Structural Characteristics of Ion Holes in Plasma
Abstract
:1. Introduction
2. Theoretical Formalism
3. Results and Discussion
3.1. Effects of Potential on IHs
3.1.1.
3.1.2.
3.2. Effects of Temperature Ratio,
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsumoto, H.; Kojima, H.; Miyatake, T.; Omura, Y.; Okada, M.; Nagano, I.; Tsutsui, M. Electrostatic solitary waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL. Geophys. Res. Lett. 1994, 21, 2915–2918. [Google Scholar] [CrossRef]
- Ergun, R.; Carlson, C.; Muschietti, L.; Roth, I.; McFadden, J. Properties of fast solitary structures. Nonlinear Process. Geophys. 1999, 6, 187–194. [Google Scholar] [CrossRef]
- McFadden, J.; Carlson, C.; Ergun, R.; Mozer, F.; Muschietti, L.; Roth, I.; Moebius, E. FAST observations of ion solitary waves. J. Geophys. Res. Space Phys. 2003, 108, 8018. [Google Scholar] [CrossRef]
- Liemohn, M.W.; Johnson, B.C.; Fränz, M.; Barabash, S. Mars Express observations of high altitude planetary ion beams and their relation to the “energetic plume” loss channel. J. Geophys. Res. Space Phys. 2014, 119, 9702–9713. [Google Scholar] [CrossRef] [Green Version]
- Kakad, A.; Kakad, B.; Anekallu, C.; Lakhina, G.; Omura, Y.; Fazakerley, A. Slow electrostatic solitary waves in earth’s plasma sheet boundary layer. J. Geophys. Res. Space Phys. 2016, 121, 4452–4465. [Google Scholar] [CrossRef]
- Holmes, J.; Ergun, R.; Newman, D.; Ahmadi, N.; Andersson, L.; Le Contel, O.; Torbert, R.; Giles, B.; Strangeway, R.; Burch, J. Electron Phase-Space Holes in Three Dimensions: Multispacecraft Observations by Magnetospheric Multiscale. J. Geophys. Res. Space Phys. 2018, 123, 9963–9978. [Google Scholar] [CrossRef]
- Wang, R.; Vasko, I.; Mozer, F.; Bale, S.; Artemyev, A.; Bonnell, J.; Ergun, R.; Giles, B.; Lindqvist, P.A.; Russell, C.; et al. Electrostatic turbulence and Debye-scale structures in collisionless shocks. Astrophys. J. Lett. 2020, 889, L9. [Google Scholar] [CrossRef] [Green Version]
- Saeki, K.; Michelsen, P.; Pécseli, H.; Rasmussen, J.J. Formation and coalescence of electron solitary holes. Phys. Rev. Lett. 1979, 42, 501. [Google Scholar] [CrossRef]
- Singh, K.; Kakad, A.; Kakad, B.; Saini, N.S. Evolution of ion acoustic solitary waves in pulsar wind. Mon. Not. R. Astron. Soc. 2021, 500, 1612–1620. [Google Scholar] [CrossRef]
- Bernstein, I.B.; Greene, J.M.; Kruskal, M.D. Exact nonlinear plasma oscillations. Phys. Rev. 1957, 108, 546. [Google Scholar] [CrossRef] [Green Version]
- Soni, P.K.; Aravindakshan, H.; Kakad, B.; Kakad, A. Nonlinear particle trapping by coherent waves in thermal and nonthermal plasmas. Phys. Scr. 2021, 96, 105604. [Google Scholar] [CrossRef]
- Aravindakshan, H.; Yoon, P.H.; Kakad, A.; Kakad, B. Theory of ion holes in space and astrophysical plasmas. Mon. Not. R. Astron. Soc. Lett. 2020, 497, L69–L75. [Google Scholar] [CrossRef]
- Aravindakshan, H.; Kakad, A.; Kakad, B. Bernstein-Greene-Kruskal theory of electron holes in superthermal space plasma. Phys. Plasmas 2018, 25, 052901. [Google Scholar] [CrossRef]
- Aravindakshan, H.; Kakad, A.; Kakad, B. Effects of wave potential on electron holes in thermal and superthermal space plasmas. Phys. Plasmas 2018, 25, 122901. [Google Scholar] [CrossRef]
- Boström, R.; Gustafsson, G.; Holback, B.; Holmgren, G.; Koskinen, H.; Kintner, P. Characteristics of solitary waves and weak double layers in the magnetospheric plasma. Phys. Rev. Lett. 1988, 61, 82. [Google Scholar] [CrossRef]
- Schamel, H. Stationary solutions of the electrostatic Vlasov equation. Plasma Phys. 1971, 13, 491. [Google Scholar] [CrossRef]
- Bujarbarua, S.; Schamel, H. Theory of finite-amplitude electron and ion holes. J. Plasma Phys. 1981, 25, 515–529. [Google Scholar] [CrossRef]
- Schamel, H. Electron holes, ion holes and double layers: Electrostatic phase space structures in theory and experiment. Phys. Rep. 1986, 140, 161–191. [Google Scholar] [CrossRef]
- Hutchinson, I.H. Electron holes in phase space: What they are and why they matter. Phys. Plasmas 2017, 24, 055601. [Google Scholar] [CrossRef]
- Chen, L.J.; Thouless, D.J.; Tang, J.M. Bernstein–Greene–Kruskal solitary waves in three-dimensional magnetized plasma. Phys. Rev. E 2004, 69, 055401. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.y.; Summers, D. Formation of power-law energy spectra in space plasmas by stochastic acceleration due to whistler-mode waves. Geophys. Res. Lett. 1998, 25, 4099–4102. [Google Scholar] [CrossRef] [Green Version]
- Yoon, P.H.; Rhee, T.; Ryu, C.M. Self-consistent generation of superthermal electrons by beam-plasma interaction. Phys. Rev. Lett. 2005, 95, 215003. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Lu, Q. Formation of electron kappa distributions due to interactions with parallel propagating whistler waves. Phys. Plasmas 2014, 21, 022901. [Google Scholar] [CrossRef]
