Time- and Space-Resolved Radiation from the Plasma Produced by High-Power, Sub-ns Microwave Pulse Gas Ionization
Abstract
1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Transmission, Reflection, and Absorption of the HPM Pulse for Different Gases and Pressures
3.2. Longitudinal and Radial Distribution of the Emitted Plasma Light Obtained by 4QuikE Camera
3.3. Longitudinal and Radial Distribution of the Emitted Plasma Light Observed by a Streak Camera
3.4. Spectrally Resolved Images of the Evolution of the Plasma Light Emission
3.5. UV Plasma Light Emission for He and H2
3.6. Summary and Conclusions
- For all studied gases, the most intense light emission was obtained at a distance < 3 cm from the Mylar input window. This is in agreement with framing images of the light emission presented in Section 3.2 and indicates dense plasma formation at this location. We explain this observation by gas ionization by electrons emitted and accelerated from the flashover plasma towards the positively charged plasma formed by gas ionization by HPM pulse.
- For all studied gases, the intensity of the plasma light emission increases significantly after the HPM pulse has left the observation region which agrees with the data presented in Section 3.2. This continuous gas ionization is explained by high-energy electrons which are held by positively charged plasma.
- The duration of the He plasma light intensity at P = 2 kPa is ~16 ns [Figure 10d] and the detectable light emission starts ≤ 2 ns after the HPM pulse crosses the input window. The duration of the light emission at λ > 6100 Å is ~6 ns [Figure 13c] and increases to ~14 ns at λ < 4700 Å [Figure 13a]. This result can be used for comparisons with results of radiation collisional modeling in future research.
- For hydrogen plasma, at P ≈ 1 kPa, the duration of the light emission is >4 ns [Figure 11d] and at P ≈ 0.28 kPa [Figure 11a], the duration is up to 30 ns. This can be related to the quenching of exited states of hydrogen atoms by molecules observed in our previous experiments [26,56]. Additionally, at P ≈ 1 kPa, the duration of the intense light emitted at Hα, ~2 ns, is shorter than that at Hβ, ~4 ns (see Figure 15), which also indicates the presence of high-energy electrons in the plasma.
- At the higher-pressure of P ≈ 90 kPa (see Figure 16), the plasma light emission also starts < 1 ns after HPM crosses the input window. At this pressure, the plasma light emission is stronger on axis than at the waveguide periphery. On the axis, the plasma light forms earlier than at the periphery (see Figure 18). This can be explained by different ionization rates at the center and the periphery. The oscillatory energy of electrons can vary over the radius in the range from ionization threshold ~24 eV at the periphery and up to ~100 eV at the center, where the cross-section of ionization is maximal [14].
- The obtained temporal and spatial evolution of the light emission from the flashover plasma could be of great importance for the extraction of such HPM pulses from microwave vacuum devices.
- There is intense UV radiation from the plasma formed by the HPM pulse. The duration of this radiation is several tens of ns, which is a strong indication of the existence of long-living energetic electrons in the plasma.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herlin, M.A.; Brown, S.C. Breakdown of a Gas at Microwave Frequencies. Phys. Rev. 1948, 74, 291. [Google Scholar] [CrossRef]
