Wildland–Urban Interface: Definition and Physical Fire Risk Mitigation Measures, a Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
- Clearance distances (between buildings and plants, and amongst each of the constituents).
- Landscaping.
- Wildland fuel management.
- Land planning.
- Buildings design and materials.
3. Results
3.1. Definition of the Wildland–Urban Interface
3.1.1. Conceptual Definition
3.1.2. Semantic Definition
3.1.3. Methodological Definition
3.2. Fire Risk Mitigation Measures in the Wildland–Urban Interface
3.2.1. Natural Fuels
3.2.2. Anthropic Assets
Measure | Publication |
---|---|
Natural fuel management | |
Reduction of vegetation in concentric buffers around assets, with greater clearing efforts near assets. | [20,59,97] |
Periodical management of vegetation by trimming, pruning, watering, and removal of debris. | [31,89] |
Avoidance of fire-prone plant species in gardens and parks. | [88,130] |
Increase trees canopy/crown base height and reduction of canopy continuity. | [98,145] |
Creation of fuelbreaks/firebreaks in wildland vegetation to reduce fire spread and facilitate fire suppression. | [155,159] |
Land cover fragmentation and some types of land cover hinder fire spread. | [8,152,162] |
Configuration of human assets | |
Compact settlements are more easily protected by fire crews and with less perimeter exposed to fire. | [64] |
No building on steep slopes or ridges. | [176] |
Road network design should facilitate egress and fire suppression operations. | [90,108] |
Roof and walls built of inert material. | [189,192] |
Windows with tempered, double-pane glass. | [175] |
Avoid creating spaces where embers can accumulate. | [5] |
Store domestic fuel (LPG, firewood) away from buildings and vegetation. | [92,195] |
Maintenance of buildings, and removal of leaves from roofs, gutters, and near walls to prevent ignitions. | [87,94] |
4. Discussion
4.1. WUI Definition
4.2. Fire Risk Mitigation Measures in the WUI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- -
- WoS—“all years”, “topic”, and “all databases”.
- -
- Scopus—“article title, abstract, keywords”.
- -
- Agris—“all languages” and records from aggregators.
Appendix B
- -
- In Scopus, keywords were searched for in “article title, abstract, keywords”.
- -
- In Web of Science (WoS), keywords were searched for in “all databases”, “all collections”, “topic”, and by enabling the “exact search” option.
- -
- In Agris, a multilingual search was enabled and records that contained explicit link to the full text were considered, while records from aggregators were excluded.
- -
- In arXiv, keywords were searched for in “all fields”, including “cross-listed papers”.
- -
- In bioRxiv, keywords were searched for in “all sections” of “all collections”, excluding the medRxiv database.
- -
- In Treesearch, the search string was “urban interface fire”, removing the logical operator “AND” as it appears to reduce the number of available records.
Appendix C
Appendix C.1. Measures for Natural Fuels: Clearance Distances
Appendix C.2. Measures for Natural Fuels: Landscaping
Appendix C.3. Measures for Natural Fuels: Wildland Fuel Management
Appendix C.4. Measures for Anthropic Assets: Land Planning
Appendix C.5. Measures for Anthropic Assets: Building Design and Materials
References
- Porter, T.W.; Crowfoot, W.; Newsom, G. Wildfire Activity Statistics; California Department of Forestry and Fire Protection: Sacramento, CA, USA, 2020.
- Davey, S.M.; Sarre, A. Editorial: The 2019/20 Black Summer Bushfires. Aust. For. 2020, 83, 47–51. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Libertá, G.; Artés-Vivancos, T.; Oom, D.; Branco, A.; de Rigo, D.; Ferrari, D.; et al. Forest fires in Europe, Middle East and North Africa 2019; EUR 30402 EN, JRC122115; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-23209-4. [CrossRef]
- Teie, W.C.; Weatherford, B.F. Fire in the West: The Wildland/Urban Interface Fire Problem: A Report for the Western State Fire Managers; Deer Valley Press: Rescue, CA, USA, 2000. [Google Scholar]
- Radtke, K.W. Living More Safely in the Chaparral-Urban Interface; General Technical Reports GTR-PSW-067; US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1983; Volume 67, 51p.
- Martin, R.E.; Sapsis, D. A Synopsis of Large or Disastrous Wildland Fires. In Proceedings of the Biswell Symposium: Fire Issues and Solutions in Urban Interface and Wildland Ecosystems, Walnut Creek, CA, USA, 15–17 February 1994. [Google Scholar]
- Shroyer, M.; Kilian, D.; Jackelman, J. Wilderness in an Urban Setting: Planning and Management of the Cape Peninsula National Park, Cape Town, South Africa. Volume 2, pp. 19–24. Available online: https://www.mikegolby.com/wp-content/uploads/2018/05/CPPNE_article.pdf (accessed on 15 August 2023).
- Sarricolea, P.; Serrano-Notivoli, R.; Fuentealba, M.; Hernández-Mora, M.; de la Barrera, F.; Smith, P.; Meseguer-Ruiz, Ó. Recent Wildfires in Central Chile: Detecting Links between Burned Areas and Population Exposure in the Wildland Urban Interface. Sci. Total Environ. 2020, 706, 135894. [Google Scholar] [CrossRef] [PubMed]
- Salvati, L. Profiling Forest Fires along the Urban Gradient: A Mediterranean Case Study. Urban Ecosyst. 2014, 17, 1175–1189. [Google Scholar] [CrossRef]
- Chen, K.; McAneney, J. Quantifying Bushfire Penetration into Urban Areas in Australia. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Chas-Amil, M.; García-Martínez, E.; Touza, J. Fire Risk at the Wildland-Urban Interface: A Case Study of a Galician County. WIT Trans. Ecol. Environ. 2012, 158, 177–188. [Google Scholar]
- Ahmed, M.; Rahaman, K.; Hassan, Q. Remote Sensing of Wildland Fire-Induced Risk Assessment at the Community Level. Sensors 2018, 18, 1570. [Google Scholar] [CrossRef]
- He, T.; Lamont, B.B.; Pausas, J.G. Fire as a Key Driver of Earth’s Biodiversity. Biol. Rev. 2019, 94, 1983–2010. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. A Burning Story: The Role of Fire in the History of Life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef]
- Galiana-Martin, L.; Herrero, G.; Solana, J. A Wildland–Urban Interface Typology for Forest Fire Risk Management in Mediterranean Areas. Landsc. Res. 2011, 36, 151–171. [Google Scholar] [CrossRef]
- Hammer, R.B.; Stewart, S.I.; Radeloff, V.C. Demographic Trends, the Wildland–Urban Interface, and Wildfire Management. Soc. Nat. Resour. 2009, 22, 777–782. [Google Scholar] [CrossRef]
- Davis, J.B. Demography: A Tool for Understanding. In Proceedings of the Symposium on Fire and Watershed Management, Sacramento, CA, USA, 26–28 October 1988; Pacific Southwest Forest and Range Experiment Station: Riverside, CA, USA, 1989. [Google Scholar]
- Bright, A.D.; Burtz, R.T. Firewise Activities of Full-Time versus Seasonal Residents in the Wildland-Urban Interface. J. For. 2006, 104, 307–315. [Google Scholar] [CrossRef]
- Calkin, D.E.; Cohen, J.D.; Finney, M.A.; Thompson, M.P. How Risk Management Can Prevent Future Wildfire Disasters in the Wildland-Urban Interface. Proc. Natl. Acad. Sci. USA 2014, 111, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.D. Preventing Disaster: Home Ignitability in the Wildland-Urban Interface. J. For. 2000, 98, 15–21. [Google Scholar]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid Growth of the US Wildland-Urban Interface Raises Wildfire Risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef]
- Modugno, S.; Balzter, H.; Cole, B.; Borrelli, P. Mapping Regional Patterns of Large Forest Fires in Wildland–Urban Interface Areas in Europe. J. Environ. Manag. 2016, 172, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.E. Protecting Residences from Wildfires: A Guide for Homeowners, Lawmakers, and Planners; U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: Berkeley, CA, USA, 1981; p. PSW-GTR-50.
- Glickman, D.; Babbitt, B. Urban Wildland Interface Communities within Vicinity of Federal Lands That Are at High Riskfrom Wildfire; USDA USDI: Washington, DC, USA, 2001.