- Yoon, P.H.; Livadiotis, G. Nonlinear wave–particle interaction and electron kappa distribution. In Kappa Distributions; Elsevier: Amsterdam, The Netherlands, 2017; pp. 363–398. [Google Scholar] [CrossRef]
- Elkamash, I.; El-Hanbaly, A. The effect of κ-distributed trapped electrons on fully nonlinear electrostatic solitary waves in an electron–positron-relativistic ion plasma. J. Phys. A Math. Theor. 2021, 54, 065701. [Google Scholar] [CrossRef]
- Schwadron, N.A.; Dayeh, M.; Desai, M.; Fahr, H.; Jokipii, J.R.; Lee, M.A. Superposition of stochastic processes and the resulting particle distributions. Astrophys. J. 2010, 713, 1386. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D. The influence of pick-up ions on space plasma distributions. Astrophys. J. 2011, 738, 64. [Google Scholar] [CrossRef]
- Yoon, P.H. Electron kappa distribution and quasi-thermal noise. J. Geophys. Res. Space Phys. 2014, 119, 7074–7087. [Google Scholar] [CrossRef]
- Zank, G.; Li, G.; Florinski, V.; Hu, Q.; Lario, D.; Smith, C. Particle acceleration at perpendicular shock waves: Model and observations. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Livadiotis, G. Long-term independence of solar wind polytropic index on plasma flow speed. Entropy 2018, 20, 799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Encrenaz, T.; Kallenbach, R.; Owen, T.; Sotin, C. The Outer Planets and Their Moons: Comparative Studies of the Outer Planets Prior to the Exploration of the Saturn System by Cassini-Huygens; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005; Volume 19. [Google Scholar]
- Krimigis, S.; Armstrong, T.; Axford, W.; Cheng, A.; Gloeckler, G.; Hamilton, D.; Keath, E.; Lanzerotti, L.; Mauk, B. The magnetosphere of Uranus: Hot plasma and radiation environment. Science 1986, 233, 97–102. [Google Scholar] [CrossRef]
- Krupp, N. Energetic particles in the magnetosphere of Saturn and a comparison with Jupiter. Space Sci. Rev. 2005, 116, 345–369. [Google Scholar] [CrossRef]
- Espinoza, C.; Stepanova, M.; Moya, P.; Antonova, E.; Valdivia, J. Ion and Electron κ Distribution Functions Along the Plasma Sheet. Geophys. Res. Lett. 2018, 45, 6362–6370. [Google Scholar] [CrossRef]
- Felici, M.; Arridge, C.S.; Coates, A.; Badman, S.V.; Dougherty, M.; Jackman, C.M.; Kurth, W.; Melin, H.; Mitchell, D.G.; Reisenfeld, D.; et al. Cassini observations of ionospheric plasma in Saturn’s magnetotail lobes. J. Geophys. Res. Space Phys. 2016, 121, 338–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, J.D.; Belcher, J.W.; Garcia-Galindo, P.; Burlaga, L.F. Voyager 2 plasma observations of the heliopause and interstellar medium. Nat. Astron. 2019, 3, 1019–1023. [Google Scholar] [CrossRef]
- Lotekar, A.; Kakad, A.; Kakad, B. Fluid simulation of dispersive and nondispersive ion acoustic waves in the presence of superthermal electrons. Phys. Plasmas 2016, 23, 102108. [Google Scholar] [CrossRef]
- Saini, N.; Kourakis, I.; Hellberg, M. Arbitrary amplitude ion-acoustic solitary excitations in the presence of excess superthermal electrons. Phys. Plasmas 2009, 16, 062903. [Google Scholar] [CrossRef] [Green Version]
- Kakad, A.; Omura, Y.; Kakad, B. Experimental evidence of ion acoustic soliton chain formation and validation of nonlinear fluid theory. Phys. Plasmas 2013, 20, 062103. [Google Scholar] [CrossRef] [Green Version]
- Khain, P.; Friedland, L. A water bag theory of autoresonant Bernstein-Greene-Kruskal modes. Phys. Plasmas 2007, 14, 082110. [Google Scholar] [CrossRef]
- Friedland, L.; Khain, P.; Shagalov, A. Autoresonant phase-space holes in plasmas. Phys. Rev. Lett. 2006, 96, 225001. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.J. Bernstein-Greene-Kruskal Solitary Waves in Collisionless Plasma. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 2002. [Google Scholar]
- Muschietti, L.; Roth, I.; Carlson, C.; Berthomier, M. Modeling stretched solitary waves along magnetic field lines. Nonlinear Process. Geophys. 2002, 9, 101–109. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aravindakshan, H.; Kakad, A.; Kakad, B.; Yoon, P.H. Structural Characteristics of Ion Holes in Plasma. Plasma 2021, 4, 435-449. https://doi.org/10.3390/plasma4030032
Aravindakshan H, Kakad A, Kakad B, Yoon PH. Structural Characteristics of Ion Holes in Plasma. Plasma. 2021; 4(3):435-449. https://doi.org/10.3390/plasma4030032
Chicago/Turabian StyleAravindakshan, Harikrishnan, Amar Kakad, Bharati Kakad, and Peter H. Yoon. 2021. "Structural Characteristics of Ion Holes in Plasma" Plasma 4, no. 3: 435-449. https://doi.org/10.3390/plasma4030032