- Felsenthal, P. Nanosecond-pulse microwave breakdown in air. J. Appl. Phys. 1966, 37, 4557–4560. [Google Scholar] [CrossRef]
- Felsenthal, P.; Proud, J.M. Nanosecond-pulse breakdown in gases. Phys. Rev. 1956, 139, 1796. [Google Scholar] [CrossRef]
- Leopold, J.G.; Percival, I.C. Microwave Ionization and Excitation of Rydberg Atoms. Phys. Rev. Lett. 1978, 41, 944. [Google Scholar] [CrossRef]
- Litvak, A.G. Strong Microwaves in Plasmas; Institute of Applied Physics: Jena, Duitsland, 1991. [Google Scholar]
- Stix, T.H. Waves in Plasmas; American Institute of Physics: New York, NY, USA, 1992. [Google Scholar]
- Raizer, Y.P. Gas Discharge Physics; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Piel, A. Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Llewellyn Jones, F. Ionization and Breakdown in Gases; Methuen Publishing: London, UK, 1957. [Google Scholar]
- Macdonald, A.D.; Gaskzll, D.U.; Grrrznman, H.N. Microwave Breakdown in Air, Oxygen, and Nitrogen*. Phys. Rev. 1963, 130, 1841. [Google Scholar] [CrossRef]
- Mesyats, G.A. Similarity laws for pulsed gas discharge. Physics-Uspekhi 2006, 49, 1045. [Google Scholar] [CrossRef]
- Bollen, W.M.; Yee, C.L.; Ali, A.W.; Nagurney, M.J.; Read, M.E. High-power microwave energy coupling to nitrogen during breakdown. J. Appl. Phys. 1983, 54, 101–106. [Google Scholar] [CrossRef]
- Liu, G.; Liu, J.; Huang, W.; Zhou, J.; Song, X.; Ning, H. A Study of High Power Microwave Air Breakdown. Chin. Phys. 2000, 9, 757. [Google Scholar] [CrossRef]
- Ecker, G. Springer Series on Elementary Processes in Hydrogen-Helium Plasmas; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Rusanov, V.D.; Fridman, A.A.; Sholin, G.V. The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules. Sov. Phys. Uspekhi 1981, 24, 447–474. [Google Scholar] [CrossRef]
- Mesyats, G.A.; Yalandin, M.I. High-power picosecond electronics. Physics-Uspekhi 2005, 48, 211–229. [Google Scholar] [CrossRef]
- Barker, R.J.; Barker, R.J. Modern Microwave and Millimeter-Wave Power Electronics; IEEE Press: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Sullivan, C.A.; Destler, W.W.; Rodgers, J.; Segalov, Z. Short-pulse high-power microwave propagation in the atmosphere. J. Appl. Phys. 1988, 63, 5228–5232. [Google Scholar] [CrossRef]
- Vikharev, A.L.; Ivanov, O.A.; Litvak, A.G. Nonequilibrium Plasma Produced by Microwave Nanosecond Radiation: Parameters, Kinetics, and Practical Applications. IEEE Trans. Plasma Sci. 1996, 24, 460. [Google Scholar] [CrossRef]
- Shlapakovski, A.S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Y.E. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor. Phys. Plasmas 2015, 22, 073111. [Google Scholar] [CrossRef]
- Eltchaninov, A.A.; Korovin, S.D.; Mesyats, G.A.; Pegel, I.V.; Rostov, V.V.; Shpak, V.G.; Yalandin, M.I. Review of studies of superradiative microwave generation in X band and Ka band relativistic BWOs. IEEE Trans. Plasma Sci. 2004, 32, 1093–1099. [Google Scholar] [CrossRef]