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I.; Fried, J.S.; Holcomb, S.S.; McKeefry, J.F. The Wildland–Urban Interface in the United States. Ecol. Appl. 2005, 15, 799–805. [Google Scholar] [CrossRef]
- Stewart, S.I.; Radeloff, V.C.; Hammer, R.B.; Hawbaker, T.J. Defining the Wildland–Urban Interface. J. For. 2007, 105, 201–207. [Google Scholar]
- Martinuzzi, S.; Stewart, S.I.; Helmers, D.P.; Mockrin, M.H.; Hammer, R.B.; Radeloff, V.C. The 2010 Wildland-Urban Interface of the Conterminous United States. In Research Map NRS-8; U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2015; 124p, [includes pull-out map]. [Google Scholar]
- Presidenza del Consiglio dei Ministri. Manuale Operativo per La Predisposizione Di Un Piano Comunale o Intercomunale Di Protezione Civile; October 2007. [Google Scholar]
- Xunta de Galicia. Ley de Prevención y Defensa Contra Los Incendios Forestales de Galicia; Ley 3/2007, de 9 de abril; 2007. [Google Scholar]
- République Française. Loi d’orientation Sur La Forêt; Loi 602 du 9 juillet 2001; 2001. [Google Scholar]
- NSW Rural Fire Service. 10/50 Vegetation Clearing Code of Practice for New South Wales; 4 September 2015; NSW Rural Fire Service: Sydney, Australia, 2015.
- Macie, E.A.; Hermansen, L.A. The Southern Wildland-Urban Interface Assessment; General Technical Report SRS–55; U.S. Department of Agriculture Southern Research Station: Asheville, NC, USA, 2002. [Google Scholar]
- Robinne, F.-N.; Parisien, M.-A.; Flannigan, M. Anthropogenic Influence on Wildfire Activity in Alberta, Canada. Int. J. Wildland Fire 2016, 25, 1131–1143. [Google Scholar] [CrossRef]
- Badia, A.; Gisbert, M. LiDAR Technology to Map Forest Continuity: A Municipality Tool to Prevent Forest Fires in a Wildland–Urban Interface. Appl. Geogr. 2020, 114, 102134. [Google Scholar] [CrossRef]
- NFPA—Preparing Homes for Wildfire. Available online: https://www.nfpa.org/Public-Education/Fire-causes-and-risks/Wildfire/Preparing-homes-for-wildfire (accessed on 10 February 2021).
- Westhaver, A.; Revel, R.D.; Hawkes, B.C. FireSmart®-ForestWise: Managing Wildlife and Wildfire Risk in the Wildland/Urban Interface-a Canadian Case Study. In Proceedings of the Fire Environment–Innovations, Management, and Policy, Destin, FL, USA, 26–30 March 2007; Butler, B.W., Cook, W., Eds.; Proceedings RMRS-P-46CDCD-ROM. US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2007; Volume 46, pp. 347–365. [Google Scholar]
- FireSmart Canada. Available online: https://www.firesmartcanada.ca/ (accessed on 16 July 2021).
- PBD Virtual Lab WUIVIEW. Available online: https://wuiview.org/ (accessed on 16 July 2021).
- Wuiwatch. Available online: https://wuiwatch.org/ (accessed on 16 July 2021).
- Manzello, S.L.; Cleary, T.G.; Shields, J.R.; Yang, J.C. Ignition of Mulch and Grasses by Firebrands in Wildland–Urban Interface Fires. Int. J. Wildland Fire 2006, 15, 427–431. [Google Scholar] [CrossRef]
- Coughlan, M.R.; Ellison, A.; Cavanaugh, A.H. Social Vulnerability and Wildfire in the Wildland-Urban Interface : Literature Synthesis; Ecosystem Workforce Program, Institute for a Sustainable Environment, University of Oregon: Eugene, OR, USA, 2019. [Google Scholar]
- Caton, S.E.; Hakes, R.S.; Gorham, D.J.; Zhou, A.; Gollner, M.J. Review of Pathways for Building Fire Spread in the Wildland Urban Interface Part I: Exposure Conditions. Fire Technol. 2017, 53, 429–473. [Google Scholar] [CrossRef]
- Hakes, R.S.P.; Caton, S.E.; Gorham, D.J.; Gollner, M.J. A Review of Pathways for Building Fire Spread in the Wildland Urban Interface Part II: Response of Components and Systems and Mitigation Strategies in the United States. Fire Technol. 2017, 53, 475–515. [Google Scholar] [CrossRef]
- Bento-Gonçalves, A.; Vieira, A. Wildfires in the Wildland-Urban Interface: Key Concepts and Evaluation Methodologies. Sci. Total Environ. 2020, 707, 135592. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 71, 372. [Google Scholar] [CrossRef]
- UNISDR. Report of the Open-Ended Intergovernmental Expert Working Group on Indicators and Terminology Relating to Disaster Risk Reduction; UNISDR: Geneva, Switzerland, 1 December 2016; 41p. [Google Scholar]
- Scopus. Available online: https://www.scopus.com (accessed on 12 July 2021).
- Web of Science. Available online: https://www.webofscience.com. (accessed on 7 March 2023).
- AGRIS. Available online: https://agris.fao.org/agris-search/index.do (accessed on 7 March 2023).
- Treesearch. Available online: https://www.fs.usda.gov/treesearch/ (accessed on 7 March 2023).
- ArXiv.Org e-Print Archive. Available online: https://arxiv.org/ (accessed on 7 March 2023).
- BioRxiv.Org—The Preprint Server for Biology. Available online: https://www.biorxiv.org/ (accessed on 7 March 2023).
- Google. Available online: https://www.google.com/ (accessed on 7 March 2023).
- Google Scholar. Available online: https://scholar.google.com/ (accessed on 7 March 2023).
- Booth, A.; Noyes, J.; Flemming, K.; Moore, G.; Tunçalp, Ö.; Shakibazadeh, E. Formulating Questions to Explore Complex Interventions within Qualitative Evidence Synthesis. BMJ Glob. Health 2019, 4, e001107. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J.; et al. Synthesis without Meta-Analysis (SWiM) in Systematic Reviews: Reporting Guideline. BMJ 2020, 368, l6890. [Google Scholar] [CrossRef]
- Bar-Massada, A.; Stewart, S.I.; Hammer, R.B.; Mockrin, M.H.; Radeloff, V.C. Using Structure Locations as a Basis for Mapping the Wildland Urban Interface. J. Environ. Manag. 2013, 128, 540–547. [Google Scholar] [CrossRef]
- Herrero-Corral, G.; Jappiot, M.; Bouillon, C.; Long-Fournel, M. Application of a Geographical Assessment Method for the Characterization of Wildland–Urban Interfaces in the Context of Wildfire Prevention: A Case Study in Western Madrid. Appl. Geogr. 2012, 35, 60–70. [Google Scholar] [CrossRef]
- Theobald, D.M.; Romme, W.H. Expansion of the US Wildland–Urban Interface. Landsc. Urban Plan. 2007, 83, 340–354. [Google Scholar] [CrossRef]
- Tolhurst, K.; Duff, T.; Chong, D. From ‘Wildland–Urban Interface’ to ‘Wildfire Interface Zone’ using Dynamic Fire Modelling. In Proceedings of the MODSIM2013 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013; pp. 1–6. [Google Scholar]
- Platt, R.V. The Wildland–Urban Interface: Evaluating the Definition Effect. J. For. 2010, 108, 9–15. [Google Scholar]
- Lampin-Maillet, C.; Jappiot, M.; Long, M.; Morge, D.; Ferrier, J.-P. Characterization and Mapping of Dwelling Types for Forest Fire Prevention. Comput. Environ. Urban Syst. 2009, 33, 224–232. [Google Scholar] [CrossRef]
- Del Giudice, L.; Arca, B.; Scarpa, C.; Pellizzaro, G.; Duce, P.; Salis, M. The Wildland-Anthropic Interface Raster Data of the Italy–France Maritime Cooperation Area (Sardinia, Corsica, Tuscany, Liguria, and Provence-Alpes-Côte d’Azur). Data Brief 2021, 38, 107355. [Google Scholar] [CrossRef]
