Electrostatic Solitary Structures in Space Plasmas: Soliton Perspective
Abstract
:1. Introduction
2. Models for the Electrostatic Solitary Waves
2.1. BGK Modes/Phase Space Holes Models
2.2. Solitons/Solitary Waves Models
3. Theoretical Model for Electrostatic Solitary Waves and Double Layers
Soliton and Double Layer Solutions
4. Three Component Model for Ion-Acoustic Solitons in Solar Wind Plasma
4.1. Observations of ESWs in the Solar Wind Plasma
4.2. Theoretical Model
Numerical Results
4.3. Predictions of the Model
4.4. Comparison of Theoretical Predictions with Observations of Solar wind ESWs
5. Four Component Model for Ion-Acoustic and Electron-Acoustic Solitons in Lunar Wake Plasma
5.1. Observations of ESWs in the Lunar Wake Plasma
5.2. Theoretical Model
Numerical Results
5.3. Predictions of the Model
5.4. Comparison of Theoretical Predictions with Observations of Lunar Wake ESWs
6. Electrostatic Solitary Waves in the Magnetosheath
6.1. Observations of ESWs in the Magnetosheath
6.2. Theoretical Model for Electrostatic Solitary Structures Observed in the Earth’s Magnetosheath Region
6.3. Comparison with the Magnetosheath Observations
7. Three Component Model for Ion-Acoustic Solitons in the Earth’s Reconnection Jet
7.1. Observations of ESWs in the Earth’s Magnetotail Reconnection Jet Region
7.2. Theoretical Model
Numerical Results
7.3. Predictions of the Model
7.4. Comparison of Theoretical Predictions with Observations of Reconnection Jet ESWs
8. Summary and Discussion
8.1. Limitations of the Fluid Soliton Models
8.2. Obliquely Propagating Electrostatic Solitary Waves in Magnetized Plasmas
8.3. Existence of Multi-Dimensional Solitons and Soliton Stability
8.4. Supersolitons in Multi-Component Space Plasmas
9. Epilogue
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scarf, F.L.; Fredricks, R.W.; Green, I.M.; Russell, C.T. Plasma waves in the dayside polar cusp: 1, Magnetospheric observations. J. Geophys. Res. 1972, 77, 2274–2293. [Google Scholar] [CrossRef]
- Scarf, F.L.; Frank, L.A.; Ackerson, K.L.; Lepping, R.P. Plasma wave turbulence at distant crossings of the plasma sheet boundaries and the neutral sheet. Geophys. Res. Lett. 1974, 1, 189–192. [Google Scholar] [CrossRef]
- Rodriguez, P.; Gurnett, D.A. Electrostatic and electromagnetic turbulence associated with the Earth’s bow shock. J. Geophys. Res. 1975, 80, 19–31. [Google Scholar] [CrossRef]
- Onsager, T.G.; Holzworth, R.H.; Koons, H.C.; Bauer, O.H.; Gurnett, D.A.; Anderson, R.R.; Lühr, H.; Carlson, C.W. High-frequency electrostatic waves near Earth’s bow shock. J. Geophys. Res. 1989, 94, 13397–13408. [Google Scholar] [CrossRef]
- Gurnett, D.A.; Frank, L.A.; Lepping, R.P. Plasma waves in the distant magnetotail. J. Geophys. Res. 1976, 81, 6059–6071. [Google Scholar] [CrossRef]
- Teste, A.; Parks, G.K. Counterstreaming Beams and Flat-Top Electron Distributions Observed with Langmuir, Whistler, and Compressional Alfvén Waves in Earth’s Magnetic Tail. Phys. Rev. Lett. 2009, 102, 075003. [Google Scholar] [CrossRef] [PubMed]
- Gurnett, D.A.; Frank, L.A. A region of intense plasma wave turbulence on auroral field lines. J. Geophys. Res. 1977, 82, 1031–1050. [Google Scholar] [CrossRef] [Green Version]
- Cattell, C.A.; Mozer, F.S.; Anderson, R.R.; Hones, E.W.; Sharp, R.D. ISEE observations of the plasma sheet boundary, plasma sheet, and neutral sheet: 2. Waves. J. Geophys. Res. 1986, 91, 5681–5688. [Google Scholar] [CrossRef]
- Gurnett, D.A.; Anderson, R.R.; Tsurutani, B.T.; Smith, E.J.; Paschmann, G.; Haerendel, G.; Bame, S.J.; Russell, C.T. Plasma wave turbulence at the magnetopause: Observations from ISEE 1 and 2. J. Geophys. Res. 1979, 84, 7043–7058. [Google Scholar] [CrossRef] [Green Version]
- Anderson, R.R.; Harvey, C.C.; Hoppe, M.M.; Tsurutani, B.T.; Eastman, T.E.; Etcheto, J. Plasma waves near the magnetopause. J. Geophys. Res. 1982, 87, 2087–2107. [Google Scholar] [CrossRef] [Green Version]
- Pickett, J.S.; Chen, L.J.; Kahler, S.W.; Santolík, O.; Goldstein, M.L.; Lavraud, B.; Décréau, P.M.E.; Kessel, R.; Lucek, E.; Lakhina, G.S.; et al. On the generation of solitary waves observed by Cluster in the near-Earth magnetosheath. Nonlinear Proc. Geoph. 2005, 12, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Gurnett, D.A.; Frank, L.A. Plasma waves in the polar cusp: Observations from Hawkeye 1. J. Geophys. Res. 1978, 83, 1447–1462. [Google Scholar] [CrossRef]
- Pottelette, R.; Malingre, M.; Dubouloz, N.; Aparicio, B.; Lundin, R.; Holmgren, G.; Marklund, G. High-frequency waves in the cusp/cleft regions. J. Geophys. Res. 1990, 95, 5957–5971. [Google Scholar] [CrossRef]
- Dubouloz, N.; Pottelette, R.; Malingre, M.; Holmgren, G.; Lindqvist, P.A. Detailed analysis of broadband electrostatic noise in the dayside auroral zone. J. Geophys. Res. 1991, 96, 3565–3579. [Google Scholar] [CrossRef]
- Ergun, R.E.; Carlson, C.W.; McFadden, J.P.; Mozer, F.S.; Delory, G.T.; Peria, W.; Chaston, C.C.; Temerin, M.; Roth, I.; Muschietti, L.; et al. FAST satellite observations of large-amplitude solitary structures. Geophys. Res. Lett. 1998, 25, 2041–2044. [Google Scholar] [CrossRef]
- McFadden, J.P.; Carlson, C.W.; Ergun, R.E. Microstructure of the auroral acceleration region as observed by FAST. J. Geophys. Res. 1999, 104, 14453–14480. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Lakhina, G.S.; Ho, C.M.; Arballo, J.K.; Galvan, C.; Boonsiriseth, A.; Pickett, J.S.; Gurnett, D.A.; Peterson, W.K.; Thorne, R.M. Broadband plasma waves observed in the polar cap boundary layer: Polar. J. Geophys. Res. 1998, 103, 17351–17366. [Google Scholar] [CrossRef]
- Eastman, T.E.; Frank, L.A.; Peterson, W.K.; Lennartsson, W. The plasma sheet boundary layer. J. Geophys. Res. 1984, 89, 1553–1572. [Google Scholar] [CrossRef]
- Temerin, M.; Cerny, K.; Lotko, W.; Mozer, F.S. Observations of Double Layers and Solitary Waves in the Auroral Plasma. Phys. Rev. Lett. 1982, 48, 1175–1179. [Google Scholar] [CrossRef]
- Boström, R.; Gustafsson, G.; Holback, B.; Holmgren, G.; Koskinen, H.; Kintner, P. Characteristics of Solitary Waves and Weak Double Layers in the Magnetospheric Plasma. Phys. Rev. Lett. 1988, 61, 82–85. [Google Scholar] [CrossRef]
- Koskinen, H.E.J.; Lundin, R.; Holback, B. On the plasma environment of solitary waves and weak double layers. J. Geophys. Res. 1990, 95, 5921–5929. [Google Scholar] [CrossRef]
- Matsumoto, H.; Kojima, H.; Miyatake, T.; Omura, Y.; Okada, M.; Nagano, I.; Tsutsui, M. Electrostatic solitary waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL. Geophys. Res. Lett. 1994, 21, 2915–2918. [Google Scholar] [CrossRef]
- Lakhina, G.S.; Tsurutani, B.T.; Kojima, H.; Matsumoto, H. “Broadband” plasma waves in the boundary layers. J. Geophys. Res. 2000, 105, 27791–27831. [Google Scholar] [CrossRef] [Green Version]
- Lakhina, G.S.; Tsurutani, B.T.; Pickett, J. Association of Alfvèn waves and proton cyclotron waves with electrostatic bipolar pulses: Magnetic hole events observed by Polar. Nonlinear Process. Geophys. 2004, 11, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Kojima, H.; Matsumoto, H.; Omura, Y. Electrostatic Solitary Waves observed in the geomagnetic tail and other regions. Adv. Space Res. 1999, 23, 1689–1697. [Google Scholar] [CrossRef]
- Kojima, H.; Matsumoto, H.; Chikuba, S.; Horiyama, S.; Ashour-Abdalla, M.; Anderson, R.R. Geotail waveform observations of broadband/narrowband electrostatic noise in the distant tail. J. Geophys. Res. 1997, 102, 14439–14455. [Google Scholar] [CrossRef]
- Pickett, J.S.; Menietti, J.D.; Gurnett, D.A.; Tsurutani, B.; Kintner, P.M.; Klatt, E.; Balogh, A. Solitary potential structures observed in the magnetosheath by the Cluster spacecraft. Nonlinear Process. Geophys. 2003, 10, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Pickett, J.S.; Chen, L.J.; Kahler, S.W.; Santolík, O.; Gurnett, D.A.; Tsurutani, B.T.; Balogh, A. Isolated electrostatic structures observed throughout the Cluster orbit: Relationship to magnetic field strength. Ann. Geophys. 2004, 22, 2515–2523. [Google Scholar] [CrossRef] [Green Version]
- Franz, J.R.; Kintner, P.M.; Pickett, J.S. POLAR observations of coherent electric field structures. Geophys. Res. Lett. 1998, 25, 1277–1280. [Google Scholar] [CrossRef]
- Cattell, C.; Wygant, J.; Dombeck, J.; Mozer, F.S.; Temerin, M.; Russell, C.T. Observations of large amplitude parallel electric field wave packets at the plasma sheet boundary. Geophys. Res. Lett. 1998, 25, 857–860. [Google Scholar] [CrossRef]