- Yalandin, M.I.; Reutova, A.G.; Sharypov, K.A.; Shpak, V.G.; Shunailov, S.A.; Ul’masculov, M.R.; Mesyats, G.A. Microwave breakdown of air by nanosecond and subnanosecond Ka-Band pulses. IEEE Trans. Plasma Sci. 2010, 38, 1398–1402. [Google Scholar] [CrossRef]
- Rukin, S.N. Pulsed power technology based on semiconductor opening switches: A review. Rev. Sci. Instrum. 2020, 91, 011501. [Google Scholar] [CrossRef]
- Yalandin, M.I.; Shpak, V.G.; Shunailov, S.A.; Oulmaskoulov, M.R.; Ginzburg, N.S.; Zotova, I.V.; Novozhilova, Y.V.; Sergeev, A.S.; Phelps, A.D.R.; Cross, A.W.; et al. Generation of Powerful Subnanosecond Microwave Pulses in the Range of 38–150 GHz. IEEE Trans. Plasma Sci. 2000, 28, 1615. [Google Scholar] [CrossRef]
- Cao, Y.; Bliokh, Y.P.; Leopold, J.G.; Krasik, Y.E. Wakes and Other Non-linear Effects Observed When Ultra-Short Ultra-High-Power Microwave Pulses Interact with Neutral Gas and Plasma. In Springer Series in Plasma Science and Technology; Springer Nature: Berlin/Heidelberg, Germany, 2023; pp. 217–268. [Google Scholar] [CrossRef]
- Maksimov, V.; Haim, A.; Kostinskiy, A.; Cao, Y.; Leopold, J.G.; Krasik, Y.E. Helium and hydrogen gas ionization by a sub-nanosecond high-power microwave pulse. Phys. Plasmas 2025, 32, 053303. [Google Scholar] [CrossRef]
- Tarasenko, V. Runaway electrons in diffuse gas discharges. Plasma Sources Sci. Technol. 2020, 29, 034001. [Google Scholar] [CrossRef]
- Maksimov, V.; Cao, Y.; Haim, A.; Asmedianov, N.; Kostinskiy, A.; Leopold, J.G.; Krasik, Y.E. Studies of gas ionization by high-power, sub-nanosecond microwave pulses. Phys. Plasmas 2024, 31, 122109. [Google Scholar] [CrossRef]
- Chang, C.; Zhu, M.; Verboncoeur, J.; Li, S.; Xie, J.; Yan, K.; Luo, T.; Zhu, X. Enhanced window breakdown dynamics in a nanosecond microwave tail pulse. Appl. Phys. Lett. 2014, 104, 253504. [Google Scholar] [CrossRef]
- Chang, C.; Liu, G.; Tang, C.; Chen, C.; Qiu, S.; Fang, J.; Hou, Q. The influence of desorption gas to high power microwave window multipactor. Phys. Plasmas 2008, 15, 093508. [Google Scholar] [CrossRef]
- Chang, C.; Liu, G.; Tang, C.; Chen, C.; Fang, J. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds. Phys. Plasmas 2011, 18, 055702. [Google Scholar] [CrossRef]
- Chang, C.; Verboncoeur, J.; Guo, M.N.; Zhu, M.; Song, W.; Li, S.; Chen, C.H.; Bai, X.C.; Xie, J.L. Ultrafast high-power microwave window breakdown: Nonlinear and postpulse effects. Phys. Rev. E 2014, 90, 063107. [Google Scholar] [CrossRef] [PubMed]
- Neuber, A.A.; Edmiston, G.F.; Krile, J.T.; Krompholz, H.; Dickens, J.C.; Kristiansen, M. Interface breakdown during high-power microwave transmission. IEEE Trans. Magn. 2007, 43, 496–500. [Google Scholar] [CrossRef]
- Cao, Y.; Bliokh, Y.P.; Maksimov, V.; Leopold, J.G.; Krasik, Y.E. Frequency conversion, ‘superluminal’ propagation, and compression of a powerful microwave pulse in propagating ionization front. Phys. Rev. E 2023, 107, 045203. [Google Scholar] [CrossRef]
- Benford, J.; Benford, G. Survey of Pulse Shortening in High-Power Microwave Sources. IEEE Trans. Plasma Sci. 1997, 25, 311. [Google Scholar] [CrossRef]
- Lin, S.; Beeson, S.; Liu, C.; Dickens, J.; Neuber, A. Self-induced gaseous plasma as high power microwave opening switch medium. Phys. Plasmas 2015, 22, 043509. [Google Scholar] [CrossRef]