- Beverly, J.L.; Bothwell, P.; Conner, J.; Herd, E. Assessing the Exposure of the Built Environment to Potential Ignition Sources Generated from Vegetative Fuel. Int. J. Wildland Fire 2010, 19, 299–313. [Google Scholar] [CrossRef]
- Conedera, M.; Tonini, M.; Oleggini, L.; Orozco, C.V.; Leuenberger, M.; Pezzatti, G.B. Geospatial Approach for Defining the Wildland-Urban Interface in the Alpine Environment. Comput. Environ. Urban Syst. 2015, 52, 10–20. [Google Scholar] [CrossRef]
- Guglietta, D.; Conedera, M.; Mazzoleni, S.; Ricotta, C. Mapping Fire Ignition Risk in a Complex Anthropogenic Landscape. Remote Sens. Lett. 2011, 2, 213–219. [Google Scholar] [CrossRef]
- Argañaraz, J.P.; Radeloff, V.; Bar-Massada, A.; Gavier-Pizarro, G.I.; Scavuzzo, C.M.; Bellis, L.M. Assessing Wildfire Exposure in the Wildland-Urban Interface Area of the Mountains of Central Argentina. J. Environ. Manag. 2017, 196, 499–510. [Google Scholar] [CrossRef]
- Dumas, E.; Jappiot, M.; Tatoni, T. Mediterranean Urban-Forest Interface Classification (MUFIC): A Quantitative Method Combining SPOT5 Imagery and Landscape Ecology Indices. Landsc. Urban Plan. 2008, 84, 183–190. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Gill, A.M.; Kenny, B.J.; Scott, J. Bushfire Risk at the Urban Interface Estimated from Historical Weather Records: Consequences for the Use of Prescribed Fire in the Sydney Region of South-Eastern Australia. J. Environ. Manag. 1998, 52, 259–271. [Google Scholar] [CrossRef]
- Johnston, L.M.; Flannigan, M.D. Mapping Canadian Wildland Fire Interface Areas. Int. J. Wildland Fire 2018, 27, 1–14. [Google Scholar] [CrossRef]
- Erni, S.; Johnston, L.; Gauthier, S.; Christianson, A.C.; Boulanger, Y.; Eddy, B. Strategic Assesment of Current and Future Exposure of Wildland Human Interface and Communities to Wildfire in Canada. In Proceedings of the Annual Conference of the Canadian Society for Civil Engineering, Laval, QC, Canada, 12–15 June 2019. [Google Scholar]
- Curt, T.; Delcros, P. Managing Road Corridors to Limit Fire Hazard. A Simulation Approach in Southern France. Ecol. Eng. 2010, 36, 457–465. [Google Scholar] [CrossRef]
- Lopes, R.F.R.; Rodrigues, J.P.C.; Camargo, A.L.; Tadeu, A.J.B. Resilience of Industrial Buildings to Wildland-Urban Interface Fires. IOP Conf. Ser. Earth Environ. Sci. 2022, 1101, 022034. [Google Scholar] [CrossRef]
- Rodrigues, M.; Jiménez-Ruano, A.; de la Riva, J. Fire Regime Dynamics in Mainland Spain. Part 1: Drivers of Change. Sci. Total Environ. 2019, 721, 135841. [Google Scholar] [CrossRef]
- Vilar, L.; Camia, A.; San-Miguel-Ayanz, J.; Martín, M.P. Modeling Temporal Changes in Human-Caused Wildfires in Mediterranean Europe Based on Land Use-Land Cover Interfaces. For. Ecol. Manag. 2016, 378, 68–78. [Google Scholar] [CrossRef]
- Hanberry, B. Reclassifying the Wildland–Urban Interface Using Fire Occurrences for the United States. Land 2020, 9, 225. [Google Scholar] [CrossRef]
- Ganatsas, P.; Oikonomakis, N.; Tsakaldimi, M. Small-Scale Analysis of Characteristics of the Wildland–Urban Interface Area of Thessaloniki, Northern Greece. Fire 2022, 5, 159. [Google Scholar] [CrossRef]
- Dwyer, J.F.; McCaffrey, S.M. The Wildland-Urban Interface: Increasing Significance, Complexity and Contribution; U.S. Department of Agriculture Forest Service: Washington, DC, USA, 2002. [Google Scholar]
- Li, S.; Dao, V.; Kumar, M.; Nguyen, P.; Banerjee, T. Mapping the Wildland-Urban Interface in California Using Remote Sensing Data. Sci. Rep. 2022, 12, 5789. [Google Scholar] [CrossRef]
- Palaiologou, P.; Kalabokidis, K.; Papalampros, L.; Galatsidaas, S. Simulating Large-Scale Wildfires and Community Exposure: A Framework and Application in Macedonia, Greece. In International Multidisciplinary Scientific GeoConference; SGEM: Vienna, Austria, 2020; pp. 339–350. [Google Scholar]
- Cillis, G.; Lanorte, A.; Nolè, G.; Santarsiero, V.; Ronco, F. Fire planning of urban-rural interface in open source gis environment: Case study of the apulia region (southern italy). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLVIII-4/W1-2022, 97–102. [Google Scholar] [CrossRef]
- Gering, L.R.; Chun, A.V.; Anderson, S. Defining and Predicting Urban-Wildland Interface Zones Using a GIS-Based Model. In United States Department of Agriculture Forest Service General Technical Report NC; U.S. Department of Agriculture Forest Service: Washington, DC, USA, 2000; pp. 457–463. [Google Scholar]
- Navarro-Carrión, J.T.; León-Cadena, P.; Ramon-Morte, A. Open Data Repositories and Geo Small Data for Mapping the Wildfire Risk Exposure in Wildland Urban Interface (WUI) in Spain: A Case Study in the Valencian Region. Remote Sens. Appl. Soc. Environ. 2021, 22, 100500. [Google Scholar] [CrossRef]
- D’Este, M.; Giannico, V.; Lafortezza, R.; Sanesi, G.; Elia, M. The Wildland-Urban Interface Map of Italy: A Nationwide Dataset for Wildfire Risk Management. Data Brief 2021, 38, 107427. [Google Scholar] [CrossRef]
- Palaiologou, P.; Kalabokidis, K.; Day, M.A.; Ager, A.A.; Galatsidas, S.; Papalampros, L. Modelling Fire Behavior to Assess Community Exposure in Europe: Combining Open Data and Geospatial Analysis. ISPRS Int. J. Geo-Inf. 2022, 11, 198. [Google Scholar] [CrossRef]
- Cohen, J.D. Wildland-Urban Fire—A Different Approach. In Proceedings of the Firefigther Safety Summit, International Association of Wildland Fire, Missoula, MT, USA, 6–8 November 2001. [Google Scholar]
- Cohen, J.D. Examination of the Home Destruction in Los Alamos Associated with the Cerro Grande Fire-July 10, 2000; USDA Forest Service, Rocky Mountain Research Station Fire Sciences Laboratory: Missoula, MT, USA, 2000.
- Doran, J.D.; Randall, C.K.; Long, A.J. Fire in the Wildland-Urban Interface: Selecting and Maintaining Firewise Plants for Landscaping; University of Florida, Institute of Food and Agricultural Sciences; USDA Forest Service, Southern Research Station, Southern Center for Wildland-Urban Interface Research and Information: Gainesville, FL, USA, 2004.
- Barkeley, Y.C.; Schnepf, C.; Cohen, J.D. Protecting and Landscaping Homes in the Wildland/Urban Interface; Station Bulletin# 67, January 2005; Idaho Forest, Wildlife and Range Experiment Station, University of Idaho Extension: Moscow, ID, USA, 2004; 21p. [Google Scholar]
- Cova, T.J. Public Safety in the Urban–Wildland Interface: Should Fire-Prone Communities Have a Maximum Occupancy? Nat. Hazards Rev. 2005, 6, 99–108. [Google Scholar] [CrossRef]
- Grishin, A.M.; Filkov, A.I.; Loboda, E.L.; Reyno, V.V.; Kozlov, A.V.; Kuznetsov, V.T.; Kasymov, D.P.; Andreyuk, S.M.; Ivanov, A.I.; Stolyarchuk, N.D. A Field Experiment on Grass Fire Effects on Wooden Constructions and Peat Layer Ignition. Int. J. Wildland Fire 2014, 23, 445–449. [Google Scholar] [CrossRef]
- Meldrum, J.R.; Brenkert-Smith, H.; Wilson, P.; Champ, P.A.; Barth, C.M.; Boag, A. Living with Wildfire in Archuleta County, Colorado: 2015 Data Report; Research Note RMRSRN-79; US Department of Agriculture: Fort Collins, CO, USA, 2019.