- Cattell, C.; Bergmann, R.; Sigsbee, K.; Carlson, C.; Chaston, C.; Ergun, R.; McFadden, J.; Mozer, F.S.; Temerin, M.; Strangeway, R.; et al. The association of electrostatic ion cyclotron waves, ion and electron beams and field-aligned currents: FAST observations of an auroral zone crossing near midnight. Geophys. Res. Lett. 1998, 25, 2053–2056. [Google Scholar] [CrossRef]
- Cattell, C.A.; Dombeck, J.; Wygant, J.R.; Hudson, M.K.; Mozer, F.S.; Temerin, M.A.; Peterson, W.K.; Kletzing, C.A.; Russell, C.T.; Pfaff, R.F. Comparisons of Polar satellite observations of solitary wave velocities in the plasma sheet boundary and the high altitude cusp to those in the auroral zone. Geophys. Res. Lett. 1999, 26, 425–428. [Google Scholar] [CrossRef]
- Cattell, C.; Dombeck, J.; Wygant, J.; Drake, J.F.; Swisdak, M.; Goldstein, M.L.; Keith, W.; Fazakerley, A.; André, M.; Lucek, E.; et al. Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Tsurutani, B.T.; Arballo, J.K.; Lakhina, G.S.; Ho, C.M.; Buti, B.; Pickett, J.S.; Gurnett, D.A. Plasma waves in the dayside polar cap boundary layer: Bipolar and monopolar electric pulses and whistler mode waves. Geophys. Res. Lett. 1998, 25, 4117–4120. [Google Scholar] [CrossRef] [Green Version]
- Pickett, J.S.; Gurnett, D.A.; Menietti, J.D.; LeDocq, M.J.; Scudder, J.D.; Frank, L.A.; Sigwarth, J.B.; Ackerson, K.L.; Morgan, D.D.; Franz, J.R.; et al. Plasma waves observed during cusp energetic particle events and their correlation with Polar and akebono satellite and ground data. Adv. Space Res. 1999, 24, 23–33. [Google Scholar] [CrossRef]
- Pickett, J.S.; Menietti, J.D.; Dowell, J.H.; Gurnett, D.A.; Scudder, J.D. Polar spacecraft observations of the turbulent outer cusp/magnetopause boundary layer of Earth. Nonlinear Process. Geophys. 1999, 6, 195–204. [Google Scholar] [CrossRef]
- Mozer, F.S.; Ergun, R.; Temerin, M.; Cattell, C.; Dombeck, J.; Wygant, J. New Features of Time Domain Electric-Field Structures in the Auroral Acceleration Region. Phys. Rev. Lett. 1997, 79, 1281–1284. [Google Scholar] [CrossRef] [Green Version]
- Ergun, R.E.; Carlson, C.W.; McFadden, J.P.; Mozer, F.S.; Muschietti, L.; Roth, I.; Strangeway, R.J. Debye-Scale Plasma Structures Associated with Magnetic-Field-Aligned Electric Fields. Phys. Rev. Lett. 1998, 81, 826–829. [Google Scholar] [CrossRef]
- Ergun, R.E.; Carlson, C.W.; Muschietti, L.; Roth, I.; McFadden, J.P. Properties of fast solitary structures. Nonlinear Process. Geophys. 1999, 6, 187–194. [Google Scholar] [CrossRef]
- Bounds, S.R.; Pfaff, R.F.; Knowlton, S.F.; Mozer, F.S.; Temerin, M.A.; Kletzing, C.A. Solitary potential structures associated with ion and electron beams near 1RE altitude. J. Geophys. Res. 1999, 104, 28709–28717. [Google Scholar] [CrossRef]
- Andersson, L.; Ergun, R.E.; Tao, J.; Roux, A.; LeContel, O.; Angelopoulos, V.; Bonnell, J.; McFadden, J.P.; Larson, D.E.; Eriksson, S.; et al. New Features of Electron Phase Space Holes Observed by the THEMIS Mission. Phys. Rev. Lett. 2009, 102, 225004. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Deng, X.H.; Kojima, H.; Anderson, R.R. Observation of Electrostatic Solitary Waves associated with reconnection on the dayside magnetopause boundary. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Graham, D.B.; Khotyaintsev, Y.V.; Vaivads, A.; André, M. Electrostatic solitary waves with distinct speeds associated with asymmetric reconnection. Geophys. Res. Lett. 2015, 42, 215–224. [Google Scholar] [CrossRef]
- Deng, X.H.; Matsumoto, H.; Kojima, H.; Mukai, T.; Anderson, R.R.; Baumjohann, W.; Nakamura, R. Geotail encounter with reconnection diffusion region in the Earth’s magnetotail: Evidence of multiple X lines collisionless reconnection? J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.H.; Tang, R.; Matsumoto, H.; Pickett, J.; Fazakerley, A.; Kojima, H.; Baumjohann, W.; Coates, A.; Nakamura, R.; Gurnett, D.; et al. Observations of electrostatic solitary waves associated with reconnection by Geotail and Cluster. Adv. Space Res. 2006, 37, 1373–1381. [Google Scholar] [CrossRef]
- Li, S.; Deng, X.; Zhou, M.; Tang, R.; Liu, K.; Kojima, H.; Matsumoto, H. Statistical study of electrostatic solitary waves associated with reconnection: Geotail observations. Adv. Space Res. 2009, 43, 394–400. [Google Scholar] [CrossRef]
- Deng, X.; Ashour-Abdalla, M.; Zhou, M.; Walker, R.; El-Alaoui, M.; Angelopoulos, V.; Ergun, R.E.; Schriver, D. Energy range of electron rolling-pin distribution behind dipolarization front. J. Geophys. Res. 2010, 115, A09225. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Cai, H.; Yang, H. Electron beam-associated symmetric electrostatic solitary waves on the separatrix of magnetic reconnection: Multi-spacecraft analysis. Earth Planets Space 2015, 67, 84. [Google Scholar] [CrossRef] [Green Version]
- Ergun, R.E.; Goodrich, K.A.; Stawarz, J.E.; Andersson, L.; Angelopoulos, V. Large-amplitude electric fields associated with bursty bulk flow braking in the Earth’s plasma sheet. J. Geophys. Res. Space Phys. 2014, 120, 1832–1844. [Google Scholar] [CrossRef]
- Liu, C.M.; Vaivads, A.; Graham, D.B.; Khotyaintsev, Y.V.; Fu, H.S.; Johlander, A.; André, M.; Giles, B.L. Ion-Beam-Driven Intense Electrostatic Solitary Waves in Reconnection Jet. Geophys. Res. Lett. 2019, 46, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Lu, Q.; Wang, P.; Wu, M.; Wang, S. Characteristics of electron holes generated in the separatrix region during antiparallel magnetic reconnection. J. Geophys. Res. Space Phys. 2014, 119, 6445–6454. [Google Scholar] [CrossRef]
- Wang, R.; Lu, Q.; Khotyaintsev, Y.V.; Volwerk, M.; Du, A.; Nakamura, R.; Gonzalez, W.D.; Sun, X.; Baumjohann, W.; Li, X.; et al. Observation of double layer in the separatrix region during magnetic reconnection. Geophys. Res. Lett. 2014, 41, 4851–4858. [Google Scholar] [CrossRef] [Green Version]
- Khotyaintsev, Y.V.; Vaivads, A.; André, M.; Fujimoto, M.; Retino, A.; Owen, C.J. Observations of Slow Electron Holes at a Magnetic Reconnection Site. Phys. Rev. Lett. 2010, 105, 165002. [Google Scholar] [CrossRef]
- Fu, H.S.; Chen, F.; Chen, Z.Z.; Xu, Y.; Wang, Z.; Liu, Y.Y.; Liu, C.M.; Khotyaintsev, Y.; Ergun, R.E.; Giles, B.L.; et al. First Measurements of Electrons and Waves inside an Electrostatic Solitary Wave. Phys. Rev. Lett. 2020, 124, 095101. [Google Scholar] [CrossRef] [PubMed]
- Mozer, F.S.; Agapitov, O.V.; Artemyev, A.; Drake, J.F.; Krasnoselskikh, V.; Lejosne, S.; Vasko, I. Time domain structures: What and where they are, what they do, and how they are made. Geophys. Res. Lett. 2015, 42, 3627–3638. [Google Scholar] [CrossRef] [Green Version]
- Vasko, I.Y.; Agapitov, O.V.; Mozer, F.S.; Bonnell, J.W.; Artemyev, A.V.; Krasnoselskikh, V.V.; Reeves, G.; Hospodarsky, G. Electron-acoustic solitons and double layers in the inner magnetosphere. Geophys. Res. Lett. 2017, 44, 4575–4583. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.D.; Chen, L.J.; Kurth, W.S.; Gurnett, D.A.; Dougherty, M.K.; Rymer, A.M. Electrostatic solitary structures associated with the November 10, 2003, interplanetary shock at 8.7 AU. Geophys. Res. Lett. 2005, 32, L17103. [Google Scholar] [CrossRef] [Green Version]
- Bale, S.D.; Kellogg, P.J.; Larsen, D.E.; Lin, R.P.; Goetz, K.; Lepping, R.P. Bipolar electrostatic structures in the shock transition region: Evidence of electron phase space holes. Geophys. Res. Lett. 1998, 25, 2929–2932. [Google Scholar] [CrossRef]
- Behlke, R.; Andrè, M.; Bale, S.D.; Pickett, J.S.; Cattell, C.A.; Lucek, E.A.; Balogh, A. Solitary structures associated with short large-amplitude magnetic structures (SLAMS) upstream of the Earth’s quasi-parallel bow shock. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhang, S.F.; Cai, H.; Deng, X.H.; Chen, X.Q.; Zhou, M.; Yang, H.B. Large three-dimensional ellipsoid sphere-shaped structure of electrostatic solitary waves in the terrestrial bow shock under condition of << 1. Geophys. Res. Lett. 2013, 40, 3356–3361. [Google Scholar] [CrossRef]
- Vasko, I.Y.; Mozer, F.S.; Krasnoselskikh, V.V.; Artemyev, A.V.; Agapitov, O.V.; Bale, S.D.; Avanov, L.; Ergun, R.; Giles, B.; Lindqvist, P.A.; et al. Solitary waves across supercritical quasi-perpendicular shocks. Geophys. Res. Lett. 2018, 45, 5809–5817. [Google Scholar] [CrossRef] [Green Version]
- Mangeney, A.; Salem, C.; Lacombe, C.; Bougeret, J.L.; Perche, C.; Manning, R.; Kellogg, P.J.; Goetz, K.; Monson, S.J.; Bosqued, J.M. WIND observations of coherent electrostatic waves in the solar wind. Ann. Geophys. 1999, 17, 307–320. [Google Scholar] [CrossRef]
