was directly proportional to the pressure and inversely to the
temperature. The adsorption of multi-component gases showed that adsorption amount
was proportional to the molar fraction, but high pressure and high content reduced the com-
petitiveness for CO2. The competitive capacities were CO2 > O2 > CH4, based on adsorption
selectivity. By comparing the adsorption amount of O2 under different component systems,
we found that CO2 significantly reduced the adsorption amount of O2.

(2) The isosteric heat of adsorption of CO2 (8.44–8.73 kcal/mol) was much greater than
that of O2 or CH4 (5.12–5.83 kcal/mol). The difference in order between the adsorption
quantity and the adsorption heat for the three gases meant that the adsorption amount was
influenced by the adsorption heat, and many other factors. The adsorption heat was affected
by the molar fraction and competition from other gases in mixed adsorption systems, which
changed the adsorption sites and adsorption spaces and influenced the interaction energy.
The presence of CO2 affected the trend of the equivalent heat of adsorption of another
gas with which it competed, and the existence of CH4 caused large fluctuations in the
adsorption heat of O2.

(3) The electrostatic energy and high van der Waals energy between CO2 and coal
resulted in an interaction greater than with O2 and CH4. The greater interaction energy
corresponded with the greater adsorption amount. In a competitive adsorption system,
CO2 and CH4 changed the relative importance of the competitive adsorption sites for O2,
thereby inhibiting O2 adsorption. The gas diffusion coefficient was inversely correlated
with the temperature under the same pressure. The diffusion coefficient increased and
then decreased with increased pressure at the same temperature. The order of diffusion
activation energy was O2 > CH4 > CO2, which was negatively correlated with pressure.
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