- Sutherland, S. Fuels Planning: Science Synthesis and Integration; Environmental Consequences Fact Sheet 03: Structure Fires in the Wildland-Urban Interface; Res. Note RMRS-RN-23-3; US Department of Agriculture, Rocky Mountain Research Station: Fort Collins, CO, USA, 2004; Volume 23, 2p.
- Syphard, A.D.; Brennan, T.J.; Keeley, J.E. The Role of Defensible Space for Residential Structure Protection during Wildfires. Int. J. Wildland Fire 2014, 23, 1165–1175. [Google Scholar] [CrossRef]
- Pimont, F.; Dupuy, J.-L.; Linn, R. Fire Effects on the Physical Environment in the WUI Using FIRETEC. In Proceedings of the 7th International Conference on Forest Fire Research, Coimbra, Portugal, 17–20 November 2014. [Google Scholar]
- McNamee, M.; Pagnon Eriksson, C.; Wahlqvist, J.; Johansson, N. A Methodology for Assessing Wildfire Hazard in Sweden—The First Step towards a Multi-Hazard Assessment Method. Int. J. Disaster Risk Reduct. 2022, 83, 103415. [Google Scholar] [CrossRef]
- Partners in Protection (Canada) FireSmart: Protecting Your Community from Wildfire; Partners in Protection: Edmonton, AL, Canada, 2003; ISBN 978-0-662-34064-5.
- Schmidt, W.C.; Wakimoto, R.H. Cultural Practices That Can Reduce Fire Hazards to Homes in the Interior West; General Technical Report; US Department of Agriculture, Forest Service, Intermountain Research Station: Washington, DC, USA, 1988.
- Nowicki, B. The Community Protection Zone: Defending Houses and Communities from the Threat of Forest Fire; Center for Biological Diversity: Tucson, AZ, USA, 2002. [Google Scholar]
- Scott, J.H. Canopy Fuel Treatment Standards for the Wildland-Urban Interface. In Proceedings of the Fire, Fuel Treatments, and Ecological Restoration: Conference Proceedings, Fort Collins, CO, USA, 16–18 April 2002; Omi, P.N., Joyce, L.A., Eds.; pp. 29–37. [Google Scholar]
- Franklin, S.E. Urban-Wildland Fire Defense Strategy, Precision Prescribed Fire: The Los Angeles County Approach. In Proceedings of the Symposium on Wildland Fire 2000, South Lake Tahoe, CA, USA, 27–30 April 1987; James, B.D., Robert, E.M., Eds.; Technical Coordinators; General Technical Reports PSW-GTR-101. Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture: Berkeley, CA, USA, 1987; Volume 101, pp. 22–25. [Google Scholar]
- Papathoma-Köhle, M.; Schlögl, M.; Garlichs, C.; Diakakis, M.; Mavroulis, S.; Fuchs, S. A Wildfire Vulnerability Index for Buildings. Sci. Rep. 2022, 12, 6378. [Google Scholar] [CrossRef] [PubMed]
- Knapp, E.E.; Valachovic, Y.S.; Quarles, S.L.; Johnson, N.G. Housing Arrangement and Vegetation Factors Associated with Single-Family Home Survival in the 2018 Camp Fire, California. Fire Ecol. 2021, 17, 25. [Google Scholar] [CrossRef]
- Bartlett, A.G. Fire Management Strategies for Pinus Radiata Plantations near Urban Areas. Aust. For. 2012, 75, 43–53. [Google Scholar] [CrossRef]
- Congress of The United States of America. Healthy Forests Restoration Act of 2003, Public law 108–148—3 December 2003.
- Safford, H.D.; Schmidt, D.A.; Carlson, C.H. Effects of Fuel Treatments on Fire Severity in an Area of Wildland–Urban Interface, Angora Fire, Lake Tahoe Basin, California. For. Ecol. Manag. 2009, 258, 773–787. [Google Scholar] [CrossRef]
- Newnham, G.J.; Siggins, A.S.; Blanchi, R.M.; Culvenor, D.S.; Leonard, J.E.; Mashford, J.S. Exploiting Three Dimensional Vegetation Structure to Map Wildland Extent. Remote Sens. Environ. 2012, 123, 155–162. [Google Scholar] [CrossRef]
- Brzuszek, R.; Walker, J.; Schauwecker, T.; Campany, C.; Foster, M.; Grado, S. Planning Strategies for Community Wildfire Defense Design in Florida. J. For. 2010, 108, 250–257. [Google Scholar]
- Gibbons, P.; Van Bommel, L.; Gill, A.M.; Cary, G.J.; Driscoll, D.A.; Bradstock, R.A.; Knight, E.; Moritz, M.A.; Stephens, S.L.; Lindenmayer, D.B. Land Management Practices Associated with House Loss in Wildfires. PLoS ONE 2012, 7, e29212. [Google Scholar] [CrossRef]
- Caggiano, M.D.; Hawbaker, T.J.; Gannon, B.M.; Hoffman, C.M. Building Loss in WUI Disasters: Evaluating the Core Components of the Wildland–Urban Interface Definition. Fire 2020, 3, 73. [Google Scholar] [CrossRef]
- Cohen, J.D. Relating Flame Radiation to Home Ignition Using Modeling and Experimental Crown Fires. Can. J. For. Res. 2004, 34, 1616–1626. [Google Scholar] [CrossRef]
- Cohen, J.D. Structure Ignition Assessment Model (SIAM); US Department of Agriculture: Washington, DC, USA, 1995.
- Cohen, J.D.; Butler, B.W. Modeling Potential Structure Ignitions from Flame Radiation Exposure with Implications for Wildland/Urban Interface Fire Management. In Proceedings of the 13th Fire and Forest Meteorology Conference, International Association of Wildland Fire; US Department of Agriculture: Washington, DC, USA, 1998; pp. 81–86. [Google Scholar]
- Castillo Soto, M.E.; Molina Martínez, J.R.; Bonilla, B.S.; Moreno García, R.A. Calculating Minimum Safety Distance against Wildfires at the Wildland-Urban Interface in Chile and Spain. Heliyon 2022, 8, e11238. [Google Scholar] [CrossRef]
- Maranghides, A.; Mell, W. Framework for Addressing the National Wildland Urban Interface Fire Problem—Determining Fire and Ember Exposure Zones Using a WUI Hazard Scale; US Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA, 2012; 25p.
- Price, O.F.; Bradstock, R.A. The Spatial Domain of Wildfire Risk and Response in the Wildland Urban Interface in Sydney, Australia. Nat. Hazards Earth Syst. Sci. 2013, 13, 3385–3393. [Google Scholar] [CrossRef]
- Graham, H.W.; Stambaugh, H. Damage Factors in Urban/Wildland Fire-Pebble Beach, California. Fire Technol. 1988, 24, 353–355. [Google Scholar] [CrossRef]
- Gibbons, P.; Gill, A.M.; Shore, N.; Moritz, M.A.; Dovers, S.; Cary, G.J. Options for Reducing House-Losses during Wildfires without Clearing Trees and Shrubs. Landsc. Urban Plan. 2018, 174, 10–17. [Google Scholar] [CrossRef]
- Moreno, J.M.; Viedma, O.; Zavala, G.; Luna, B. Landscape Variables Influencing Forest Fires in Central Spain. Int. J. Wildland Fire 2011, 20, 678–689. [Google Scholar] [CrossRef]
- Evans, A.; Auerbach, S.; Miller, L.W.; Wood, R.; Nystrom, K.; Loevner, J.; Aragon, A.; Piccarello, M.; Krasilovsky, E. Evaluating the Effectiveness of Wildfire Mitigation Activities in the Wildland-Urban Interface; Forest Stewards Guild: Madison, WI, USA, 2015. [Google Scholar]
- Anderson, H.E.; Brown, J.K. Fuel Characteristics and Fire Behavior Consideration in the Wildlands; General Technical Report; US Department of Agriculture, Forest Service, Intermountain Research Station: Washington, DC, USA, 1988; pp. 124–130.