- Malaspina, D.M.; Newman, D.L.; Willson, L.B.; Goetz, K.; Kellogg, P.J.; Kerstin, K. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets. J. Geophys. Res. 2013, 118, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Mozer, F.S.; Bonnell, J.W.; Hanson, E.L.M.; Gasque, L.C.; Vasko, I.Y. Nonlinear Ion-acoustic Waves, Ion Holes, and Electron Holes in the Near-Sun Solar Wind. ApJ 2021, 911, 89. [Google Scholar] [CrossRef]
- Hashimoto, K.; Hashitani, M.; Kasahara, Y.; Omura, Y.; Nishino, M.N.; Saito, Y.; Yokota, S.; Ono, T.; Tsunakawa, H.; Shibuya, H.; et al. Electrostatic solitary waves associated with magnetic anomalies and wake boundary of the Moon observed by KAGUYA. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, I.H.; Malaspina, D.M. Prediction and observation of electron instabilities and phase space holes concentrated in the lunar plasma wake. Geophys. Res. Lett. 2018, 45, 3838–3845. [Google Scholar] [CrossRef]
- Malaspina, D.M.; Hutchinson, I.H. Properties of electron phase space holes in the lunar plasma environment. J. Geophys. Res. 2019, 124, 4994–5008. [Google Scholar] [CrossRef]
- Kurth, W.S.; Gurnett, D.A.; Persoon, A.M.; Roux, A.; Bolton, S.J.; Alexander, C.J. The plasma wave environment of Europa. Planet. Space Sci. 2001, 49, 345–363. [Google Scholar] [CrossRef]
- Williams, J.D.; Chen, L.J.; Kurth, W.S.; Gurnett, D.A.; Dougherty, M.K. Electrostatic solitary structures observed at Saturn. Geophys. Res. Lett. 2006, 33, L06103. [Google Scholar] [CrossRef]
- Pickett, J.S.; Kurth, W.S.; Gurnett, D.A.; Huff, R.L.; Faden, J.B.; Averkamp, T.F.; Pisa, D.; Jones, G.H. Electrostatic solitary waves observed at Saturn by Cassini inside 10 Rs and near Enceladus. J. Geophys. Res. 2015, 120, 6569–6580. [Google Scholar] [CrossRef]
- Omura, Y.; Kojima, H.; Miki, N.; Mukai, T.; Matsumoto, H.; Anderson, R. Electrostatic solitary waves carried by diffused electron beams observed by the Geotail spacecraft. J. Geophys. Res. 1999, 104, 14627–14637. [Google Scholar] [CrossRef]
- Franz, J.R.; Kintner, P.M.; Pickett, J.S.; Chen, L.J. Properties of small-amplitude electron phase-space holes observed by Polar. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Norgren, C.; Andre, M.; Vaivads, A.; Khotyaintsev, Y.V. Slow electron phase space holes: Magnetotail observations. Geophys. Res. Lett. 2015, 42, 1654–1661. [Google Scholar] [CrossRef]
- Franz, J.R.; Kintner, P.M.; Seyler, C.E.; Pickett, J.S.; Scudder, J.D. On the perpendicular scale of electron phase-space holes. Geophys. Res. Lett. 2000, 27, 169–172. [Google Scholar] [CrossRef]
- Bernstein, I.B.; Greene, J.M.; Kruskal, M.D. Exact Nonlinear Plasma Oscillations. Phys. Rev. 1957, 108, 546–550. [Google Scholar] [CrossRef] [Green Version]
- Omura, Y.; Matsumoto, H.; Miyake, T.; Kojima, H. Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail. J. Geophys. Res. 1996, 101, 2685–2697. [Google Scholar] [CrossRef]
- Hutchinson, I.H. Electron holes in phase space: What they are and why they matter. Phys. Plasmas 2017, 24, 055601. [Google Scholar] [CrossRef]
- Schamel, H. Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Phys. 1972, 14, 905–924. [Google Scholar] [CrossRef]
- Schamel, H. Theory of electron holes. Phys. Scr. 1979, 20, 336–342. [Google Scholar] [CrossRef]
- Schamel, H. Kinetic Theory of Phase Space Vortices and Double Layers. Phys. Scr. 1982, 1982, 228. [Google Scholar] [CrossRef]
- Schamel, H. Hole equilibria in Vlasov–Poisson systems: A challenge to wave theories of ideal plasmas. Phys. Plasmas 2000, 7, 4831–4844. [Google Scholar] [CrossRef]
- Schamel, H. Particle trapping: A key requisite of structure formation and stability of Vlasov–Poisson plasmas. Phys. Plasmas 2015, 22, 042301. [Google Scholar] [CrossRef] [Green Version]
- Goldman, M.V.; Oppenheim, M.M.; Newman, D.L. Nonlinear two-stream instabilities as an explanation for auroral bipolar wave structures. Geophys. Res. Lett. 1999, 26, 1821–1824. [Google Scholar] [CrossRef]
- Oppenheim, M.; Newman, D.L.; Goldman, M.V. Evolution of Electron Phase-Space Holes in a 2D Magnetized Plasma. Phys. Rev. Lett. 1999, 83, 2344–2347. [Google Scholar] [CrossRef] [Green Version]
- Muschietti, L.; Ergun, R.E.; Roth, I.; Carlson, C.W. Phase-space electron holes along magnetic field lines. Geophys. Res. Lett. 1999, 26, 1093–1096. [Google Scholar] [CrossRef]
- Singh, N. Space-time evolution of electron-beam driven electron holes and their effects on the plasma. Nonlinear Proc. Geoph 2003, 10, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.J.; Pickett, J.; Kintner, P.; Franz, J.; Gurnett, D. On the width-amplitude inequality of electron phase space holes. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Omura, Y.; Kojima, H.; Matsumoto, H. Computer simulation of electrostatic solitary waves: A nonlinear model of broadband electrostatic noise. Geophys. Res. Lett. 1994, 21, 2923–2926. [Google Scholar] [CrossRef]
- Singh, N.; Schunk, R.W. Plasma response to the injection of an electron beam. Plasma Phys. Control. Fusion 1984, 26, 859. [Google Scholar] [CrossRef]
- Singh, N.; Thiemann, H.; Schunk, R.W. Simulations of auroral plasma processes: Electric fields, waves and particles. Planet. Space Sci. 1987, 35, 353–395. [Google Scholar] [CrossRef]
- Singh, N.; Loo, S.M.; Wells, E. Electron hole structure and its stability depending on plasma magnetization. J. Geophys. Res. 2001, 106, 21183–21198. [Google Scholar] [CrossRef]
- Singh, N.; Khazanov, G. Double layers in expanding plasmas and their relevance to the auroral plasma processes. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Muschietti, L.; Roth, I.; Carlson, C.W.; Ergun, R.E. Transverse Instability of Magnetized Electron Holes. Phys. Rev. Lett. 2000, 85, 94–97. [Google Scholar] [CrossRef]
- Jovanović, D.; Shukla, P.K. Nonlinear Model for Coherent Electric Field Structures in the Magnetosphere. Phys. Rev. Lett. 2000, 84, 4373–4376. [Google Scholar] [CrossRef]
- Jovanović, D.; Shukla, P.K.; Stenflo, L.; Pegoraro, F. Nonlinear model for electron phase-space holes in magnetized space plasmas. J. Geophys. Res. 2002, 107, SMP 15–1–SMP 15–6. [Google Scholar] [CrossRef]
- Jovanović, D.; Shukla, P.K. Solitary waves in the Earth’s magnetosphere: Nonlinear stage of the lower-hybrid Buneman instability. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Jovanović, D.; Shukla, P.K.; Morfill, G. A nonlinear model for coherent tripolar electric field structures in the Earth’s auroral zone and solar wind. J. Plasma Phys. 2005, 71, 203–211. [Google Scholar] [CrossRef]
- Jovanović, D.; Shukla, P.K.; Morfill, G. Coupling between upper-hybrid waves and electron holes in Earth’s magnetotail. Phys. Plasmas 2005, 12, 112903. [Google Scholar] [CrossRef]
- Jovanović, D.; Shukla, P.K.; Morfill, G.E. Cylindrical lower-hybrid electron holes at the Earth’s dayside magnetopause. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Jovanović, D.; Shukla, P.K.; Morfill, G. Nonlinear kinetic model for lower-hybrid solitary structures. Phys. Plasmas 2007, 14, 082901. [Google Scholar] [CrossRef]
- Jovanović, D.; Krasnoselskikh, V.V. Kinetic theory for the ion humps at the foot of the Earth’s bow shock. Phys. Plasmas 2009, 16, 102902. [Google Scholar] [CrossRef]
- Jovanović, D.; Shukla, P.K.; Schamel, H. Theory of ion holes associated with electron-acoustic vortices. Phys. Plasmas 2000, 7, 3247–3251. [Google Scholar] [CrossRef]
- Jovanović, D.; Shukla, P.K. Guiding Center Theory for Ion Holes in Magnetized Plasmas. Phys. Rev. Lett. 2003, 90, 135001. [Google Scholar] [CrossRef]
- Sagdeev, R.Z. Cooperative Phenomena and Shock Waves in Collisionless Plasmas. Rev. Plasma Phys. 1966, 4, 23–91. [Google Scholar]
- Ghosh, S.S.; Iyengar, A.N.S. Anomalous width variations for ion acoustic rarefactive solitary waves in a warm ion plasma with two electron temperatures. Phys. Plasmas 1997, 4, 3204–3210. [Google Scholar] [CrossRef]
- Ghosh, S.S.; Lakhina, G.S. Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas. Nonlinear Proc. Geoph. 2004, 11, 219–228. [Google Scholar] [CrossRef]
- Singh, S.V.; Reddy, R.V.; Lakhina, G.S. Broadband electrostatic noise due to nonlinear electron-acoustic waves. Adv. Space Res. 2001, 28, 1643–1648. [Google Scholar] [CrossRef]
- Singh, S.V.; Lakhina, G.S. Electron acoustic solitary waves with non-thermal distribution of electrons. Nonlinear Process. Geophys. 2004, 11, 275–279. [Google Scholar] [CrossRef]
- Kakad, A.P.; Singh, S.V.; Reddy, R.V.; Lakhina, G.S.; Tagare, S.G.; Verheest, F. Generation mechanism for electron acoustic solitary waves. Phys. Plasmas 2007, 14, 052305. [Google Scholar] [CrossRef]