- Brizhinev, M.P.; Vikharev, A.L.; Golubyatnikov, G.Y.; Eremin, B.G.; Ivanov, A.; Litvak, A.G.; Lirin, S.F.; Plotnikov, I.V.; Soluyanov, E.I.; Sernenov, V.E.; et al. Ionization of a Low-Pressure Gas in a Very Intense Microwave Field. JETP 1990, 71, 434–445. [Google Scholar]
- Hidaka, Y.; Choi, E.M.; Mastovsky, I.; Shapiro, M.A.; Sirigiri, J.R.; Temkin, R.J. Observation of Large Arrays of Plasma Filaments in Air Breakdown by 1.5-MW 110-GHz Gyrotron PulsesPhys. Rev. Lett. 2008, 100, 035003. [Google Scholar] [CrossRef]
- Hidaka, Y.; Choi, E.M.; Mastovsky, I.; Shapiro, M.A.; Sirigiri, J.R.; Temkin, R.J.; Edmiston, G.F.; Neuber, A.A.; Oda, Y. Plasma structures observed in gas breakdown using a 1.5 MW, 110 GHz pulsed gyrotron. Phys. Plasmas 2009, 16, 055702. [Google Scholar] [CrossRef]
- Batanov, M.; Ivanov, V.A.; Konyzhev, M.E.; Ravaev, A.A.; Selesnev, V.D.; Khomenko, A.I. Generation of high potentials in the plasma by the interaction with intense microwave radiation. In Proceedings of the International Workshop on “Strong Microwaves Plasmas”, Suzdal, Russia, 18–23 September 1990; Volume 2, pp. 553–558. [Google Scholar]
- Wilks, S.C.; Dawson, J.M.; Mori, W.B. Frequency Up-Conversion of Electromagnetic Radiation with Use of an Overdense Plasma. Phys. Rev. Lett. 1988, 61, 337–341. [Google Scholar] [CrossRef]
- Gildenburg, V.B.; Kim, A.V.; Krupnov, V.A.; Semenov, V.E.; Sergeev, A.M.; Zharova, N.A. Adiabatic Frequency Up-Conversion of a Powerful Electromagnetic Pulse Producing Gas Ionization. IEEE Trans. Plasma Sci. 1993, 21, 34–44. [Google Scholar] [CrossRef]
- Kuo, S.P. Frequency up-conversion of microwave pulse in a rapidly growing plasma, Frequency Up-Conversion of Microwave Pulse in a Rapidly Growing Plasma. Phys. Rev. Lett. 1990, 65, 1000–1005. [Google Scholar] [CrossRef]
- Bogomolov, Y.L.; Lirin, S.F.; Semenov, V.E.; Sergeev, A.M. Ionization self-channeling of extremely intense electromagnetic waves in a plasma. JETP Lett. 1987, 45, 532. [Google Scholar]
- Shafir, G.; Krasik, Y.E.; Bliokh, Y.P.; Levko, D.; Cao, Y.; Leopold, J.G.; Gad, R.; Bernshtam, V.; Fisher, A. Ionization-Induced Self-Channeling of an Ultrahigh-Power Subnanosecond Microwave Beam in a Neutral Gas. Phys. Rev. Lett. 2018, 120, 135003. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Leopold, J.G.; Bliokh, Y.P.; Leibovitch, G.; Krasik, Y.E. Nonlinear absorption of high-power microwave pulses in a plasma filled waveguide. Phys. Plasmas 2021, 28, 062307. [Google Scholar] [CrossRef]
- Bliokh, Y.; Maksimov, V.; Haim, A.; Kostinskiy, A.; Leopold, J.G.; Krasik, Y.E. Evolution of the electron distribution function during gas ionization by a sub-nanosecond microwave pulse of hundreds MW power. Phys. Plasmas 2025, 32, 012108. [Google Scholar] [CrossRef]
- Bliokh, Y.; Cao, Y.; Maksimov, V.; Haim, A.; Leopold, J.G.; Kostinsky, A.; Krasik, Y.E. Stationary striations in plasma, created by a short microwave pulse in a waveguide filled with a neutral gas. Phys. Rev. E 2024, 109, 025208. [Google Scholar] [CrossRef]
- Gold, S.H.; Nusinovich, G.S. Review of high-power microwave source research. Rev. Sci. Instrum. 1997, 68, 3945–3974. [Google Scholar] [CrossRef]
- Miller, R.B. An introduction to the physics of intense charged particle beams. Albuq. New Mex. 1984, 6, 306–308. [Google Scholar] [CrossRef]
- Chen, J.; Lovelave, R.V. Beam generation in foil-less diodes. Phys. Fluids 1978, 21, 1623–1633. [Google Scholar] [CrossRef]