- Troy, A.; Moghaddas, J.; Schmidt, D.; Romsos, J.S.; Sapsis, D.B.; Brewer, W.; Moody, T. An Analysis of Factors Influencing Structure Loss Resulting from the 2018 Camp Fire. Int. J. Wildland Fire 2022, 31, 586–598. [Google Scholar] [CrossRef]
- Beyler, C.; Dinaburg, J.; Mealy, C. Development of Test Methods for Assessing the Fire Hazards of Landscaping Mulch. Fire Technol. 2014, 50, 39–60. [Google Scholar] [CrossRef]
- Suzuki, S.; Manzello, S.L. Toward Understanding Ignition Vulnerabilities to Firebrand Showers Using Reduced-scale Experiments. Fire Mater. 2022, 46, 809–817. [Google Scholar] [CrossRef]
- Quarles, S.L.; Smith, E. The Combustibility of Landscape Mulches; University of Nevada, Reno: Reno, NV, USA, 2011; p. 8. [Google Scholar]
- Krix, D.W.; Phillips, M.L.; Murray, B.R. Relationships among Leaf Flammability Attributes and Identifying Low-Leaf-Flammability Species at the Wildland–Urban Interface. Int. J. Wildland Fire 2019, 28, 295. [Google Scholar] [CrossRef]
- Molina, J.R.; Martín, T.; Silva, F.R.Y.; Herrera, M.Á. The Ignition Index Based on Flammability of Vegetation Improves Planning in the Wildland-Urban Interface: A Case Study in Southern Spain. Landsc. Urban Plan. 2017, 158, 129–138. [Google Scholar] [CrossRef]
- Romero, B.; Fernandez, C.; Lecareux, C.; Ormeño, E.; Ganteaume, A. How Terpene Content Affects Fuel Flammability of Wildland–Urban Interface Vegetation. Int. J. Wildland Fire 2019, 28, 614. [Google Scholar] [CrossRef]
- Blackhall, M.; Raffaele, E. Flammability of Patagonian Invaders and Natives: When Exotic Plant Species Affect Live Fine Fuel Ignitability in Wildland-Urban Interfaces. Landsc. Urban Plan. 2019, 189, 1–10. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Papaioannou, K.K. Flammability Assessment of Mediterranean Forest Fuels. Fire Technol. 2001, 37, 143–152. [Google Scholar] [CrossRef]
- Kauf, Z.; Fangmeier, A.; Rosavec, R.; Španjol, Ž. Seasonal and Local Differences in Leaf Litter Flammability of Six Mediterranean Tree Species. Environ. Manag. 2015, 55, 687–701. [Google Scholar] [CrossRef]
- Liodakis, S.; Agiovlasitis, I.P.; Kakardakis, T.; Tzamtzis, N.; Vorisis, D.; Lois, E. Determining Hazard Risk Indices for Mediterranean Forest Species Based on Particle Flammability Properties. Fire Saf. J. 2011, 46, 116–124. [Google Scholar] [CrossRef]
- Simeoni, A.; Thomas, J.C.; Bartoli, P.; Borowieck, P.; Reszka, P.; Colella, F.; Santoni, P.-A.; Torero, J.L. Flammability Studies for Wildland and Wildland–Urban Interface Fires Applied to Pine Needles and Solid Polymers. Fire Saf. J. 2012, 54, 203–217. [Google Scholar] [CrossRef]
- Wyse, S.V.; Perry, G.L.; O’Connell, D.M.; Holland, P.S.; Wright, M.J.; Hosted, C.L.; Whitelock, S.L.; Geary, I.J.; Maurin, K.J.; Curran, T.J. A Quantitative Assessment of Shoot Flammability for 60 Tree and Shrub Species Supports Rankings Based on Expert Opinion. Int. J. Wildland Fire 2016, 25, 466–477. [Google Scholar] [CrossRef]
- Della Rocca, G.; Danti, R.; Hernando, C.; Guijarro, M.; Madrigal, J. Flammability of Two Mediterranean Mixed Forests: Study of the Non-Additive Effect of Fuel Mixtures in Laboratory. Front. Plant Sci. 2018, 9, 825. [Google Scholar] [CrossRef] [PubMed]
- Ghermandi, L.; Beletzky, N.A.; de Torres Curth, M.I.; Oddi, F.J. From Leaves to Landscape: A Multiscale Approach to Assess Fire Hazard in Wildland-Urban Interface Areas. J. Environ. Manag. 2016, 183, 925–937. [Google Scholar] [CrossRef]
- Lampin-Maillet, C.; Long-Fournel, M.; Ganteaume, A.; Jappiot, M.; Ferrier, J.P. Land Cover Analysis in Wildland–Urban Interfaces According to Wildfire Risk: A Case Study in the South of France. For. Ecol. Manag. 2011, 261, 2200–2213. [Google Scholar] [CrossRef]
- Terrei, L.; Lamorlette, A.; Ganteaume, A. Modelling the Fire Propagation from the Fuel Bed to the Lower Canopy of Ornamental Species Used in Wildland–Urban Interfaces. Int. J. Wildland Fire 2019, 28, 113–126. [Google Scholar] [CrossRef]
- Güney, C.O.; Sarı, A.; Cekim, H.O.; Küçüksille, E.U.; Şentürk, Ö.; Gülsoy, S.; Özkan, K. An Advanced Approach for Leaf Flammability Index Estimation. Int. J. Wildland Fire 2022, 31, 277–290. [Google Scholar] [CrossRef]
- White, R.H.; Weise, D.R.; Mackes, K.; Dibble, A.C. Cone Calorimeter Testing of Vegetation–an Update. In Proceedings of the Thirty-fifth International Conference on Fire Safety, Seventeenth International Conference on Thermal Insulation, Ninth International Conference on Electrical and Electronic Products, Columbus, OH, USA, 22–24 July 2002; Products Safety Corporation: Sissonville, WV, USA, 2002. [Google Scholar]
- Guerrero, F.; Hernández, C.; Toledo, M.; Espinoza, L.; Carrasco, Y.; Arriagada, A.; Muñoz, A.; Taborga, L.; Bergmann, J.; Carmona, C. Leaf Thermal and Chemical Properties as Natural Drivers of Plant Flammability of Native and Exotic Tree Species of the Valparaíso Region, Chile. Int. J. Environ. Res. Public Health 2021, 18, 7191. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.C.; Biondi, D.; Martini, A. Flammability of ornamental species for fire management in wildland-urban interface in paraná state. Floresta 2020, 51, 192. [Google Scholar] [CrossRef]
- Adusumilli, S.; Chaplen, J.E.; Blunck, D.L. Firebrand Generation Rates at the Source for Trees and a Shrub. Front. Mech. Eng. 2021, 7, 655593. [Google Scholar] [CrossRef]
- Dicus, C.A. Changes to Simulated Fire Behaviour and Societal Benefits after Two Levels of Thinning in a Mixed-Conifer Wildland-Urban Interface Community. Proc. R. Soc. Qld. 2009, 115, 37. [Google Scholar] [CrossRef]
- Fulé, P.Z.; McHugh, C.; Heinlein, T.A.; Covington, W.W. Potential Fire Behavior Is Reduced Following Forest Restoration Treatments. In Ponderosa Pine Ecosystems Restoration and Conservation: Steps toward Stewardship; Vance, R.K., Edminster, C.B., Covington, W.W., Blake, J.A., Eds.; comps. 2001; USDA Forest Service: Flagstaff, AZ, USA, 2000. [Google Scholar]
- Ager, A.A.; Vaillant, N.M.; Finney, M.A. A Comparison of Landscape Fuel Treatment Strategies to Mitigate Wildland Fire Risk in the Urban Interface and Preserve Old Forest Structure. For. Ecol. Manag. 2010, 259, 1556–1570. [Google Scholar] [CrossRef]
- Farnsworth, A.; Summerfelt, P.; Neary, D.G.; Smith, T. Flagstaff’s Wildfire Fuels Treatments: Prescriptions for Community Involvement and a Source of Bioenergy. Biomass Bioenergy 2003, 24, 269–276. [Google Scholar] [CrossRef]
- Kennedy, M.C.; Johnson, M.C.; Fallon, K.; Mayer, D. How Big Is Enough? Vegetation Structure Impacts Effective Fuel Treatment Width and Forest Resiliency. Ecosphere 2019, 10, e02573. [Google Scholar] [CrossRef]
- Johnson, M.C.; Kennedy, M.C. Altered Vegetation Structure from Mechanical Thinning Treatments Changed Wildfire Behaviour in the Wildland–Urban Interface on the 2011 Wallow Fire, Arizona, USA. Int. J. Wildland Fire 2019, 28, 216–229. [Google Scholar] [CrossRef]
- Johnson, M.C.; Kennedy, M.C.; Harrison, S. Fuel Treatments Change Forest Structure and Spatial Patterns of Fire Severity, Arizona, USA. Can. J. For. Res. 2019, 49, 1357–1370. [Google Scholar] [CrossRef]
- Log, T.; Gjedrem, A.M.; Metallinou, M.-M. Virtually Fenced Goats for Grazing Fire Prone Juniper in Coastal Norway Wildland–Urban Interface. Fire 2022, 5, 188. [Google Scholar] [CrossRef]