- Ghosh, S.S.; Pickett, J.S.; Lakhina, G.S.; Winningham, J.D.; Lavraud, B.; Décréau, P.M.E. Parametric analysis of positive amplitude electron acoustic solitary waves in a magnetized plasma and its application to boundary layers. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Lakhina, G.S.; Kakad, A.P.; Singh, S.V.; Verheest, F. Ion- and electron-acoustic solitons in two-electron temperature space plasmas. Phys. Plasmas 2008, 15, 062903. [Google Scholar] [CrossRef]
- Lakhina, G.S.; Singh, S.V.; Kakad, A.P.; Verheest, F.; Bharuthram, R. Study of nonlinear ion- and electron-acoustic waves in multi-component space plasmas. Nonlinear Process. Geophys. 2008, 15, 903–913. [Google Scholar] [CrossRef] [Green Version]
- Lakhina, G.S.; Singh, S.V.; Kakad, A.P.; Goldstein, M.L.; Viñas, A.F.; Pickett, J.S. A mechanism for electrostatic solitary structures in the Earth’s magnetosheath. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Lakhina, G.S.; Singh, S.V.; Kakad, A.P. Ion- and electron-acoustic solitons and double layers in multi-component space plasmas. Adv. Space Res. 2011, 47, 1558–1567. [Google Scholar] [CrossRef]
- Lakhina, G.S.; Singh, S.V.; Kakad, A.P.; Pickett, J.S. Generation of electrostatic solitary waves in the plasma sheet boundary layer. J. Geophys. Res. 2011, 116, A10218. [Google Scholar] [CrossRef]
- Devanandhan, S.; Singh, S.V.; Lakhina, G.S. Electron acoustic solitary waves with kappa-distributed electrons. Phys. Scr. 2011, 84, 025507. [Google Scholar] [CrossRef]
- Devanandhan, S.; Singh, S.V.; Lakhina, G.S.; Bharuthram, R. Electron acoustic solitons in the presence of an electron beam and superthermal electrons. Nonlinear Process. Geophys. 2011, 18, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Devanandhan, S.; Singh, S.V.; Lakhina, G.S.; Bharuthram, R. Electron acoustic waves in a magnetized plasma with kappa distributed ions. Phys. Plasmas 2012, 19, 082314. [Google Scholar] [CrossRef]
- Maharaj, S.K.; Bharuthram, R.; Singh, S.V.; Lakhina, G.S. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. I. Low-frequency ion-acoustic solitons. Phys. Plasmas 2012, 19, 072320. [Google Scholar] [CrossRef] [Green Version]
- Devanandhan, S.; Singh, S.V.; Lakhina, G.S.; Bharuthram, R. Small amplitude electron acoustic solitary waves in a magnetized superthermal plasma. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 1322–1330. [Google Scholar] [CrossRef]
- Ullah, S.; Masood, W.; Siddiq, M. Electron acoustic envelope solitons in non-Maxwellian plasmas. Eur. Phys. J. D 2020, 74, 26. [Google Scholar] [CrossRef]
- Goldman, M.V.; Newman, D.L.; Mangeney, A. Theory of Weak Bipolar Fields and Electron Holes with Applications to Space Plasmas. Phys. Rev. Lett. 2007, 99, 145002. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.B.; Ergun, R.E.; Andersson, L.; Bonnell, J.W.; Roux, A.; LeContel, O.; Angelopoulos, V.; McFadden, J.P.; Larson, D.E.; Cully, C.M.; et al. A model of electromagnetic electron phase-space holes and its application. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Washimi, H.; Taniuti, T. Propagation of Ion-Acoustic Solitary Waves of Small Amplitude. Phys. Rev. Lett. 1966, 17, 996–998. [Google Scholar] [CrossRef]
- Tran, M.Q. Ion acoustic solitons in a plasma: A review of their experimental properties and related theories. Phys. Scr. 1979, 20, 317–327. [Google Scholar] [CrossRef]
- Buti, B. Ion-acoustic holes in a two-electron-temperature plasma. Phys. Lett. A 1980, 76, 251–254. [Google Scholar] [CrossRef]
- Chanteur, G.; Raadu, M. Formation of shocklike modified Korteweg–de Vries solitons: Application to double layers. Phys. Fluids 1987, 30, 2708–2719. [Google Scholar] [CrossRef]
- Baboolal, S.; Bharuthram, R.; Hellberg, M.A. Cut-off conditions and existence domains for large-amplitude ion-acoustic solitons and double layers in fluid plasmas. J. Plasma Phys. 1990, 44, 1–23. [Google Scholar] [CrossRef]
- Reddy, R.V.; Lakhina, G.S. Ion acoustic double layers and solitons in auroral plasma. Planet. Space Sci. 1991, 39, 1343–1350. [Google Scholar] [CrossRef]
- Reddy, R.V.; Lakhina, G.; Verheest, F. Ion-acoustic double layers and solitons in multispecies auroral beam-plasmas. Planet. Space Sci. 1992, 40, 1055–1062. [Google Scholar] [CrossRef]
- Ghosh, S.S.; Ghosh, K.K.; Iyengar, A.N.S. Large Mach number ion acoustic rarefactive solitary waves for a two electron temperature warm ion plasma. Phys. Plasmas 1996, 3, 3939–3946. [Google Scholar] [CrossRef]
- Berthomier, M.; Pottelette, R.; Malingre, M. Solitary waves and weak double layers in a two-electron temperature auroral plasma. J. Geophys. Res. 1998, 103, 4261–4270. [Google Scholar] [CrossRef]
- Maharaj, S.K.; Bharuthram, R.; Singh, S.; Lakhina, G. Existence domains of arbitrary amplitude nonlinear structures in two-electron temperature space plasmas. II. High-frequency electron-acoustic solitons. Phys. Plasmas 2012, 19, 122301. [Google Scholar] [CrossRef]
- Singh, S.V.; Devanandhan, S.; Lakhina, G.S.; Bharuthram, R. Effect of ion temperature on ion-acoustic solitary waves in a magnetized plasma in presence of superthermal electrons. Phys. Plasmas 2013, 20, 012306. [Google Scholar] [CrossRef]
- Rufai, O.R.; Bharuthram, R.; Singh, S.V.; Lakhina, G.S. Low frequency solitons and double layers in a magnetized plasma with two temperature electrons. Phys. Plasmas 2012, 19, 122308. [Google Scholar] [CrossRef]
- Rufai, O.R.; Bharuthram, R.; Singh, S.V.; Lakhina, G.S. Effect of hot ion temperature on ion-acoustic solitons and double layers in an auroral plasma. Commun. Nonlinear Sci. Numer. Simul. 2014, 21, 1338–1346. [Google Scholar] [CrossRef]
- Rufai, O.R.; Bharuthram, R.; Singh, S.V.; Lakhina, G.S. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons. Phys. Plasmas 2014, 21, 082304. [Google Scholar] [CrossRef]
- Singh, S.V.; Lakhina, G.S. Ion-acoustic supersolitons in the presence of non-thermal electrons. Commun. Nonlinear Sci. Numer. Simul. 2015, 23, 274–281. [Google Scholar] [CrossRef]
- Maharaj, S.; Bharuthram, R.; Singh, S.V.; Lakhina, G.S. Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas. Phys. Plasmas 2015, 22, 032313. [Google Scholar] [CrossRef]
- Rufai, O.R.; Bharuthram, R.; Singh, S.V.; Lakhina, G.S. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma. Phys. Plasmas 2015, 22, 102305. [Google Scholar] [CrossRef]
- Rufai, O.R.; Bharuthram, R.; Singh, S.V.; Lakhina, G.S. Obliquely propagating ion-acoustic solitons and supersolitons in four-component auroral plasmas. Adv. Space Res. 2016, 57, 813–820. [Google Scholar] [CrossRef]
- Rufai, O.R.; Bharuthram, R.; Singh, S.V.; Lakhina, G.S. Nonlinear low frequency electrostatic structures in a magnetized two-component auroral plasma. Phys. Plasmas 2016, 23, 032309. [Google Scholar] [CrossRef]
- Kakad, A.; Kakad, B.; Anekallu, C.; Lakhina, G.; Omura, Y.; Fazakerley, A. Slow electrostatic solitary waves in Earth’s plasma sheet boundary layer. J. Geophys. Res. 2016, 121, 4452–4465. [Google Scholar] [CrossRef]
- Pottelette, R.; Ergun, R.E.; Treumann, R.A.; Berthomier, M.; Carlson, C.W.; McFadden, J.P.; Roth, I. Modulated electron-acoustic waves in auroral density cavities: FAST observations. Geophys. Res. Lett. 1999, 26, 2629–2632. [Google Scholar] [CrossRef]
- Dubouloz, N.; Pottelette, R.; Malingre, M.; Treumann, R.A. Generation of broadband electrostatic noise by electron acoustic solitons. Geophys. Res. Lett. 1991, 18, 155–158. [Google Scholar] [CrossRef]
- Dubouloz, N.; Treumann, R.A.; Pottelette, R.; Malingre, M. Turbulence generated by a gas of electron acoustic solitons. J. Geophys. Res. 1993, 98, 17415–17422. [Google Scholar] [CrossRef]
- Berthomier, M.; Pottelette, R.; Malingre, M.; Khotyaintsev, Y. Electron-acoustic solitons in an electron-beam plasma system. Phys. Plasmas 2000, 7, 2987–2994. [Google Scholar] [CrossRef]
- Berthomier, M.; Pottelette, R.; Muschietti, L.; Roth, I.; Carlson, C.W. Scaling of 3D solitary waves observed by FAST and POLAR. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Singh, S.V.; Lakhina, G.S.; Bharuthram, R.; Pillay, S.R. Electrostatic solitary structures in presence of non-thermal electrons and a warm electron beam on the auroral field lines. Phys. Plasmas 2011, 18, 122306. [Google Scholar] [CrossRef]
- Singh, S.V.; Lakhina, G.S. Generation of electron-acoustic waves in the magnetosphere. Planetary Space Sci. 2001, 49, 107–114. [Google Scholar] [CrossRef]
- Tagare, S.G.; Singh, S.V.; Reddy, R.V.; Lakhina, G.S. Electron acoustic solitons in the Earth’s magnetotail. Nonlinear Process. Geophys. 2004, 11, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Cattaert, T.; Verheest, F.; Hellberg, M. Potential hill electron-acoustic solitons and double layers in plasmas with two electron species. Phys. Plasmas 2005, 12, 042901. [Google Scholar] [CrossRef]