- Shafir, G.; Kreif, M.; Gleizer, J.Z.; Gleizer, S.; Krasik, Y.E.; Gunin, A.V.; Kutenkov, O.P.; Pegel, I.V.; Rostov, V.V. Experimental research of different plasma cathodes for generation of high-current electron beams. J. Appl. Phys. 2015, 118, 193302. [Google Scholar] [CrossRef]
- Earley, L.M.; Ballard, W.P. New Directional Couplers for Multimode Circular Waveguides Applied to Intense Pulsed Microwave Systems. IEEE Trans. Nucl. Sci. 1985, 32, 2921. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, J.; Zhang, Y.; Song, Z.; Wu, P.; Fan, Z.; Teng, Y.; He, T.; Chen, C. RF Breakdown of the Resonant Reflector in a Relativistic Backward Wave Oscillator. IEEE Trans. Plasma Sci. 2018, 46, 900–908. [Google Scholar] [CrossRef]
- Neuber, A.A.; Laurent, L.; Lau, Y.Y.; Krompholz, H.C. 10 Windows and RF Breakdown. In High-Power Microwave Sources and Technologies; Wiley-IEEE Press: Piscataway, NJ, USA, 2001; pp. 325–375. [Google Scholar]
- Bittner, J.; Kohse-Hginghaus, I.L.; Meier, U.; Just, T. Quenching of Two-Photon-Excited H(3s, 3d) and O(3p 3P2,1,0) Atoms by Rare Gases and Small Molecules. Chem. Phys. Lett. 1988, 143, 571–576. [Google Scholar] [CrossRef]
- Berger, M.J.; Coursey, J.S.; Zucker, M.A.; Chang, J. Stopping-Power & Range Tables for Electrons, Protons, and Helium Ions. NIST Stand. Ref. Database 2017, 124, 4999. [Google Scholar]
Pressure [kPa] | Transmission Coefficient | Velocity of the Plasma Light Emission Front Propagation [m/s] |
---|---|---|
0.07 | 1 | (2 ± 1) × 107 |
0.14 | 0.5 | (6 ± 1.5) × 107 |
0.2 | 0.18 | (8.5 ± 1.5) × 107 |
0.28 | 0.05 | (1 ± 0.3) × 108 |
Pressure [kPa] | Transmission Coefficient | Velocity of the Plasma Light Emission Front Propagation [m/s] |
---|---|---|
0.53 | 0.9 | (3 ± 1.5) × 107 |
0.8 | 0.75 | (2.5 ± 1) × 107 |
1 | 0.7 | (1 ± 0.2) × 108 |
2.1 | 0.04 | (1 ± 0.2) × 108 |
Pressure [kPa] | Transmission Coefficient | Velocity of the Plasma Light Emission Front Propagation [m/s] |
---|---|---|
0.28 | 0.95 | (0.9 ± 0.5) × 107 |
0.53 | 0.75 | (4 ± 1) × 107 |
1 | 0.04 | (8 ± 2) × 107 |
2.1 | 0.01 | (9 ± 1.5) × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimov, V.; Haim, A.; Grikshtas, R.; Kostinskiy, A.; Magid, E.; Leopold, J.G.; Krasik, Y.E. Time- and Space-Resolved Radiation from the Plasma Produced by High-Power, Sub-ns Microwave Pulse Gas Ionization. Plasma 2025, 8, 35. https://doi.org/10.3390/plasma8030035
Maksimov V, Haim A, Grikshtas R, Kostinskiy A, Magid E, Leopold JG, Krasik YE. Time- and Space-Resolved Radiation from the Plasma Produced by High-Power, Sub-ns Microwave Pulse Gas Ionization. Plasma. 2025; 8(3):35. https://doi.org/10.3390/plasma8030035
Chicago/Turabian StyleMaksimov, Vladislav, Adi Haim, Ron Grikshtas, Alexander Kostinskiy, Elhanan Magid, John G. Leopold, and Yakov E. Krasik. 2025. "Time- and Space-Resolved Radiation from the Plasma Produced by High-Power, Sub-ns Microwave Pulse Gas Ionization" Plasma 8, no. 3: 35. https://doi.org/10.3390/plasma8030035
APA StyleMaksimov, V., Haim, A., Grikshtas, R., Kostinskiy, A., Magid, E., Leopold, J. G., & Krasik, Y. E. (2025). Time- and Space-Resolved Radiation from the Plasma Produced by High-Power, Sub-ns Microwave Pulse Gas Ionization. Plasma, 8(3), 35. https://doi.org/10.3390/plasma8030035