- Curt, T.; Borgniet, L.; Bouillon, C. Wildfire Frequency Varies with the Size and Shape of Fuel Types in Southeastern France: Implications for Environmental Management. J. Environ. Manag. 2013, 117, 150–161. [Google Scholar] [CrossRef]
- Grupenhoff, A.; Molinari, N. Plant Community Response to Fuel Break Construction and Goat Grazing in a Southern California Shrubland. Fire Ecol. 2021, 17, 28. [Google Scholar] [CrossRef]
- Log, T.; Gjedrem, A.M. A Fire Revealing Coastal Norway’s Wildland–Urban Interface Challenges and Possible Low-Cost Sustainable Solutions. Int. J. Environ. Res. Public Health 2022, 19, 3038. [Google Scholar] [CrossRef]
- Morvan, D. Numerical Study of the Behaviour of a Surface Fire Propagating through a Firebreak Built in a Mediterranean Shrub Layer. Fire Saf. J. 2015, 71, 34–48. [Google Scholar] [CrossRef]
- Oliveira, T.M.; Barros, A.M.; Ager, A.A.; Fernandes, P.M. Assessing the Effect of a Fuel Break Network to Reduce Burnt Area and Wildfire Risk Transmission. Int. J. Wildland Fire 2016, 25, 619–632. [Google Scholar]
- Frost, S.M.; Alexander, M.E.; Jenkins, M.J. The Application of Fire Behavior Modeling to Fuel Treatment Assessments at Army Garrison Camp Williams, Utah. Fire 2022, 5, 78. [Google Scholar] [CrossRef]
- Zong, X.; Tian, X.; Fang, L. Assessing Wildfire Risk and Mitigation Strategies in Qipanshan, China. Int. J. Disaster Risk Reduct. 2022, 80, 103237. [Google Scholar] [CrossRef]
- Dennis, F.C. Fuelbreak Guidelines for Forested Subdivisions & Communities; Colorado State University: Fort Collins, CO, USA, 2005. [Google Scholar]
- Juvanhol, R.S.; Fiedler, N.C.; Santos, A.R.D.; Silva, G.F.D.; Omena, M.S.; Eugenio, F.C.; Pinheiro, C.J.G.; Ferraz Filho, A.C. Gis and Fuzzy Logic Applied to Modelling Forest Fire Risk. An. Acad. Bras. Ciênc. 2021, 93, e20190726. [Google Scholar] [CrossRef] [PubMed]
- Bar-Massada, A.; Radeloff, V.C.; Stewart, S.I. Allocating Fuel Breaks to Optimally Protect Structures in the Wildland–Urban Interface. Int. J. Wildland Fire 2011, 20, 59–68. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Chas-Amil, M.L.; García-Martínez, E.D.; Touza, J. Wildfire Risk Associated with Different Vegetation Types within and Outside Wildland-Urban Interfaces. For. Ecol. Manag. 2016, 372, 1–9. [Google Scholar] [CrossRef]
- Bar-Massada, A.; Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J. Wildfire Risk in the Wildland–Urban Interface: A Simulation Study in Northwestern Wisconsin. For. Ecol. Manag. 2009, 258, 1990–1999. [Google Scholar] [CrossRef]
- Dehane, B.; Hernando, C.; Guijarro, M.; Madrigal, J. Flammability of Some Companion Species in Cork Oak (Quercus suber L.) Forests. Ann. For. Sci. 2017, 74, 60. [Google Scholar] [CrossRef]
- Essaghi, S.; Yessef, M.; Dehhaoui, M.; El Amarty, F. Assessment of Flammability of Moroccan Forest Fuels: New Approach to Estimate the Flammability Index. Forests 2017, 8, 443. [Google Scholar] [CrossRef]
- Rechel, J.L.; Davis, J.B.; Bradshaw, T.K. Fire Risk and Residential Development: A GIS Analysis. In Proceedings of the Symposium on Social Aspects and Recreation Research, Ontario, CA, USA, 19–22 February 1992; Deborah, J.C., Ed.; General Technical Reports PSW-GTR-132; Technical Coordinator; Pacific Southwest Research Station, Forest Service, US Department of Agriculture: Albany, CA, USA, 1992; Volume 132, pp. 18–20. [Google Scholar]
- Pavlek, K.; Bišćević, F.; Furčić, P.; Grđan, A.; Gugić, V.; Malešić, N.; Moharić, P.; Vragović, V.; Fuerst-Bjeliš, B.; Cvitanović, M. Spatial Patterns and Drivers of Fire Occurrence in a Mediterranean Environment: A Case Study of Southern Croatia. Geogr. Tidsskr. Dan. J. Geogr. 2017, 117, 22–35. [Google Scholar] [CrossRef]
- Jaque Castillo, E.; Fernández, A.; Fuentes Robles, R.; Ojeda, C.G. Data-Based Wildfire Risk Model for Mediterranean Ecosystems—Case Study of the Concepción Metropolitan Area in Central Chile. Nat. Hazards Earth Syst. Sci. 2021, 21, 3663–3678. [Google Scholar] [CrossRef]
- Carrasco, J.; Acuna, M.; Miranda, A.; Alfaro, G.; Pais, C.; Weintraub, A. Exploring the Multidimensional Effects of Human Activity and Land Cover on Fire Occurrence for Territorial Planning. J. Environ. Manag. 2021, 297, 113428. [Google Scholar] [CrossRef] [PubMed]
- Kalabokidis, K.D.; Omi, P.N. Reduction of Fire Hazard through Thinning/Residue Disposal in the Urban Interface. Int. J. Wildland Fire 1998, 8, 29–35. [Google Scholar] [CrossRef]
- Butry, D.; Donovan, G. Protect Thy Neighbor: Investigating the Spatial Externalities of Community Wildfire Hazard Mitigation. For. Sci. 2008, 54, 417–428. [Google Scholar]
- Penman, T.D.; Bradstock, R.A.; Price, O.F. Reducing Wildfire Risk to Urban Developments: Simulation of Cost-Effective Fuel Treatment Solutions in South Eastern Australia. Environ. Model. Softw. 2014, 52, 166–175. [Google Scholar] [CrossRef]
- Alexandre, P.M.; Stewart, S.I.; Keuler, N.S.; Clayton, M.K.; Mockrin, M.H.; Bar-Massada, A.; Syphard, A.D.; Radeloff, V.C. Factors Related to Building Loss Due to Wildfires in the Conterminous United States. Ecol. Appl. 2016, 26, 2323–2338. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, P.M.; Stewart, S.I.; Mockrin, M.H.; Keuler, N.S.; Syphard, A.D.; Bar-Massada, A.; Clayton, M.K.; Radeloff, V.C. The Relative Impacts of Vegetation, Topography and Spatial Arrangement on Building Loss to Wildfires in Case Studies of California and Colorado. Landsc. Ecol. 2016, 31, 415–430. [Google Scholar] [CrossRef]
- Syphard, A.D.; Brennan, T.J.; Keeley, J.E. The Importance of Building Construction Materials Relative to Other Factors Affecting Structure Survival during Wildfire. Int. J. Disaster Risk Reduct. 2017, 21, 140–147. [Google Scholar] [CrossRef]
- Bhandary, U.; Muller, B. Land Use Planning and Wildfire Risk Mitigation: An Analysis of Wildfire-Burned Subdivisions Using High-Resolution Remote Sensing Imagery and GIS Data. J. Environ. Plan. Manag. 2009, 52, 939–955. [Google Scholar] [CrossRef]
- Penman, S.H.; Price, O.F.; Penman, T.D.; Bradstock, R.A. The Role of Defensible Space on the Likelihood of House Impact from Wildfires in Forested Landscapes of South Eastern Australia. Int. J. Wildland Fire 2019, 28, 4–14. [Google Scholar] [CrossRef]
- Salis, M.; Laconi, M.; Ager, A.A.; Alcasena, F.J.; Arca, B.; Lozano, O.; de Oliveira, A.F.; Spano, D. Evaluating Alternative Fuel Treatment Strategies to Reduce Wildfire Losses in a Mediterranean Area. For. Ecol. Manag. 2016, 368, 207–221. [Google Scholar] [CrossRef]
- Zambon, I.; Cerdà, A.; Cudlin, P.; Serra, P.; Pili, S.; Salvati, L. Road Network and the Spatial Distribution of Wildfires in the Valencian Community (1993–2015). Agriculture 2019, 9, 100. [Google Scholar] [CrossRef]
- Badia-Perpinyà, A.; Pallares-Barbera, M. Spatial Distribution of Ignitions in Mediterranean Periurban and Rural Areas: The Case of Catalonia. Int. J. Wildland Fire 2006, 15, 187–196. [Google Scholar] [CrossRef]
- Maranghides, A.; Mell, W.E.; Ridenour, K.; McNamara, D. Initial Reconnaissance of the 2011 Wildland-Urban Interface Fires in Amarillo, Texas; Department of Commerce. National Institute of Standards and Technology: Washington, DC, USA, 2011.