- Kakad, A.P.; Singh, S.V.; Reddy, R.V.; Lakhina, G.S.; Tagare, S. Electron acoustic solitary waves in the Earth’s magnetotail region. Adv. Space Res. 2009, 43, 1945–1949. [Google Scholar] [CrossRef]
- Mbuli, L.N.; Maharaj, S.K.; Bharuthram, R.; Singh, S.V.; Lakhina, G.S. Arbitrary amplitude slow electron-acoustic solitons in three-electron temperature space plasmas. Phys. Plasmas 2015, 22, 062307. [Google Scholar] [CrossRef]
- Mbuli, L.N.; Maharaj, S.K.; Bharuthram, R.; Singh, S.V.; Lakhina, G.S. Arbitrary amplitude fast electron-acoustic solitons in three-electron component space plasmas. Phys. Plasmas 2016, 23, 062302. [Google Scholar] [CrossRef]
- Singh, S.V.; Devanandhan, S.; Lakhina, G.S.; Bharuthram, R. Electron acoustic solitary waves in a magnetized plasma with nonthermal electrons and an electron beam. Phys. Plasmas 2016, 23, 082310. [Google Scholar] [CrossRef]
- Buti, B.; Mohan, M.; Shukla, P.K. Exact electron-acoustic solitary waves. J. Plasma Phys. 1980, 23, 341–347. [Google Scholar] [CrossRef]
- Buti, B. Nonlinear electron-acoustic waves in a multi-species plasma. J. Plasma Phys. 1980, 24, 169–180. [Google Scholar] [CrossRef]
- Mohan, M.; Buti, B. Electron-acoustic solitons in current-carrying magnetized plasmas. Plasma Phys. 1980, 22, 873. [Google Scholar] [CrossRef]
- Vasyliunas, V.M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 1968, 73, 2839–2884. [Google Scholar] [CrossRef]
- Leubner, M.P. On Jupiter’s whistler emission. J. Geophys. Res. 1982, 87, 6335–6338. [Google Scholar] [CrossRef]
- Marsch, E.; Mühlhäuser, K.H.; Rosenbauer, H.; Schwenn, R.; Neubauer, F.M. Solar wind helium ions: Observations of the Helios solar probes between 0.3 and 1 AU. J. Geophys. Res. 1982, 87, 35–51. [Google Scholar] [CrossRef]
- Armstrong, T.P.; Paonessa, M.T.; Bell, E.V.; Krimigis, S.M. Voyager observations of Saturnian ion and electron phase space densities. J. Geophys. Res. 1983, 88, 8893–8904. [Google Scholar] [CrossRef]
- Leubner, M.P. Wave induced suprathermal tail generation of electron velocity space distributions. Planet. Space Sci. 2000, 48, 133–141. [Google Scholar] [CrossRef]
- Summers, D.; Thorne, R.M. The modified plasma dispersion function. Phys. Fluids B Plasma 1991, 3, 1835–1847. [Google Scholar] [CrossRef]
- Thorne, R.M.; Summers, D. Landau damping in space plasmas. Phys. Fluids B Plasma 1991, 3, 2117–2123. [Google Scholar] [CrossRef]
- Thorne, R.M.; Summers, D. Enhancement of wave growth for warm plasmas with a high-energy tail distribution. J. Geophys. Res. 1991, 96, 217–223. [Google Scholar] [CrossRef]
- Thorne, R.M.; Horne, R.B. Landau damping of magnetospherically reflected whistlers. J. Geophys. Res. 1994, 99, 17249–17258. [Google Scholar] [CrossRef]
- Mace, R.L.; Hellberg, M.A. A dispersion function for plasmas containing superthermal particles. Phys. Plasmas 1995, 2, 2098–2109. [Google Scholar] [CrossRef]
- Hellberg, M.A.; Mace, R.L. Generalized plasma dispersion function for a plasma with a kappa-Maxwellian velocity distribution. Phys. Plasmas 2002, 9, 1495–1504. [Google Scholar] [CrossRef]
- Hapgood, M.; Perry, C.; Davies, J.; Denton, M. The role of suprathermal particle measurements in CrossScale studies of collisionless plasma processes. Planet. Space Sci. 2011, 59, 618–629. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Beyond kappa distributions: Exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Livadiotis, G.; McComas, D.J. Electrostatic shielding in plasmas and the physical meaning of the Debye length. J. Plasma Phys. 2014, 80, 341–378. [Google Scholar] [CrossRef] [Green Version]
- Pierrard, V.; Lazar, M. Kappa Distributions: Theory and Applications in Space Plasmas. Sol. Phys. 2010, 267, 153–174. [Google Scholar] [CrossRef] [Green Version]
- Livadiotis, G. Introduction to special section on Origins and Properties of Kappa Distributions: Statistical Background and Properties of Kappa Distributions in Space Plasmas. J. Geophys. Res. 2015, 120, 1607–1619. [Google Scholar] [CrossRef]
- Livadiotis, G. Kappa distribution in the presence of a potential energy. J. Geophys. Res. Space Phys. 2015, 120, 880–903. [Google Scholar] [CrossRef]
- Saini, N.S.; Kourakis, I.; Hellberg, M.A. Arbitrary amplitude ion-acoustic solitary excitations in the presence of excess superthermal electrons. Phy. Plasmas 2009, 16, 062903. [Google Scholar] [CrossRef] [Green Version]
- Saini, N.S.; Kourakis, I. Electron beam–plasma interaction and ion-acoustic solitary waves in plasmas with a superthermal electron component. Plasma Phys. Control. Fusion 2010, 52, 075009. [Google Scholar] [CrossRef]
- Lakhina, G.S.; Singh, S.V. Generation of Weak Double Layers and Low-Frequency Electrostatic Waves in the Solar Wind. Sol. Phys. 2015, 290, 3033–3049. [Google Scholar] [CrossRef]
- Rubia, R.; Singh, S.V.; Lakhina, G.S. Existence domains of electrostatic solitary structures in the solar wind plasma. Phys. Plasmas 2016, 23, 062902. [Google Scholar] [CrossRef]
- Lakhina, G.S.; Singh, S. Chapter 9—Solitary Waves in Plasmas Described by Kappa Distributions. In Kappa Distributions: Theory and Applications in Plasmas; Livadiotis, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 399–418. [Google Scholar] [CrossRef]
- Rubia, R.; Singh, S.V.; Lakhina, G.S. Occurrence of electrostatic solitary waves in the lunar wake. J. Geophys. Res. 2017, 122, 9134–9147. [Google Scholar] [CrossRef]
- Rubia, R.; Singh, S.V.; Lakhina, G.S. Existence domain of electrostatic solitary waves in the lunar wake. Phys. Plasmas 2018, 25, 032302. [Google Scholar] [CrossRef]
- Bala, P.; Kaur, H. Oblique Propagation of Nonlinear Solitary Waves in Magnetized Plasma with Nonextensive Electrons. Phys. Sci. Int. J. 2019, 22, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mushinzimana, X.; Nsengiyumva, F.; Yadav, L.L. Large amplitude slow ion-acoustic solitons, supersolitons, and double layers in a warm negative ion plasma with superthermal electrons. AIP Adv. 2021, 11, 025325. [Google Scholar] [CrossRef]
- Yu, M.Y.; Shukla, P.K.; Bujarbarua, S. Fully nonlinear ion-acoustic solitary waves in a magnetized plasma. Phys. Fluids 1980, 23, 2146–2147. [Google Scholar] [CrossRef]
- Hudson, M.K.; Lotko, W.; Roth, I.; Witt, E. Solitary waves and double layers on auroral field lines. J. Geophys. Res. 1983, 88, 916–926. [Google Scholar] [CrossRef]
- Qian, S.; Lotko, W.; Hudson, M.K. Dynamics of localized ion-acoustic waves in a magnetized plasma. Phys. Fluids 1988, 31, 2190–2200. [Google Scholar] [CrossRef]
- Mace, R.L.; Baboolal, S.; Bharuthram, R.; Hellberg, M.A. Arbitrary-amplitude electron-acoustic solitons in a two-electron-component plasma. J. Plasma Phys. 1991, 45, 323–338. [Google Scholar] [CrossRef]
- Lakhina, G.S.; Tsurutani, B.T.; Singh, S.V.; Reddy, R.V. Some theoretical models for solitary structures of boundary layer waves. Nonlinear Process. Geophys. 2003, 10, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Verheest, F.; Cattaert, T.; Hellberg, M.A. Compressive and Rarefactive Electron-Acoustic Solitons and Double Layers in Space Plasmas. Space Sci. Rev. 2005, 121, 299–311. [Google Scholar] [CrossRef]
- Lakhina, G.S.; Singh, S.V.; Rubia, R.; Sreeraj, T. A review of nonlinear fluid models for ion-and electron-acoustic solitons and double layers: Application to weak double layers and electrostatic solitary waves in the solar wind and the lunar wake. Phys. Plasmas 2018, 25, 080501. [Google Scholar] [CrossRef]
- Lakhina, G.S.; Singh, S.V.; Rubia, R. A new class of Ion-acoustic solitons that can exist below critical Mach number. Phys. Scr. 2020, 95, 105601. [Google Scholar] [CrossRef]
- Livadiotis, G. Kappa distributions: Thermodynamic origin and Generation in space plasmas. J. Phys. Conf. Ser. 2018, 1100, 012017. [Google Scholar] [CrossRef]
- Livadiotis, G. Thermodynamic origin of kappa distributions. Europhys. Lett. 2018, 122, 50001. [Google Scholar] [CrossRef]
- Lakhina, G.S.; Singh, S.V.; Kakad, A.P. Ion acoustic solitons/double layers in two-ion plasma revisited. Phys. Plasmas 2014, 21, 062311. [Google Scholar] [CrossRef]
- Lacombe, C.; Salem, C.; Mangeney, A.; Hubert, D.; Perche, C.; Bougeret, J.L.; Kellogg, P.J.; Bosqued, J.M. Evidence for the interplanetary electric potential? WIND observations of electrostatic fluctuations. Ann. Geophys. 2002, 20, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Salem, C.; Lacombe, C.; Mangeney, A.; Kellogg, P.J.; Bougeret, J. Weak Double Layers in the Solar Wind and their Relation to the Interplanetary Electric Field. AIP Conf. Proc. 2003, 679, 513–517. [Google Scholar] [CrossRef]
- Bourouaine, S.; Marsch, E.; Neubauer, F.M. On the relative speed and temperature ratio of solar wind alpha particles and protons: Collisions versus wave effects. Astrophys. J. Lett. 2011, 728. [Google Scholar] [CrossRef] [Green Version]
- Borovsky, J.E.; Gary, S.P. How important are the alpha-proton relative drift and the electron heat flux for the proton heating of the solar wind in the inner heliosphere? J. Geophys. Res. 2014, 119, 5210. [Google Scholar] [CrossRef] [Green Version]
- Maksimovic, M.; Pierrard, V.; Riley, P. Ulysses electron distributions fitted with Kappa functions. Geophys. Res. Lett. 1997, 24, 1151–1154. [Google Scholar] [CrossRef]
- Ogilvie, K.W.; Steinberg, J.T.; Fitzenreiter, R.J.; Owen, C.J.; Lazarus, A.J.; Farrell, W.M.; Torbert, R.B. Observations of the lunar plasma wake from the WIND spacecraft on December 27, 1994. Geophys. Res. Lett. 1996, 23, 1255–1258. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.B.; Ergun, R.E.; Newman, D.L.; Halekas, J.S.; Andersson, L.; Angelopoulos, V.; Bonnell, J.W.; McFadden, J.P.; Cully, C.M.; Auster, H.U.; et al. Kinetic instabilities in the lunar wake: ARTEMIS observations. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Wiehle, S.; Plaschke, F.; Motschmann, U.; Glassmeier, K.H.; Auster, H.U.; Angelopoulos, V.; Mueller, J.; Kriegel, H.; Georgescu, E.; Halekas, J.; et al. First lunar wake passage of ARTEMIS: Discrimination of wake effects and solar wind fluctuations by 3D hybrid simulations. Planetary Space Sci. 2011, 59, 661–671. [Google Scholar] [CrossRef]
- Bosqued, J.M.; Lormant, N.; Reme, H.; d’Uston, C.; Lin, R.P.; Anderson, K.A.; Carlson, C.W.; Ergun, R.E.; Larson, D.; McFadden, J.; et al. Moon-solar wind interaction: First results from the WIND/3DP experiment. Geophys. Res. Lett. 1996, 23, 1259–1262. [Google Scholar] [CrossRef]
- Holmes, J.C.; Ergun, R.E.; Newman, D.L.; Wilder, F.D.; Sturner, A.P.; Goodrich, K.A.; Torbert, R.B.; Giles, B.L.; Strangeway, R.J.; Burch, J.L. Negative potential solitary structures in the magnetosheath with large parallel width. J. Geophys. Res. 2018, 123, 132–145. [Google Scholar] [CrossRef] [Green Version]
- Gurnett, D.; Huff, R.; Kirchner, D. The wide-band plasma wave investigation. Space Sci. Rev. 1997, 79, 195–208. [Google Scholar] [CrossRef]
- Décréau, P.M.E.; Fergeau, P.; Krannosels’Kikh, V.; Lévêque, M.; Martin, P.R.; Randriamboarison, O.; Sené, F.X.; Trotignon, J.G.; Canu, P.; Mögensen, P.B.; et al. Whisper, A resonance sounder and wave analyzer: Performances and perspectives for the Cluster mission. Space Sci. Rev. 1997, 79, 157–193. [Google Scholar] [CrossRef]
- Giovanelli, R.G. Magnetic and Electric Phenomena in the Sun’s Atmosphere associated with Sunspots. Month. Not. R. Astron. Soc. 1947, 107, 338–355. [Google Scholar] [CrossRef] [Green Version]
- Dungey, J.W. Interplanetary magnetic field and the auroral zones. Phys. Res. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- Vasyliunas, V.M. Interplanetary magnetic field and the auroral zones. Rev. Geophys. 1975, 13, 303–336. [Google Scholar] [CrossRef]
- Lakhina, G.S. Magnetic reconnection. Bull. Astron. Soc. India 2000, 28, 593–646. [Google Scholar]
- Angelopoulos, V.; McFadden, J.; Larson, D.; Carlson, C.W.; Mende, S.B.; Frey, H.; Phan, T.; Sibeck, D.G.; Glassmeier, K.H.; Auster, U.; et al. Tail reconnection triggering substorm onset. Science 2008, 321, 931–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birn, J.; Hesse, M. Forced reconnection in the near magnetotail: Onset and energy conversion in PIC and MHD simulations. J. Geophys. Res. Space Phys. 2014, 119, 290–309. [Google Scholar] [CrossRef]
- Fu, H.S.; Vaivads, A.; Khotyaintsev, Y.V.; André, M.; Cao, J.B.; Olshevsky, V.; Eastwood, J.P.; Retino, A. Intermittent energy dissipation by turbulent reconnection. Geophys. Res. Lett. 2017, 44, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Kulsrud, R.; Ji, H. Magnetic reconnection. Rev. Mod. Phys. 2010, 82, 603–664. [Google Scholar] [CrossRef]
- Angelopoulos, V.; Baumjohann, W.; Kennel, C.F.; Coroniti, F.V.; Kivelson, M.G.; Pellat, R.; Walker, R.J.; Lühr, H.; Paschmann, G. Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 1992, 97, 4027–4039. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.B.; Ma, Y.D.; Parks, G.; Reme, H.; Dandouras, I.; Nakamura, R.; Zhang, T.L.; Zong, Q.; Lucek, E.; Carr, C.M.; et al. Joint observations by Cluster satellites of bursty bulk flows in the magnetotail. J. Geophys. Res. 2006, 111, A04206. [Google Scholar] [CrossRef]
- Cao, J.; Ma, Y.; Parks, G.; Reme, H.; Dandouras, I.; Zhang, T. Kinetic analysis of the energy transport of bursty bulk flows in the plasma sheet. J. Geophys. Res. 2013, 118, 313–320. [Google Scholar] [CrossRef]
- Khotyaintsev, Y.V.; Cully, C.M.; Vaivads, A.; André, M.; Owen, C.J. Plasma jet braking: Energy dissipation and nonadiabatic electrons. Phys. Rev. Lett. 2011, 106, 16. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.S.; Khotyaintsev, Y.V.; André, M.; Vaivads, A. Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophys. Res. Lett. 2011, 38, L16104. [Google Scholar] [CrossRef]
- Lapenta, G.; Goldman, M.; Newman, D.; Markidis, S.; Divin, A. Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnection. Phys. Plasmas 2014, 21, 5. [Google Scholar] [CrossRef]
- Lu, S.; Angelopoulos, V.; Fu, H.S. Suprathermal particle energization in dipolarization fronts: Particle-in-cell simulations. J. Geophys. Res. Space Phys. 2016, 121, 9483–9500. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.M.; Fu, H.S.; Xu, Y.; Cao, J.B.; Liu, W.L. Explaining the rolling-pin distribution of suprathermal electrons behind dipolarization fronts. Geophys. Res. Lett. 2017, 44, 6492–6499. [Google Scholar] [CrossRef]
- Zhou, X.Z.; Runov, A.; Angelopoulos, V.; Artemyev, A.V.; Birn, J. On the acceleration and anisotropy of ions within magnetotail dipolarizing flux bundles. J. Geophys. Res. Space Phys. 2018, 123, 429–442. [Google Scholar] [CrossRef]
- Sitnov, M.; Birn, J.; Ferdousi, B.; Gordeev, E.; Khotyaintsev, Y.; Merkin, V.; Motoba, T.; Otto, A.; Panov, E.; Pritchett, P.; et al. Explosive magnetotail activity. Space Sci. Rev. 2019, 215, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Fu, H.S.; Zhang, Y.; Li, X.; Ge, Y.S.; Du, A.M.; Liu, C.M.; Xu, Y. Energetic electron acceleration in unconfined reconnection jets. Astrophys. J. Lett. 2019, 881, L8. [Google Scholar] [CrossRef]
- Zhao, M.J.; Fu, H.S.; Liu, C.M.; Chen, Z.Z.; Xu, Y.; Giles, B.L.; Burch, J.L. Energy range of electron rolling-pin distribution behind dipolarization front. Geophys. Res. Lett. 2019, 46, 2390–2398. [Google Scholar] [CrossRef]
- Shibata, K.; Masuda, S.; Shimojo, M.; Hara, H.; Yokoyama, T.; Tsuneta, S.; Kosugi, T.; Ogawara, Y. Hot-Plasma ejections associated with compact-loop solar flares. ApJ 1995, 451, L83–L85. [Google Scholar] [CrossRef]
- Kirk, J.G.; Skjaeraasen, O. Dissipation in Poynting-flux-dominated flows: The σ-problem of the Crab pulsar wind. ApJ 2003, 591, 366–379. [Google Scholar] [CrossRef] [Green Version]
- Larrabee, D.A.; Lovelace, R.V.E.; Romanova, M.M. Efficient acceleration and radiation in Poynting flux powered GRB outflows. ApJ 2003, 586, 72–78. [Google Scholar] [CrossRef]
- Drenkhahn, G.; Spruit, H.C. Efficient acceleration and radiation in Poynting flux powered GRB outflows. Astron. Astrophys. 2002, 391, 1141–1153. [Google Scholar] [CrossRef]
- Hwang, K.J.; Goldstein, M.L.; Vinas, A.F.; Schriver, D.; Ashour-Abdalla, M. Wave-particle interactions during a dipolarization front event. J. Geophys. Res. Space Phys. 2014, 119, 2484–2493. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Cao, J.B.; Fu, H.S.; Wang, T.Y.; Liu, W.L.; Yao, Z.H. Broadband high-frequency waves detected at dipolarization fronts. J. Geophys. Res. Space Phys. 2017, 122, 4299–4307. [Google Scholar] [CrossRef]
- Divin, A.; Khotyaintsev, Y.V.; Vaivads, A.; André, M. Lower hybrid drift instability at a dipolarization front. J. Geophys. Res. Space Phys. 2017, 120, 1124–1132. [Google Scholar] [CrossRef]
- Liu, C.M.; Fu, H.S.; Vaivads, A.; Khotyaintsev, Y.V.; Gershman, D.J.; Hwang, K.J.; Chen, Z.Z.; Cao, D.; Xu, Y.; Yang, J.; et al. Electron jet detected by MMS at dipolarization front. Geophys. Res. Lett. 2018, 45, 556–564. [Google Scholar] [CrossRef]
- Liu, C.M.; Fu, H.S.; Xu, Y.; Khotyaintsev, Y.V.; Burch, J.L.; Ergun, R.E.; Gershman, D.G.; Torbert, R.B. Electron-scale measurements of dipolarization front. Geophys. Res. Lett. 2018, 45, 4628–4638. [Google Scholar] [CrossRef]
- Pan, D.X.; Khotyaintsev, Y.V.; Graham, D.B.; Vaivads, A.; Zhou, X.Z.; André, M.; Lindqvist, P.A.; Ergun, R.E.; Le Contel, O.; Russell, C.T.; et al. Rippled electron-scale structure of a dipolarization front. Geophys. Res. Lett. 2018, 45, 12116–12124. [Google Scholar] [CrossRef]