- Manzello, S.L.; Shields, J.R.; Hayashi, Y.; Nii, D. Investigating the Vulnerabilities of Structures to Ignition from a Firebrand Attack. Fire Saf. Sci. 2008, 9, 143–154. [Google Scholar] [CrossRef]
- Manzello, S.L.; Suzuki, S. Exposing Decking Assemblies to Continuous Wind-Driven Firebrand Showers. Fire Saf. Sci. 2014, 11, 1339–1352. [Google Scholar] [CrossRef]
- Hasburgh, L.E.; Stone, D.S.; Zelinka, S.L. Laboratory Investigation of Fire Transfer from Exterior Wood Decks to Buildings in the Wildland–Urban Interface. Fire Technol. 2017, 53, 517–534. [Google Scholar] [CrossRef]
- Kluver, M. Masonry Structures Withstand Southern California Wildfires; Masonry Construction the World of Masonry, Regional Code Services, Portland Cement Association: San Ramon, CA, USA, 2005; Volume 18, Issue 2, pp. 28–32. [Google Scholar]
- Vieira, F.N.; Almeida, M.; Rodrigues, J.P.C.; Lopes, R.F.R. Study of Building Vulnerabilities to Forest Fires in Portugal. IOP Conf. Ser. Earth Environ. Sci. 2022, 1101, 022022. [Google Scholar] [CrossRef]
- Quarles, S.L.; Tenwolde, A. Attic and Crawlspace Ventilation: Implications for Homes Located in the Urban-Wildland Interface. In Proceedings of the Woodframe Housing Durability and Disaster Issues, Las Vegas, NV, USA, 4–6 October 2004. [Google Scholar]
- Monroe, M.; Long, A. Landscaping in Florida with Fire in Mind; Florida Cooperative Extension Service: Orlando, FL, USA, 2001; Volume 71. [Google Scholar]
- Biswas, K.; Werth, D.; Gupta, N. A Home Ignition Assessment Model Applied to Structures in the Wildland-Urban Interface; Oak Ridge National Lab.(ORNL): Oak Ridge, TN, USA, 2013. [Google Scholar]
- Suzuki, S.; Nii, D.; Manzello, S.L. The Performance of Wood and Tile Roofing Assemblies Exposed to Continuous Firebrand Assault. Fire Mater. 2017, 41, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Manzello, S.L. Towards Understanding the Effect of Cedar Roof Covering Application on Firebrand Production in Large Outdoor Fires. J. Clean. Prod. 2021, 278, 123243. [Google Scholar] [CrossRef]
- Manzello, S.L.; Hayashi, Y.; Yoneki, T.; Yamamoto, Y. Quantifying the Vulnerabilities of Ceramic Tile Roofing Assemblies to Ignition during a Firebrand Attack. Fire Saf. J. 2010, 45, 35–43. [Google Scholar]
- Almeida, M.; Azinheira, J.R.; Barata, J.; Bousson, K.; Ervilha, R.; Martins, M.; Moutinho, A.; Pereira, J.C.; Pinto, J.C.; Ribeiro, L.M.; et al. Analysis of Fire Hazard in Campsite Areas. Fire Technol. 2016, 53, 553–575. [Google Scholar]
- Scarponi, G.E.; Pastor, E.; Planas, E.; Cozzani, V. Analysis of the Impact of Wildland-Urban-Interface Fires on LPG Domestic Tanks. Saf. Sci. 2020, 124, 104588. [Google Scholar] [CrossRef]
- Scarponi, G.E.; Landucci, G.; Heymes, F.; Cozzani, V. Experimental and Numerical Study of the Behavior of LPG Tanks Exposed to Wildland Fires. Process Saf. Environ. Prot. 2018, 114, 251–270. [Google Scholar]
- Heymes, F.; Aprina, L.; Ayrala, P.A.; Slangena, P.; Dusserrea, G. Impact of Wildfires on LPG Tanks. Chem. Eng. Trans. 2013, 31, 637–642. [Google Scholar]
- Vacca, P.; Planas, E.; Mata, C.; Muñoz, J.A.; Heymes, F.; Pastor, E. Experimental Analysis of Real-Scale Burning Tests of Artificial Fuel Packs at the Wildland-Urban Interface. Saf. Sci. 2022, 146, 105568. [Google Scholar] [CrossRef]
- Barbosa, T.F.; Reis, L.; Raposo, J.; Viegas, D.X. A Protection for LPG Domestic Cylinders at Wildland-Urban Interface Fire. Fire 2022, 5, 63. [Google Scholar] [CrossRef]
- Bornmann, L.; Mutz, R. Growth Rates of Modern Science: A Bibliometric Analysis Based on the Number of Publications and Cited References: Growth Rates of Modern Science: A Bibliometric Analysis Based on the Number of Publications and Cited References. J. Assoc. Inf. Sci. Technol. 2015, 66, 2215–2222. [Google Scholar] [CrossRef]
- Larsen, P.O.; von Ins, M. The Rate of Growth in Scientific Publication and the Decline in Coverage Provided by Science Citation Index. Scientometrics 2010, 84, 575–603. [Google Scholar] [CrossRef]
- Stewart, S.I.; Wilmer, B.; Hammer, R.B.; Aplet, G.H.; Hawbaker, T.J.; Miller, C.; Radeloff, V.C. Wildland-Urban Interface Maps Vary with Purpose and Context. J. For. 2009, 107, 78–83. [Google Scholar]
- Cohen, J.D. Reducing the Wildland Fire Threat to Homes: Where and How Much? In Proceedings of the Symposium on Fire Economics, Planning, and Policy: Bottom Lines, San Diego, CA, USA, 5–9 April 1999; Armando, G.-C., Philip, N.O., Eds.; Technical Coordinators; General Technical Reports PSW-GTR-173. US Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 1999; pp. 189–195. [Google Scholar]
- Naderpour, M.; Rizeei, H.M.; Khakzad, N.; Pradhan, B. Forest Fire Induced Natech Risk Assessment: A Survey of Geospatial Technologies. Reliab. Eng. Syst. Saf. 2019, 191, 106558. [Google Scholar] [CrossRef]
- Bar-Massada, A.; Radeloff, V.C.; Stewart, S.I. Biotic and Abiotic Effects of Human Settlements in the Wildland–Urban Interface. BioScience 2014, 64, 429–437. [Google Scholar] [CrossRef]
- Carlson, A.R.; Helmers, D.P.; Hawbaker, T.J.; Mockrin, M.H.; Radeloff, V.C. The Wildland–Urban Interface in the United States Based on 125 Million Building Locations. Ecol. Appl. 2022, 32, e2597. [Google Scholar] [CrossRef] [PubMed]
- Parisien, M.-A.; Robinne, F.-N.; Perez, J.-Y.; Denave, B.; DeLancey, E.R.; Doche, C. Scénarios de Probabilité et Puissance Potentielle Des Feux de Végétation Dans Le Département Des Landes, France. Can. J. For. Res. 2018, 48, 1587–1600. [Google Scholar] [CrossRef]
- Butler, B.W.; Cohen, J.D. Firefighter Safety Zones: A Theoretical Model Based on Radiative Heating. Int. J. Wildland Fire 1998, 8, 73–77. [Google Scholar] [CrossRef]
- McNamara, D.; Mell, W. Towards the Use of Remote Sensing for Identification of Building Damage, Destruction, and Defensive Actions at Wildland-Urban Interface Fires. Fire Technol. 2022, 58, 641–672. [Google Scholar] [CrossRef]
- Gaudet, B.; Simeoni, A.; Gwynne, S.; Kuligowski, E.; Benichou, N. A Review of Post-Incident Studies for Wildland-Urban Interface Fires. J. Saf. Sci. Resil. 2020, 1, 59–65. [Google Scholar] [CrossRef]
- El Ezz, A.A.; Boucher, J.; Cotton-Gagnon, A.; Godbout, A. Framework for Spatial Incident-Level Wildfire Risk Modelling to Residential Structures at the Wildland Urban Interface. Fire Saf. J. 2022, 131, 103625. [Google Scholar] [CrossRef]
- Skelly, J. Firescaping—Landscape Design for Defensible Space; University of Nevada Cooperative Extension; University of Nevada: Reno, NV, USA, 2001; p. 2. [Google Scholar]
- Country Fire Authority. Landscaping for Bushfire: Garden Design and Plant Selection; Country Fire Authority: Casterton, Australia, 2011.