- Huang, S.Y.; Zhou, M.; Deng, X.H.; Yuan, Z.G.; Pang, Y.; Wei, Q.; Su, W.; Li, H.M.; Wang, Q.Q. Kinetic structure and wave properties associated with sharp dipolarization front observed by Cluster. Ann. Geophys. 2012, 30, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.S.; Cao, J.B.; Cully, C.M.; Khotyaintsev, Y.V.; Vaivads, A.; Angelopoulos, V.; Zong, Q.G.; Santolík, O.; Macúšová, E.; André, M.; et al. Whistler-mode waves inside flux pileup region: Structured or unstructured? J. Geophys. Res. Space Phys. 2014, 119, 9089–9100. [Google Scholar] [CrossRef]
- Lakhina, G.S.; Singh, S.V.; Rubia, R. A mechanism for electrostatic solitary waves observed in the reconnection jet region of the Earth’s magnetotail. Adv. Space Res. 2021, 67, 1864–1875. [Google Scholar] [CrossRef]
- Verheest, F.; Hellberg, M.A. Fast and slow beam mode ion-acoustic solitons in plasmas with counterstreaming cold protons. Phys. Scr. 2021, 96, 045603. [Google Scholar] [CrossRef]
- Kakad, A.; Omura, Y.; Kakad, B. Experimental evidence of ion acoustic soliton chain formation and validation of nonlinear fluid theory. Phys. Plasmas 2013, 20, 062103. [Google Scholar] [CrossRef] [Green Version]
- Lotekar, A.; Kakad, A.; Kakad, B. Fluid simulation of dispersive and nondispersive ion acoustic waves in the presence of superthermal electrons. Phys. Plasmas 2016, 23, 102108. [Google Scholar] [CrossRef]
- Lotekar, A.; Kakad, A.; Kakad, B. Generation of ion acoustic solitary waves through wave breaking in superthermal plasmas. Phys. Plasmas 2017, 24, 102127. [Google Scholar] [CrossRef]
- Kakad, B.; Kakad, A.; Omura, Y. Nonlinear evolution of ion acoustic solitary waves in space plasmas: Fluid and particle-in-cell simulations. J. Geophy. Res. Space Phys. 2014, 119, 5589–5599. [Google Scholar] [CrossRef]
- Kakad, A.; Kakad, B.; Omura, Y. Formation and interaction of multiple coherent phase space structures in plasma. Phys. Plasmas 2017, 24, 060704. [Google Scholar] [CrossRef]
- Kakad, B.; Kakad, A.; Omura, Y. Particle trapping and ponderomotive processes during breaking of ion acoustic waves in plasmas. Phys. Plasmas 2017, 24, 102122. [Google Scholar] [CrossRef]
- Mace, R.L.; Hellberg, M.A. The Korteweg–de Vries–Zakharov–Kuznetsov equation for electron-acoustic waves. Phys. Plasmas 2001, 8, 2649–2656. [Google Scholar] [CrossRef]
- Shukla, P.K.; Mamun, A.A.; Eliasson, B. 3D electron-acoustic solitary waves introduced by phase space electron vortices in magnetized space plasmas. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Sultana, S.; Kourakis, I.; Hellberg, M.A. Oblique propagation of arbitrary amplitude electron acoustic solitary waves in magnetized kappa-distributed plasmas. Plasma Phys. Control. Fusion 2012, 54, 105016. [Google Scholar] [CrossRef] [Green Version]
- Javidan, K.; Pakzad, H.R. Obliquely propagating electron acoustic solitons in a magnetized plasma with superthermal electrons. Indian J. Phys. 2013, 87, 83–87. [Google Scholar] [CrossRef]
- Adnan, M.; Mahmood, S.; Qamar, A. Small amplitude ion acoustic solitons in a weakly magnetized plasma with anisotropic ion pressure and kappa distributed electrons. Adv. Space Res. 2014, 53, 845–852. [Google Scholar] [CrossRef]
- Tribeche, M.; Sabry, R. Electron-acoustic solitary waves in a magnetized plasma with hot electrons featuring Tsallis distributions. Astrophys. Space Sci. 2012, 341, 579–585. [Google Scholar] [CrossRef]
- Lee, L.C.; Kan, J.R. Nonlinear ion-acoustic waves and solitons in a magnetized plasma. Phys. Fluids 1981, 24, 430–433. [Google Scholar] [CrossRef]
- Cairns, R.A.; Mamun, A.A.; Bingham, R.; Shukla, P.K. Ion-acoustic solitons in a magnetized plasma with nonthermal electrons. Phys. Scr. 1996, T63, 80–86. [Google Scholar] [CrossRef]
- Dombeck, J.; Cattell, C.; Crumley, J.; Peterson, W.K.; Collin, H.L.; Kletzing, C. Observed trends in auroral zone ion mode solitary wave structure characteristics using data from Polar. J. Geophys. Res. 2001, 106, 19013–19021. [Google Scholar] [CrossRef]
- Sultana, S.; Kourakis, I.; Saini, N.S.; Hellberg, M.A. Oblique electrostatic excitations in a magnetized plasma in the presence of excess superthermal electrons. Phys. Plasmas 2010, 17, 032310. [Google Scholar] [CrossRef] [Green Version]
- Kadijani, M.N.; Abbasi, H.; Pajouh, H.H. Influence of superthermal electrons on obliquely propagating ion-acoustic solitons in magnetized plasmas. Plasma Phys. Control. Fusion 2011, 53, 025004. [Google Scholar] [CrossRef]
- Davey, A.; Stewartson, K. On three–dimensional packets of surface waves. Proc. R. Soc. Lond. 1974, 338A, 101–110. [Google Scholar]
- Ghosh, S.S.; Sen, A.; Lakhina, G.S. Dromion solutions for an electron acoustic wave and its application to space observations. Pramana 2000, 55, 693–698. [Google Scholar] [CrossRef]
- Ghosh, S.S.; Sen, A.; Lakhina, G.S. Dromion solutions for nonlinear electron acoustic waves in space plasmas. Nonlinear Process. Geophys. 2002, 9, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Spatschek, K.H.; Shukla, P.; Yu, M. On the two-dimensional stability of ion-acoustic solitons. Phys. Lett. A 1975, 54, 419–420. [Google Scholar] [CrossRef]
- Kadomtsev, B.B.; Petviashvili, V.I. On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 1970, 15, 539–541. [Google Scholar]
- Kuznetsov, E.A.; Turitsyn, S.K. Two-and three-dimensional solitons in weakly dispersive media. Sov. Phys. JETP 1982, 55, 844–847. [Google Scholar]
- Zakharov, V.E.; Kuznetsov, E.A. Three-dimensional solitons. Sov. Phys. JETP 1974, 39, 285–286. [Google Scholar]
- Kourakis, I.; Shukla, P.K. Electron-acoustic plasma waves: Oblique modulation and envelope solitons. Phys. Rev. E 2004, 69, 036411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, T.S.; Bedi, C.; Bains, A.S. Two-dimensional envelope electron-acoustic waves under transverse perturbations. Phys. Plasmas 2009, 16, 032111. [Google Scholar] [CrossRef]
- Sultana, S.; Kourakis, I. Electrostatic solitary waves in the presence of excess superthermal electrons: Modulational instability and envelope soliton modes. Plasma Phys. Control. Fusion 2011, 53, 045003. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, E.A.; Rubenchik, A.M.; Zakharov, V.E. Soliton stability in plasmas and hydrodynamics. Phys. Rep. 1986, 142, 103–165. [Google Scholar] [CrossRef] [Green Version]
- Mamun, A.A.; Russell, S.M.; Mendoza-Briceño, C.A.; Alam, M.N.; Datta, T.K.; Das, A.K. Multi-dimensional instability of electrostatic solitary structures in magnetized nonthermal dusty plasmas. Planet. Space Sci. 2000, 48, 163–173. [Google Scholar] [CrossRef]
- Seadawy, A.R. Stability analysis for Zakharov–Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 2014, 67, 172–180. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Lu, D. Ion acoustic solitary wave solutions of three-dimensional nonlinear extended Zakharov–Kuznetsov dynamical equation in a magnetized two-ion-temperature dusty plasma. Res. Phys. 2016, 6, 590–593. [Google Scholar] [CrossRef] [Green Version]
- Jao, C.S.; Hau, L.N. Two-dimensional electrostatic solitary structures in electron–positron plasmas. New J. Phys. 2015, 17, 053047. [Google Scholar] [CrossRef] [Green Version]
- Mihalache, D.; Mazilu, D. On the existence and stability of three-dimensional solitons and vortices in optics and Bose–Einstein condensate: Occurence of swallowtail bifurcations. Rom. Rep. Phys. 2008, 60, 957–975. [Google Scholar]
- Gottwald, G.; Grimshaw, R.; Malomed, B.A. Stable two-dimensional parametric solitons in fluid systems. Phys. Lett. A 1998, 248, 208–218. [Google Scholar] [CrossRef]
- Sharma, S.R.; Tiwari, R.S. Stability of two-dimensional ion acoustic solitons. Phys. Lett. A 1976, 57, 341–342. [Google Scholar] [CrossRef]
- Laedke, E.W.; Spatschek, K.H. Limitations of Two-Dimensional Model Equations for Ion-Acoustic Waves. Phys. Rev. Lett. 1981, 47, 719–722. [Google Scholar] [CrossRef]
- Shalini; Saini, S.; Misra, A.P. Modulation of ion-acoustic waves in a nonextensive plasma with two-temperature electrons. Phys. Plasmas 2015, 22, 092124. [Google Scholar] [CrossRef] [Green Version]
- Mikhalovskii, A.B.; Lakhin, V.P.; Onishchenko, G.; Smolyakov, A.I. Role of vector nonlinearity in soliton stability in a magnetized plasma. Sov. Phys. JETP 1985, 61, 469–475. [Google Scholar]
- Karpman, V.I. Soliton evolution in the presence of perturbation. Phys. Scr. 1979, 20, 462. [Google Scholar] [CrossRef]
- Karpman, V.I. Stability of solitons described by KdV-type equations with higher-order dispersion and nonlinearity (analytical results). Phys. Lett. A 2001, 284, 238–246. [Google Scholar] [CrossRef]