- Randall, C.K.; Hermansen-Báez, L.A.; Acomb, G. Fire in the Wildland-Urban Interface: Reducing Wildfire Risk While Achieving Other Landscaping Goals; University of Florida IFAS Extension: Gainesville, FL, USA, 2006; Volume 8. [Google Scholar]
- Glitzenstein, J.S.; Streng, D.R.; Achtemeier, G.L.; Naeher, L.P.; Wade, D.D. Fuels and Fire Behavior in Chipped and Unchipped Plots: Implications for Land Management near the Wildland/Urban Interface. For. Ecol. Manag. 2006, 236, 18–29. [Google Scholar] [CrossRef]
- Alcasena, F.J.; Salis, M.; Ager, A.A.; Arca, B.; Molina, D.; Spano, D. Assessing Landscape Scale Wildfire Exposure for Highly Valued Resources in a Mediterranean Area. Environ. Manag. 2015, 55, 1200–1216. [Google Scholar]
- Ribeiro, L.M.; Rodrigues, A.; Lucas, D.; Viegas, D.X. The Impact on Structures of the Pedrógão Grande Fire Complex in June 2017 (Portugal). Fire 2020, 3, 57. [Google Scholar] [CrossRef]
- McGee, T.K.; McFarlane, B.L.; Varghese, J. An Examination of the Influence of Hazard Experience on Wildfire Risk Perceptions and Adoption of Mitigation Measures. Soc. Nat. Resour. 2009, 22, 308–323. [Google Scholar] [CrossRef]
- Costafreda-Aumedes, S.; Comas, C.; Vega-Garcia, C. Human-Caused Fire Occurrence Modelling in Perspective: A Review. Int. J. Wildland Fire 2018, 26, 983–998. [Google Scholar] [CrossRef]
- Weise, D.R.; Wotton, B.M. Wildland–Urban Interface Fire Behaviour and Fire Modelling in Live Fuels. Hspace0ptinternational J. Wildland Fire 2010, 19, 149–152. [Google Scholar] [CrossRef]
- Pastor, E.; Muñoz, J.A.; Caballero, D.; Àgueda, A.; Dalmau, F.; Planas, E. Wildland–Urban Interface Fires in Spain: Summary of the Policy Framework and Recommendations for Improvement. Fire Technol. 2019, 56, 1831–1851. [Google Scholar] [CrossRef]
- Intini, P.; Ronchi, E.; Gwynne, S.; Bénichou, N. Guidance on Design and Construction of the Built Environment Against Wildland Urban Interface Fire Hazard: A Review. Fire Technol. 2020, 56, 1853–1883. [Google Scholar] [CrossRef]
- Manzello, S.L.; Suzuki, S.; Gollner, M.J.; Fernandez-Pello, A.C. Role of Firebrand Combustion in Large Outdoor Fire Spread. Prog. Energy Combust. Sci. 2020, 76, 100801. [Google Scholar] [CrossRef] [PubMed]
- Depietri, Y.; Orenstein, D.E. Fire-Regulating Services and Disservices With an Application to the Haifa-Carmel Region in Israel. Front. Environ. Sci. 2019, 7, 107. [Google Scholar] [CrossRef]
- Li, D.; Cova, T.J.; Dennison, P.E.; Wan, N.; Nguyen, Q.C.; Siebeneck, L.K. Why Do We Need a National Address Point Database to Improve Wildfire Public Safety in the U.S.? Int. J. Disaster Risk Reduct. 2019, 39, 101237. [Google Scholar] [CrossRef]
- McLennan, J.; Ryan, B.; Bearman, C.; Toh, K. Should We Leave Now? Behavioral Factors in Evacuation Under Wildfire Threat. Fire Technol. 2019, 55, 487–516. [Google Scholar] [CrossRef]
Per | Perspective | In scientific and grey literature |
S | Setting | Worldwide |
P | Phenomenon | The wildland–urban interface |
E | Environment | From a land manager perspective |
(C) | (Comparison) | (-) |
Ti | Time | Until today (2022) |
F | Findings | How is it defined, and what physical measures are suggested to reduce fire risk in it |
WUI Definition Terms | Publication |
---|---|
I-zone, rural–urban interface, urban interface, chaparral–urban interface. | [60] |
I-zone, urban–rural interface, residential–wildland interface. | [61] |
Urban–rural interface, residential–rural interface, urban–forest interface, peri-urban interface, urban–edge, urban proximate, urban–forest fringe, residential forest, urbanising landscape, urban sprawl, rural–urban fringe, residential–open land intermix, urban–proximate wilderness. | [78] |
HIZ | CPZ | ||
---|---|---|---|
1st Buffer (m) | 2nd Buffer (m) | 3rd Buffer (m) | 4th Buffer (m/km) |
0.5–1.0 [88] | 3 [96] | 28 [111] * | 30–70 m [12] |
1.5 [103] | 10 [88,98,111] | 30 [89,98] | 100 [96] |
5 [91,93] | 15 [112] * | 40 [113] *, [96] | 200 m [108] |
10 [5,31,97] | 30 [5,97] | 50 [31] | 250–300 m [107] † |
10–35 [114] | 40 [109] | 60 [5,86,99] | 500 m [64,99,106,109] |
50 [95] * | 20–80 [114] | 70 [114] | 400–700 m [10] † |
60–120 [101] | 50–100 [62] | 100 [97,100,109] | 850 m [110] |
0.8–2.4 km [105] | |||
0.8–1.6–3.2 km [59] | |||
1.2 km [115] | |||
2.5 km [116] | |||
10 km [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taccaliti, F.; Marzano, R.; Bell, T.L.; Lingua, E. Wildland–Urban Interface: Definition and Physical Fire Risk Mitigation Measures, a Systematic Review. Fire 2023, 6, 343. https://doi.org/10.3390/fire6090343
Taccaliti F, Marzano R, Bell TL, Lingua E. Wildland–Urban Interface: Definition and Physical Fire Risk Mitigation Measures, a Systematic Review. Fire. 2023; 6(9):343. https://doi.org/10.3390/fire6090343
Chicago/Turabian StyleTaccaliti, Flavio, Raffaella Marzano, Tina L. Bell, and Emanuele Lingua. 2023. "Wildland–Urban Interface: Definition and Physical Fire Risk Mitigation Measures, a Systematic Review" Fire 6, no. 9: 343. https://doi.org/10.3390/fire6090343
APA StyleTaccaliti, F., Marzano, R., Bell, T. L., & Lingua, E. (2023). Wildland–Urban Interface: Definition and Physical Fire Risk Mitigation Measures, a Systematic Review. Fire, 6(9), 343. https://doi.org/10.3390/fire6090343