- Dubinov, A.E.; Kolotkov, D.Y. Ion-Acoustic Super Solitary Waves in Dusty Multispecies Plasmas. IEEE Trans. Plasma Sci. 2012, 40, 1429–1433. [Google Scholar] [CrossRef]
- Dubinov, A.E.; Kolotkov, D.Y. Interpretation of ion-acoustic solitons of unusual form in experiments in SF6-Ar plasma. High Energy Chem. 2012, 46, 349–353. [Google Scholar] [CrossRef]
- Dubinov, A.E.; Kolotkov, D.Y. Ion-Acoustic Supersolitons in Plasma. Plasma Phys. Rep. 2012, 38, 909–912. [Google Scholar] [CrossRef]
- Maharaj, S.K.; Bharuthram, R.; Singh, S.V.; Lakhina, G.S. Existence domains of dust-acoustic solitons and supersolitons. Phys. Plasmas 2013, 20, 083705. [Google Scholar] [CrossRef] [Green Version]
- Verheest, F.; Hellberg, M.A.; Kourakis, I. Electrostatic supersolitons in three-species plasmas. Phys. Plasmas 2013, 20, 012302. [Google Scholar] [CrossRef] [Green Version]
- Verheest, F.; Hellberg, M.A.; Kourakis, I. Ion-acoustic supersolitons in plasmas with two-temperature electrons: Boltzmann and kappa distributions. Phys. Plasmas 2013, 20, 082309. [Google Scholar] [CrossRef]
- Verheest, F.; Hellberg, M.A.; Kourakis, I. Dust-ion-acoustic supersolitons in dusty plasmas with nonthermal electrons. Phys. Rev. E 2013, 87, 043107. [Google Scholar] [CrossRef] [Green Version]
- Verheest, F.; Lakhina, G.S.; Hellberg, M.A. No electrostatic supersolitons in two-component plasmas. Phys. Plasmas 2014, 21, 062303. [Google Scholar] [CrossRef]
- Kakad, A.; Lotekar, A.; Kakad, B. First-ever model simulation of the new subclass of solitons “Supersolitons” in plasma. Phys. Plasmas 2016, 23, 110702. [Google Scholar] [CrossRef]
- Rufai, O.R. Auroral electrostatic solitons and supersolitons in a magnetized nonthermal plasma. Phys. Plasmas 2015, 22, 052309. [Google Scholar] [CrossRef]
- Steffy, S.; Ghosh, S. Existence domain of the compressive ion acoustic super solitary wave in a two electron temperature warm multi-ion plasma. Phys. Plasmas 2017, 24, 102111. [Google Scholar] [CrossRef]
- Dubinov, A.E.; Kolotkov, D.Y. Above the weak nonlinearity: Super-nonlinear waves in astrophysical and laboratory plasmas. Rev. Mod. Plasma Phys. 2018, 2, 2. [Google Scholar] [CrossRef]
- Mälkki, A.; Koskinen, H.; Boström, R.; Holback, B. On theories attempting to explain observations of solitary waves and weak double layers in the auroral magnetosphere. Phys. Scr. 1989, 39, 787–793. [Google Scholar] [CrossRef]
- Lotko, W.; Kennel, C.F. Spiky ion acoustic waves in collisionless auroral plasma. J. Geophys. Res. 1983, 88, 381–394. [Google Scholar] [CrossRef]
- Lotko, W. Diffusive acceleration of auroral primaries. J. Geophys. Res. 1986, 91, 191–203. [Google Scholar] [CrossRef]
- Barnes, C.; Hudson, M.K.; Lotko, W. Weak double layers in ion-acoustic turbulence. Phys. Fluids 1985, 28, 1055–1062. [Google Scholar] [CrossRef]
- Qian, S.; Lotko, W.; Hudson, M.K. Oxygen acoustic solitary waves in a magnetized plasma. J. Geophys. Res. 1989, 94, 1339–1346. [Google Scholar] [CrossRef]
- Miyake, T.; Omura, Y.; Matsumoto, H. Electrostatic particle simulations of solitary waves in the auroral region. J. Geophys. Res. 2000, 105, 23239–23249. [Google Scholar] [CrossRef]
- Crumley, J.P.; Cattell, C.A.; Lysak, R.L.; Dombeck, J.P. Studies of ion solitary waves using simulations including hydrogen and oxygen beams. J. Geophys. Res. Space Phys. 2001, 106, 6007–6015. [Google Scholar] [CrossRef]
- Strangeway, R.J.; Kepko, L.; Elphic, R.C.; Carlson, C.W.; Ergun, R.E.; McFadden, J.P.; Peria, W.J.; Delory, G.T.; Chaston, C.C.; Temerin, M.; et al. FAST observations of VLF waves in the auroral zone: Evidence of very low plasma densities. Geophys. Res. Lett. 1998, 25, 2065–2068. [Google Scholar] [CrossRef] [Green Version]
- McFadden, J.P.; Carlson, C.W.; Ergun, R.E.; Klumpar, D.M.; Moebius, E. Ion and electron characteristics in auroral density cavities associated with ion beams: No evidence for cold ionospheric plasma. J. Geophys. Res. 1999, 104, 14671–14682. [Google Scholar] [CrossRef]
- Lu, Q.M.; Wang, D.Y.; Wang, S. Generation mechanism of electrostatic solitary structures in the Earth’s auroral region. J. Geophys. Res. 2005, 110, A03223. [Google Scholar] [CrossRef] [Green Version]
- Dillard, C.S.; Vasko, I.Y.; Mozer, F.S.; Agapitov, O.V.; Bonnell, J.W. Electron-acoustic solitary waves in the Earth’s inner magnetosphere. Phys. Plasmas 2018, 25, 022905. [Google Scholar] [CrossRef]
Mode | Polarity | V | E | W | ||
---|---|---|---|---|---|---|
(km s) | (mV m) | (m) | (Hz) | |||
WB1 | Slow ion- | +ve | 28.9– | 0.0003– | 1331– | 6– |
acoustic | 29.1 | 0.03 | 262 | 34 | ||
Fast ion- | +ve | 62– | 0.008– | 7439– | 3– | |
acoustic | 114 | 9.5 | 480 | 41 | ||
Electron- | -ve | 1169– | 0.004– | 1243– | 262– | |
acoustic | 1195 | 0.10 | 436 | 803 | ||
WB2/WB3 | Slow ion- | +ve | 26.0– | 0.0005– | 610– | 13– |
acoustic | 26.2 | 0.05 | 120 | 67 | ||
Fast ion- | +ve | 55.6– | 0.02– | 3411– | 5– | |
acoustic | 60.1 | 16 | 220 | 81 | ||
Electron- | -ve | 1051– | 0.008– | 570– | 513– | |
acoustic | 1075 | 0.2 | 200 | 1574 |
Mode | Polarity | V | E | W | ||
---|---|---|---|---|---|---|
(km s) | (mV m) | (m) | (Hz) | |||
WB1 | Slow ion- | +ve | 28.9 – | 0.0004– | 1222– | 8– |
acoustic | 29.1 | 0.03 | 240 | 34 | ||
Fast ion- | +ve | 63.0– | 0.04– | 6501– | 2– | |
acoustic | 67.3 | 9.7 | 480 | 41 | ||
Fast ion- | -ve | 63.0– | 0.02– | 8028– | 3– | |
acoustic | 63.8 | 0.6 | 1113 | 18 | ||
Electron- | -ve | 1348– | 0.004– | 1200– | 591– | |
acoustic | 1369 | 0.07 | 436 | 1803 | ||
WB2/WB3 | Slow ion- | +ve | 26.0– | 0.0008– | 560– | 13– |
acoustic | 26.1 | 0.05 | 110 | 64 | ||
Fast ion- | +ve | 56.7– | 0.07– | 2981– | 7– | |
acoustic | 60.6 | 17 | 220 | 78 | ||
Fast ion- | -ve | 56.7– | 0.03– | 3681– | 3- | |
acoustic | 57.4 | 1.0 | 510 | 35 | ||
Electron- | -ve | 1212– | 0.007– | 550– | 591– | |
acoustic | 1231 | 0.12 | 200 | 1803 |
Event | Time | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
hh:mm:ss | cm | eV | km s | cm | eV | km s | cm | eV | km s | |
1 | 03:26:00.72 | 6.66 | 45.83 | 11 | 3.00 | 20.69 | 3825 | 2.23 | 14.19 | −4013 |
2 | 03:26:12.72 | 6.39 | 47.98 | −50 | 2.74 | 20.68 | 3790 | 2.17 | 14.80 | −4236 |
3 | 03:26:16.74 | 6.71 | 48.72 | −6 | 2.82 | 21.98 | 3998 | 2.33 | 15.10 | −4173 |
4 | 03:26:24.72 | 6.40 | 47.29 | 42 | 2.88 | 22.69 | 3962 | 1.90 | 12.75 | −4044 |
5 | 03:26:32.70 | 6.37 | 51.40 | −70 | 2.63 | 23.76 | 4064 | 1.98 | 15.37 | −4383 |
6 | 03:26:40.68 | 6.21 | 52.74 | 21 | 2.52 | 22.38 | 3975 | 1.93 | 15.65 | −4205 |
7 | 03:26:48.72 | 6.46 | 53.64 | 50 | 2.58 | 24.49 | 4268 | 1.92 | 16.12 | −4294 |
8 | 03:26:52.68 | 6.56 | 54.04 | −42 | 2.41 | 23.15 | 4097 | 1.92 | 16.49 | −4529 |
Event | Range of Allowed | Soliton | Pulse | Electric Field |
---|---|---|---|---|
Soliton Velocity | Width | Duration | ||
V (km s) | W (km) | ( s) | E (mv/m) | |
1 | 6125–6127 | 2.5–2.9 | 408–473 | 0.2–1.4 |
2 | 6174–6185 | 0.8–1.7 | 133–278 | 1.3–6.5 |
3 | 6378–6389 | 0.9–2.1 | 135–330 | 1.3–8.6 |
4 | 6319–6321 | 1.7–2.9 | 272–463 | 0.4–1.6 |
5 | 6565–6590 | 1.5–1.7 | 230–261 | 0.1–13.2 |
6 | 6486–6513 | 1.1–2 | 166–319 | 0.2–14.9 |
7 | 6770–6800 | 1.4– 1.9 | 206–276 | 0.2–15.6 |
8 | 6667–6740 | 0.6–1.2 | 90–179 | 0.1–35 |
Roots | Mode | Mach | V (km/s) | W (km) | E (mV/m) | (V) |
---|---|---|---|---|---|---|
Number | ||||||
R1 | Fast ion- | 1334 | 16 | 5 | 70 | |
acoustic | 1344 | 12 | 11 | 107 | ||
parallel to | 1355 | 9 | 17 | 138 | ||
R2 | Slow ion- | 570 | 22 | 3 | 50 | |
acoustic | 559 | 16 | 7 | 89 | ||
parallel to | 550 | 12 | 13 | 125 | ||
R3 | Slow ion- | 15 | 29 | 332 | ||
acoustic anti- | 11 | 54 | 475 | |||
parallel to | 9 | 68 | 538 | |||
R4 | Fast ion- | 21 | 11 | 175 | ||
acoustic anti- | 13 | 37 | 367 | |||
parallel to | 9 | 64 | 500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakhina, G.S.; Singh, S.; Rubia, R.; Devanandhan, S. Electrostatic Solitary Structures in Space Plasmas: Soliton Perspective. Plasma 2021, 4, 681-731. https://doi.org/10.3390/plasma4040035
Lakhina GS, Singh S, Rubia R, Devanandhan S. Electrostatic Solitary Structures in Space Plasmas: Soliton Perspective. Plasma. 2021; 4(4):681-731. https://doi.org/10.3390/plasma4040035
Chicago/Turabian StyleLakhina, Gurbax Singh, Satyavir Singh, Rajith Rubia, and Selvaraj Devanandhan. 2021. "Electrostatic Solitary Structures in Space Plasmas: Soliton Perspective" Plasma 4, no. 4: 681-731. https://doi.org/10.3390/plasma4040035
APA StyleLakhina, G. S., Singh, S., Rubia, R., & Devanandhan, S. (2021). Electrostatic Solitary Structures in Space Plasmas: Soliton Perspective. Plasma, 4(4), 681-731. https://doi.org/10.3390/plasma4040035